The characterization of a multistage Pulse Tube cycle refrigeration system has been partially performed on the Northrop Grumman High Capacity Cooler (NG HCC) cryocooler by the Air Force Research Laboratory. This cooler's design uses two pulse tube cold ends in parallel. The nominal 85 K cold end is thermally strapped to the regenerator housing of the nominal 35 K cold end in order to boost 35 K cooling capacity. The cooler was tailored to support long wave infrared (LWIR) HgCdTe focal plane arrays and their associated optical systems, but this particular refrigeration system can also support a variety of short or medium wave infrared sensing as well as high temperature superconducting electronics applications. The results are presented for both steady state and transient performance envelopes for this cooler on and off the design point of 2 Watts of cooling at 35 K and 17 Watts at 85 K. When it is off the design point the load is up to 15 Watts of cooling at “35 K” and 50 Watts on the “85 K” sides. Testin...
{"title":"MULTISTAGE PULSE TUBE REGRIGERATION CHARACTERIZATION OF THE NORTHROP GRUMMAN HIGH CAPACITY COOLER—AN UPDATE","authors":"J. Sutliff, T. Roberts","doi":"10.1063/1.2908689","DOIUrl":"https://doi.org/10.1063/1.2908689","url":null,"abstract":"The characterization of a multistage Pulse Tube cycle refrigeration system has been partially performed on the Northrop Grumman High Capacity Cooler (NG HCC) cryocooler by the Air Force Research Laboratory. This cooler's design uses two pulse tube cold ends in parallel. The nominal 85 K cold end is thermally strapped to the regenerator housing of the nominal 35 K cold end in order to boost 35 K cooling capacity. The cooler was tailored to support long wave infrared (LWIR) HgCdTe focal plane arrays and their associated optical systems, but this particular refrigeration system can also support a variety of short or medium wave infrared sensing as well as high temperature superconducting electronics applications. The results are presented for both steady state and transient performance envelopes for this cooler on and off the design point of 2 Watts of cooling at 35 K and 17 Watts at 85 K. When it is off the design point the load is up to 15 Watts of cooling at “35 K” and 50 Watts on the “85 K” sides. Testin...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"917-923"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Bourcey, P. Campos, P. Chiggiato, P. Limón, A. Mongelluzzo, G. Musso, A. Poncet, V. Parma
The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10−9 mbar⋅l⋅s−1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfill the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds.This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the us...
{"title":"LEAK-TIGHT WELDING EXPERIENCE FROM THE INDUSTRIAL ASSEMBLY OF THE LHC CRYOSTATS AT CERN","authors":"N. Bourcey, P. Campos, P. Chiggiato, P. Limón, A. Mongelluzzo, G. Musso, A. Poncet, V. Parma","doi":"10.1063/1.2908564","DOIUrl":"https://doi.org/10.1063/1.2908564","url":null,"abstract":"The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10−9 mbar⋅l⋅s−1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfill the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds.This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the us...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"325-332"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Aoki, T. Haruyama, Y. Makida, O. Araoka, K. Kasami, T. Takahashi, T. Nagae, Y. Kakiguchi, M. Sekimoto, T. Tosaka, H. Miyazaki, T. Kuriyama, M. Ono, T. Orikasa, T. Tsuchihashi, Y. Hirata
We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.
我们计划为超导Kaon光谱仪(SKS)磁体开发一种新的改进冷却系统,并将磁体转移到日本质子加速器研究中心(J-PARC)强子厅的K1.8束流线上,以进一步用于核物理实验。为了取代现有的300 W低温系统,我们将采用一种新的冷却方法,即使用4 K Gifford-McMahon/Joule-Thomson (GM/JT)制冷机。2007年2月至3月,在GM/JT制冷机上进行了冷却试验,以确定将配备GM/JT制冷机的新型磁体液氦储层的实用设计。我们搭建了一个装有GM/JT制冷机的新型冷却试验台,并测量了在几种热屏蔽温度下的冷却能力,其中有挡板或没有挡板有助于防止对流。根据测试结果,我们最终决定为新的SKS采用三台GM/JT制冷机,以及一个挡板和一个额外的专用GM制冷机来冷却GM/JT端口的热屏蔽。
{"title":"DEVELOPMENT OF NEW COOLING SYSTEM USING GM/JT CRYOCOOLERS FOR THE SKS MAGNET","authors":"K. Aoki, T. Haruyama, Y. Makida, O. Araoka, K. Kasami, T. Takahashi, T. Nagae, Y. Kakiguchi, M. Sekimoto, T. Tosaka, H. Miyazaki, T. Kuriyama, M. Ono, T. Orikasa, T. Tsuchihashi, Y. Hirata","doi":"10.1063/1.2908567","DOIUrl":"https://doi.org/10.1063/1.2908567","url":null,"abstract":"We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"349-356"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sasaki, M. Hamabe, T. Famakinwa, S. Yamaguchi, A. Radovinsky
In Chubu University, bellows pipes are applied to absorb the heat shrink as a part of straight pipes for superconducting power transmission lines (SC PT). In conventional SC PT systems, SC cables are put in corrugated pipe. Pressure drop of the liquid nitrogen flow in bellows and corrugated pipes are analyzed by a fluid-analysis software. Pressure drop per unit length in the bellows and corrugated pipes is respectively 2.6 and 3.7 times that in the straight pipes. Pressure drop in the bellows is smaller than that in the corrugated pipes. Therefore, bellows are preferable for the DC-SC PT.
{"title":"A NUMERICAL ANALYSIS IN LN2 CHANNEL FOR DC-SC POWER TRANSMISSION LINE","authors":"A. Sasaki, M. Hamabe, T. Famakinwa, S. Yamaguchi, A. Radovinsky","doi":"10.1063/1.2908668","DOIUrl":"https://doi.org/10.1063/1.2908668","url":null,"abstract":"In Chubu University, bellows pipes are applied to absorb the heat shrink as a part of straight pipes for superconducting power transmission lines (SC PT). In conventional SC PT systems, SC cables are put in corrugated pipe. Pressure drop of the liquid nitrogen flow in bellows and corrugated pipes are analyzed by a fluid-analysis software. Pressure drop per unit length in the bellows and corrugated pipes is respectively 2.6 and 3.7 times that in the straight pipes. Pressure drop in the bellows is smaller than that in the corrugated pipes. Therefore, bellows are preferable for the DC-SC PT.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"75-82"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hedayat, S. L. Nelson, L. Hastings, R. Flachbart, D. Vermilion, S. Tucker
Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling ...
{"title":"Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data","authors":"A. Hedayat, S. L. Nelson, L. Hastings, R. Flachbart, D. Vermilion, S. Tucker","doi":"10.1063/1.2908511","DOIUrl":"https://doi.org/10.1063/1.2908511","url":null,"abstract":"Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling ...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"28 1","pages":"1491-1498"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have measured the thermal conductivity of aerogel beads and glass microspheres at average temperatures ranging from 30 K to 180 K. The measuring device consists of two closed, concentric cylinders suspended inside of a vacuum insulated cryostat. The insulation being tested occupies the annular space between the cylinders. A single stage Gifford-McMahon cryocooler, thermally anchored to the outer cylinder, cools the apparatus to a desired temperature range. A heater mounted on the inner cylinder generates uniform heat flux through the insulating material between the two cylinders. During each measurement, a temperature difference of roughly 10 K across the insulation is maintained. Fourier's law of heat conduction is used to relate the temperature difference between the two cylinders and the applied heating power to a bulk effective thermal conductivity of the powder insulation. Data were collected for aerogel beads between 30 K and 80 K and for glass bubbles between 30 K and 180 K. Results are compared...
{"title":"THERMAL CONDUCTIVITY OF POWDER INSULATIONS BELOW 180 K","authors":"M. Barrios, Yeon Suk Choi, S. V. Sciver","doi":"10.1063/1.2908672","DOIUrl":"https://doi.org/10.1063/1.2908672","url":null,"abstract":"We have measured the thermal conductivity of aerogel beads and glass microspheres at average temperatures ranging from 30 K to 180 K. The measuring device consists of two closed, concentric cylinders suspended inside of a vacuum insulated cryostat. The insulation being tested occupies the annular space between the cylinders. A single stage Gifford-McMahon cryocooler, thermally anchored to the outer cylinder, cools the apparatus to a desired temperature range. A heater mounted on the inner cylinder generates uniform heat flux through the insulating material between the two cylinders. During each measurement, a temperature difference of roughly 10 K across the insulation is maintained. Fourier's law of heat conduction is used to relate the temperature difference between the two cylinders and the applied heating power to a bulk effective thermal conductivity of the powder insulation. Data were collected for aerogel beads between 30 K and 80 K and for glass bubbles between 30 K and 180 K. Results are compared...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"788-795"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator.The test rig was run at different volume ratios, frequencies (8–50 Hz), gases and filling pressures (1–26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Rey...
{"title":"FAST RESPONSE TEMPERATURE MEASUREMENTS IN STIRLING CYCLE CRYOCOOLER COMPONENTS","authors":"K. Kar, M. Dadd, P. Bailey, C. Stone","doi":"10.1063/1.2908536","DOIUrl":"https://doi.org/10.1063/1.2908536","url":null,"abstract":"One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator.The test rig was run at different volume ratios, frequencies (8–50 Hz), gases and filling pressures (1–26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Rey...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"1675-1682"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Radebaugh, Yonghua Huang, A. O'Gallagher, J. Gary
The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.
{"title":"CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3","authors":"R. Radebaugh, Yonghua Huang, A. O'Gallagher, J. Gary","doi":"10.1063/1.2908551","DOIUrl":"https://doi.org/10.1063/1.2908551","url":null,"abstract":"The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"225-234"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days ...
{"title":"CRYOGENIC PROPELLANT BOIL-OFF REDUCTION SYSTEM","authors":"D. Plachta, R. Christie, E. Carlberg, J. Feller","doi":"10.1063/1.2908506","DOIUrl":"https://doi.org/10.1063/1.2908506","url":null,"abstract":"Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days ...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"1457-1466"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Dauguet, P. Briend, I. Abe, E. Fauve, Jean Bernhardt, F. Andrieu, J. Beauvisage
The KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting (SC) magnets operated at 4.4 K. The cold components of KSTAR require a forced flow of supercritical helium for magnets and structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. A helium refrigeration system has been custom-designed for this project. The purpose of this paper is to give a brief overview of the proposed cryogenic system. The specified thermal loads for the different operating modes are presented. This specification results in the definition of a design mode for the refrigerator. The design and construction of the resulting 9 kW at 4.5-K Helium Refrigeration System (HSR) are presented.
{"title":"DESIGN AND MANUFACTURING OF THE KSTAR TOKAMAK HELIUM REFRIGERATION SYSTEM","authors":"P. Dauguet, P. Briend, I. Abe, E. Fauve, Jean Bernhardt, F. Andrieu, J. Beauvisage","doi":"10.1063/1.2908599","DOIUrl":"https://doi.org/10.1063/1.2908599","url":null,"abstract":"The KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting (SC) magnets operated at 4.4 K. The cold components of KSTAR require a forced flow of supercritical helium for magnets and structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. A helium refrigeration system has been custom-designed for this project. The purpose of this paper is to give a brief overview of the proposed cryogenic system. The specified thermal loads for the different operating modes are presented. This specification results in the definition of a design mode for the refrigerator. The design and construction of the resulting 9 kW at 4.5-K Helium Refrigeration System (HSR) are presented.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"10 1","pages":"564-569"},"PeriodicalIF":0.0,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58365642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}