首页 > 最新文献

Waste Disposal & Sustainable Energy最新文献

英文 中文
Review of construction and demolition waste management tools and frameworks with the classification, causes, and impacts of the waste 检讨建筑及拆卸废物管理的工具及架构,包括废物的分类、成因及影响
Pub Date : 2023-11-14 DOI: 10.1007/s42768-023-00166-y
Dewan Sabbir Ahammed Rayhan, Iftekhar Uddin Bhuiyan
{"title":"Review of construction and demolition waste management tools and frameworks with the classification, causes, and impacts of the waste","authors":"Dewan Sabbir Ahammed Rayhan, Iftekhar Uddin Bhuiyan","doi":"10.1007/s42768-023-00166-y","DOIUrl":"https://doi.org/10.1007/s42768-023-00166-y","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of microalgal-ZnO-NPs for reusing polyester/cotton blended fabric wastes after modification by cellulases enzymes 微藻- zno - nps在纤维素酶改性后涤棉混纺废织物再利用中的应用
Pub Date : 2023-10-24 DOI: 10.1007/s42768-023-00170-2
Osama M. Darwesh, Naser G. Al-Balakocy, Ahmed Ghanem, Ibrahim A. Matter
Abstract Polyester/cotton (PET/C) blended fabric wastes are produced daily in huge amounts, which constitutes an economic loss and an environmental threat if it is not reused appropriately. Modern textile waste recycling technologies put much effort into developing fabric materials with unique properties, such as bioactivity or new optical goods based on modern technologies, especially nano-biotechnology. In this study, zinc oxide nanoparticles (ZnO-NPs) were biosynthesized using the aqueous extract of Dunaliella sp. and immobilized on PET/C waste fabrics after enzymatically activated with cellulases. The produced Dunaliella -ZnO-NPs (10–20 nm with a spherical shape) were characterized by High-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDAX), and some functional groups, such as CH, CO, NH, and CN (due to the presence of carboxyl, proteins and hydroxyl groups), were detected, revealing the biosynthesis of ZnO-NPs. The analysis showed that the resulting ZnO-NPS had potent antimicrobial effects, Ultraviolet (UV) protection capabilities, and no cytotoxic effects on the normal human fibroblast cell line (BJ1). On the other hand, enzymatic treatments of PET/C fabric waste with cellulases enhanced the immobilization of biosynthetic nanoparticles on their surface. Modified PET/C fabrics loaded with Dunaliella -ZnO-NPs showed antibacterial and UV protection capabilities making them an eco-friendly and cost-effective candidate for numerous applications. These applications can include the manufacture of active packaging devices, wastewater treatment units, and many other environmental applications. Graphical abstract
摘要涤纶/棉(PET/C)混纺织物每天产生大量废弃物,如果不加以合理再利用,将造成经济损失和环境威胁。现代纺织废料回收技术致力于开发具有独特性能的织物材料,如生物活性或基于现代技术,特别是纳米生物技术的新型光学产品。本研究以杜氏藻水提物为原料合成氧化锌纳米颗粒(ZnO-NPs),经纤维素酶活化后固定在PET/C废织物上。采用高分辨率透射电子显微镜(HRTEM)、傅里叶变换红外光谱(FTIR)、x射线衍射分析(XRD)和扫描电子显微镜-能量色散x射线分析仪(SEM-EDAX)对制备的Dunaliella -ZnO-NPs (10-20 nm,呈球形)进行了表征,并检测了一些官能团,如CH、CO、nhh和CN(由于羧基、蛋白质和羟基的存在),揭示了ZnO-NPs的生物合成过程。结果表明,ZnO-NPS对正常人成纤维细胞株(BJ1)具有较强的抑菌作用和紫外线(UV)防护能力,且无细胞毒作用。另一方面,用纤维素酶处理PET/C织物废料,增强了生物合成纳米颗粒在其表面的固定化。负载Dunaliella -ZnO-NPs的改性PET/C织物具有抗菌和紫外线防护能力,使其成为生态友好且具有成本效益的众多应用的候选者。这些应用可以包括制造活性包装装置,废水处理装置和许多其他环境应用。图形抽象
{"title":"Application of microalgal-ZnO-NPs for reusing polyester/cotton blended fabric wastes after modification by cellulases enzymes","authors":"Osama M. Darwesh, Naser G. Al-Balakocy, Ahmed Ghanem, Ibrahim A. Matter","doi":"10.1007/s42768-023-00170-2","DOIUrl":"https://doi.org/10.1007/s42768-023-00170-2","url":null,"abstract":"Abstract Polyester/cotton (PET/C) blended fabric wastes are produced daily in huge amounts, which constitutes an economic loss and an environmental threat if it is not reused appropriately. Modern textile waste recycling technologies put much effort into developing fabric materials with unique properties, such as bioactivity or new optical goods based on modern technologies, especially nano-biotechnology. In this study, zinc oxide nanoparticles (ZnO-NPs) were biosynthesized using the aqueous extract of Dunaliella sp. and immobilized on PET/C waste fabrics after enzymatically activated with cellulases. The produced Dunaliella -ZnO-NPs (10–20 nm with a spherical shape) were characterized by High-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDAX), and some functional groups, such as CH, CO, NH, and CN (due to the presence of carboxyl, proteins and hydroxyl groups), were detected, revealing the biosynthesis of ZnO-NPs. The analysis showed that the resulting ZnO-NPS had potent antimicrobial effects, Ultraviolet (UV) protection capabilities, and no cytotoxic effects on the normal human fibroblast cell line (BJ1). On the other hand, enzymatic treatments of PET/C fabric waste with cellulases enhanced the immobilization of biosynthetic nanoparticles on their surface. Modified PET/C fabrics loaded with Dunaliella -ZnO-NPs showed antibacterial and UV protection capabilities making them an eco-friendly and cost-effective candidate for numerous applications. These applications can include the manufacture of active packaging devices, wastewater treatment units, and many other environmental applications. Graphical abstract","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of ground ozone and precursors along with particulate matter at residential sites in the vicinity of power plant 电厂附近居民区地面臭氧及其前体及颗粒物的研究
Pub Date : 2023-10-20 DOI: 10.1007/s42768-023-00163-1
Asha B. Chelani, Rahul Vyawahare, Sneha Gautam
{"title":"Study of ground ozone and precursors along with particulate matter at residential sites in the vicinity of power plant","authors":"Asha B. Chelani, Rahul Vyawahare, Sneha Gautam","doi":"10.1007/s42768-023-00163-1","DOIUrl":"https://doi.org/10.1007/s42768-023-00163-1","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the MgO/SiO2 ratio on MgO–silica binders solidifying MSWI fly ash MgO/SiO2比对MgO -二氧化硅粘结剂固化生活垃圾粉煤灰的影响
Pub Date : 2023-09-27 DOI: 10.1007/s42768-023-00164-0
Yin Duan, Xiaobo Liu, Zeinab Khalid, Xuguang Jiang
{"title":"Effect of the MgO/SiO2 ratio on MgO–silica binders solidifying MSWI fly ash","authors":"Yin Duan, Xiaobo Liu, Zeinab Khalid, Xuguang Jiang","doi":"10.1007/s42768-023-00164-0","DOIUrl":"https://doi.org/10.1007/s42768-023-00164-0","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135472705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Environmental standards and beneficial uses of waste-to-energy (WTE) residues in civil engineering applications 环境标准和土木工程应用中废物转化能源(WTE)残留物的有益用途
Pub Date : 2023-08-16 DOI: 10.1007/s42768-023-00140-8
Yixi Tian, Shengwei Dai, Jianfeng Wang

The waste-to-energy (WTE) technologies are now recovering energy and materials from over 300 million tonnes of municipal solid wastes worldwide. Extensive studies have investigated substituting natural construction materials with WTE residues to relieve the environmental cost of natural resource depletion. This study examined the beneficial uses of WTE residues in civil engineering applications and the corresponding environmental standards in Europe, the U.S., and China. This review presents the opportunities and challenges for current technical approaches and the environmental standards to be met to stabilize WTE residues. The principal characteristics of WTE residues (bottom ash and fly ash) and the possible solutions for their beneficial use in developed and developing countries are summarized. The leaching procedures and environmental standards for pH, heavy metals, and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) are compared. The current practice and engineering properties of materials using WTE residues, including mixtures with stone aggregate or sand, cement-based or hot-mix asphalt concrete (pavement), fill material in the embankments, substitute of Portland cement or clinker production, and ceramic-based materials (bricks and lightweight aggregate) are comprehensively reviewed.

Graphical abstract

废物转化能源技术目前正在从全球超过3亿吨的城市固体废物中回收能源和材料。广泛的研究已经调查了用WTE残留物替代天然建筑材料,以减轻自然资源消耗的环境成本。本研究考察了WTE残留物在土木工程应用中的有益用途以及欧洲、美国和中国的相应环境标准。本综述介绍了稳定WTE残留物的当前技术方法和环境标准的机遇和挑战。综述了WTE废渣(底灰和粉煤灰)的主要特性,以及在发达国家和发展中国家有益利用它们的可能解决方案。比较了pH、重金属和多氯二苯并对二恶英/呋喃(PCDD/Fs)的浸出程序和环境标准。全面回顾了使用WTE残留物的材料的当前实践和工程性能,包括与石骨料或砂的混合物、水泥基或热拌沥青混凝土(路面)、路堤填料、硅酸盐水泥或熟料生产的替代品以及陶瓷基材料(砖和轻骨料)。图形摘要
{"title":"Environmental standards and beneficial uses of waste-to-energy (WTE) residues in civil engineering applications","authors":"Yixi Tian,&nbsp;Shengwei Dai,&nbsp;Jianfeng Wang","doi":"10.1007/s42768-023-00140-8","DOIUrl":"10.1007/s42768-023-00140-8","url":null,"abstract":"<div><p>The waste-to-energy (WTE) technologies are now recovering energy and materials from over 300 million tonnes of municipal solid wastes worldwide. Extensive studies have investigated substituting natural construction materials with WTE residues to relieve the environmental cost of natural resource depletion. This study examined the beneficial uses of WTE residues in civil engineering applications and the corresponding environmental standards in Europe, the U.S., and China. This review presents the opportunities and challenges for current technical approaches and the environmental standards to be met to stabilize WTE residues. The principal characteristics of WTE residues (bottom ash and fly ash) and the possible solutions for their beneficial use in developed and developing countries are summarized. The leaching procedures and environmental standards for pH, heavy metals, and polychlorinated dibenzo-<i>p</i>-dioxins/furans (PCDD/Fs) are compared. The current practice and engineering properties of materials using WTE residues, including mixtures with stone aggregate or sand, cement-based or hot-mix asphalt concrete (pavement), fill material in the embankments, substitute of Portland cement or clinker production, and ceramic-based materials (bricks and lightweight aggregate) are comprehensively reviewed.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00140-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41228889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density 用于具有优异倍率性能和功率密度的超级电容器的活性炭的孔结构调节和杂原子掺杂
Pub Date : 2023-07-24 DOI: 10.1007/s42768-023-00155-1
Jian Zhang, Huachao Yang, Zhesong Huang, HuiHui Zhang, Xinchao Lu, Jianhua Yan, Kefa Cen, Zheng Bo

Activated carbon (AC) has attracted tremendous research interest as an electrode material for supercapacitors owing to its high specific surface area, high porosity, and low cost. However, AC-based supercapacitors suffer from limited rate performance and low power density, which mainly arise from their inherently low electrical conductivity and sluggish ion dynamics in the micropores. Here, we propose a simple yet effective strategy to address the aforementioned issue by nitrogen/fluorine doping and enlarging the micropore size. During the treatment, the decomposition products of NH4F react with the carbon atoms to dope the AC with nitrogen/fluorine and simultaneously enlarge the pores by etching. The treated AC shows a higher specific surface area of 1826 m2 g−1 (by ~ 15%), more micropores with a diameter around 0.93 nm (by ~ 33%), better wettability (contact angle decreased from 120° to 45°), and excellent electrical conductivity (96 S m−1) compared with untreated AC (39 S m−1). The as-fabricated supercapacitors demonstrate excellent specific capacitance (26 F g−1 at 1 A g−1), significantly reduced electrical resistance (by ~ 50%), and improved rate performance (from 46.21 to 64.39% at current densities of 1 to 20 A g−1). Moreover, the treated AC-based supercapacitor achieves a maximum energy density of 25 Wh kg−1 at 1000 W kg−1 and a maximum power density of 10,875 W kg−1 at 15 Wh kg−1, which clearly outperforms pristine AC-based supercapacitors. This synergistic treatment strategy provides an effective way to improve the rate performance and power density of AC-based supercapacitors.

活性炭(AC)作为超级电容器的电极材料,由于其高比表面积、高孔隙率和低成本而引起了极大的研究兴趣。然而,基于AC的超级电容器存在速率性能有限和功率密度低的问题,这主要是由于其固有的低电导率和微孔中缓慢的离子动力学。在这里,我们提出了一种简单而有效的策略,通过氮/氟掺杂和扩大微孔尺寸来解决上述问题。在处理过程中,NH4F的分解产物与碳原子反应,用氮/氟掺杂AC,同时通过蚀刻扩大孔隙。经处理的AC显示出1826 m2 g−1的较高比表面积( ~ 15%)、直径约0.93nm的更多微孔(通过 ~ 33%)、更好的润湿性(接触角从120°降低到45°)和优异的导电性(96 S m−1)。所制造的超级电容器表现出优异的比电容(1 A g−1时为26 F g−1),电阻显著降低( ~ 50%),并提高了倍率性能(在1至20 A g−1的电流密度下从46.21%提高到64.39%)。此外,经过处理的AC基超级电容器在1000 W kg−1时实现了25 Wh kg−1的最大能量密度,在15 Wh kg−2时实现了10875 W kg−2的最大功率密度,这明显优于原始的AC基超电容器。这种协同处理策略为提高交流超级电容器的倍率性能和功率密度提供了一种有效的方法。
{"title":"Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density","authors":"Jian Zhang,&nbsp;Huachao Yang,&nbsp;Zhesong Huang,&nbsp;HuiHui Zhang,&nbsp;Xinchao Lu,&nbsp;Jianhua Yan,&nbsp;Kefa Cen,&nbsp;Zheng Bo","doi":"10.1007/s42768-023-00155-1","DOIUrl":"10.1007/s42768-023-00155-1","url":null,"abstract":"<div><p>Activated carbon (AC) has attracted tremendous research interest as an electrode material for supercapacitors owing to its high specific surface area, high porosity, and low cost. However, AC-based supercapacitors suffer from limited rate performance and low power density, which mainly arise from their inherently low electrical conductivity and sluggish ion dynamics in the micropores. Here, we propose a simple yet effective strategy to address the aforementioned issue by nitrogen/fluorine doping and enlarging the micropore size. During the treatment, the decomposition products of NH<sub>4</sub>F react with the carbon atoms to dope the AC with nitrogen/fluorine and simultaneously enlarge the pores by etching. The treated AC shows a higher specific surface area of 1826 m<sup>2</sup> g<sup>−1</sup> (by ~ 15%), more micropores with a diameter around 0.93 nm (by ~ 33%), better wettability (contact angle decreased from 120° to 45°), and excellent electrical conductivity (96 S m<sup>−1</sup>) compared with untreated AC (39 S m<sup>−1</sup>). The as-fabricated supercapacitors demonstrate excellent specific capacitance (26 F g<sup>−1</sup> at 1 A g<sup>−1</sup>), significantly reduced electrical resistance (by ~ 50%), and improved rate performance (from 46.21 to 64.39% at current densities of 1 to 20 A g<sup>−1</sup>). Moreover, the treated AC-based supercapacitor achieves a maximum energy density of 25 Wh kg<sup>−1</sup> at 1000 W kg<sup>−1</sup> and a maximum power density of 10,875 W kg<sup>−1</sup> at 15 Wh kg<sup>−1</sup>, which clearly outperforms pristine AC-based supercapacitors. This synergistic treatment strategy provides an effective way to improve the rate performance and power density of AC-based supercapacitors.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The acceleration degradation processes of different aged refuses with the forced aeration for landfill reclamation 垃圾填埋场强制曝气加速不同老化程度垃圾的降解过程
Pub Date : 2023-07-20 DOI: 10.1007/s42768-023-00156-0
Yihang Liu, Chengqi Ning, Qiujie Huang, Zhaowen Cheng, Weihua Cao, Xianghui Wang, Changfu Yang, Hui Liu, Jia Song, Luochun Wang, Ziyang Lou

Forced aeration is one of the promising ways to accelerate landfill reclamation, and understanding the relation between aeration rates and waste properties is the prerequisite to implementing forced aeration under the target of energy saving and carbon reduction. In this work, landfill reclamation processes with forced aeration were simulated using aged refuses (ARs) of 1, 4, 7, 10, and 13 disposal years, and the potential of field application was also investigated based on a field project, to identify the degradation rate of organic components, the O2 consumption efficiency and their correlations to microbes. It was found that the removal rate of organic matter declined from 20.3% (AR1) to 12.6% (AR13), and that biodegradable matter (BDM) decreased from 5.2% to 2.4% at the set aeration rate of 0.12 L O2/kg waste (Dry Matter, DM)/day. A linear relationship between the degradation rate constant (K) of BDM and disposal age (x) was established: K = − 0.0002193x + 0.0091 (R2 = 0.854), suggesting that BDM might be a suitable indicator to reflect the stabilization of ARs. The cellulose/lignin ratio decrease rate for AR1 (18.3%) was much higher than that for AR13 (3.1%), while the corresponding humic-acid/fulvic-acid ratio increased from 1.44 to 2.16. The dominant bacteria shifted from Corynebacterium (9.2%), Acinetobacter (6.6%), and Fermentimonas (6.5%), genes related to the decompose of biodegradable organics, to Stenotrophomonas (10.2%) and Clostridiales (3.7%), which were associated with humification. The aeration efficiencies of lab-scale tests were in the range of 5.4–11.8 g BDM/L O2 for ARs with disposal ages of 1–13 years, and in situ landfill reclamation, ARs with disposal ages of 10–18 years were around 1.9–8.8 g BDM/L O2, as the disposal age decreased. The increased discrepancy was observed in ARs at the lab-scale and field scale, indicating that the forced aeration rate should be adjusted based on ARs and the unit compartment combined, to reduce the operation cost.

强制曝气是加快垃圾填埋场再生利用的一种很有前途的方法,了解曝气率与垃圾性质之间的关系是在节能减碳目标下实施强制曝气的前提。在这项工作中,使用1年、4年、7年、10年和13年的老化垃圾(AR)模拟了强制曝气的垃圾填埋场回收过程,并基于现场项目研究了现场应用的潜力,以确定有机成分的降解率、O2消耗效率及其与微生物的相关性。研究发现,在设定的0.12L O2/kg废物(干物质,DM)/天的曝气速率下,有机物的去除率从20.3%(AR1)下降到12.6%(AR13),可生物降解物质(BDM)从5.2%下降到2.4%。BDM的降解速率常数(K)与处理年限(x)之间建立了线性关系:K = − 0.0002193倍 + 0.0091(R2 = 0.854),表明BDM可能是反映AR稳定的合适指标。AR1的纤维素/木质素比率下降率(18.3%)远高于AR13(3.1%),而相应的腐殖酸/黄腐酸比率从1.44增加到2.16。优势细菌从棒状杆菌(9.2%)、不动杆菌(6.6%)和发酵单胞菌(6.5%)(与可生物降解有机物分解有关的基因)转移到狭窄单胞菌属(10.2%)和梭菌属(3.7%)(与腐殖化有关)。实验室规模试验的曝气效率在5.4–11.8 g BDM/L O2的范围内,处理年限为1–13年的ARs,而随着处理年限的减少,原位填埋回收处理年限为10–18年的ARs的曝气效率约为1.9–8.8 g BDM/L O2。在实验室规模和现场规模的ARs中观察到差异增加,这表明应根据ARs和单元隔间的组合调整强制曝气速率,以降低操作成本。
{"title":"The acceleration degradation processes of different aged refuses with the forced aeration for landfill reclamation","authors":"Yihang Liu,&nbsp;Chengqi Ning,&nbsp;Qiujie Huang,&nbsp;Zhaowen Cheng,&nbsp;Weihua Cao,&nbsp;Xianghui Wang,&nbsp;Changfu Yang,&nbsp;Hui Liu,&nbsp;Jia Song,&nbsp;Luochun Wang,&nbsp;Ziyang Lou","doi":"10.1007/s42768-023-00156-0","DOIUrl":"10.1007/s42768-023-00156-0","url":null,"abstract":"<div><p>Forced aeration is one of the promising ways to accelerate landfill reclamation, and understanding the relation between aeration rates and waste properties is the prerequisite to implementing forced aeration under the target of energy saving and carbon reduction. In this work, landfill reclamation processes with forced aeration were simulated using aged refuses (ARs) of 1, 4, 7, 10, and 13 disposal years, and the potential of field application was also investigated based on a field project, to identify the degradation rate of organic components, the O<sub>2</sub> consumption efficiency and their correlations to microbes. It was found that the removal rate of organic matter declined from 20.3% (AR<sub>1</sub>) to 12.6% (AR<sub>13</sub>), and that biodegradable matter (BDM) decreased from 5.2% to 2.4% at the set aeration rate of 0.12 L O<sub>2</sub>/kg waste (Dry Matter, DM)/day. A linear relationship between the degradation rate constant (<i>K</i>) of BDM and disposal age (<i>x</i>) was established: <i>K</i> = − 0.0002193<i>x</i> + 0.0091 (<i>R</i><sup>2</sup> = 0.854), suggesting that BDM might be a suitable indicator to reflect the stabilization of ARs. The cellulose/lignin ratio decrease rate for AR<sub>1</sub> (18.3%) was much higher than that for AR<sub>13</sub> (3.1%), while the corresponding humic-acid/fulvic-acid ratio increased from 1.44 to 2.16. The dominant bacteria shifted from <i>Corynebacterium</i> (9.2%), <i>Acinetobacter</i> (6.6%), and <i>Fermentimonas</i> (6.5%), genes related to the decompose of biodegradable organics, to <i>Stenotrophomonas</i> (10.2%) and <i>Clostridiales</i> (3.7%), which were associated with humification. The aeration efficiencies of lab-scale tests were in the range of 5.4–11.8 g BDM/L O<sub>2</sub> for ARs with disposal ages of 1–13 years, and in situ landfill reclamation, ARs with disposal ages of 10–18 years were around 1.9–8.8 g BDM/L O<sub>2</sub>, as the disposal age decreased. The increased discrepancy was observed in ARs at the lab-scale and field scale, indicating that the forced aeration rate should be adjusted based on ARs and the unit compartment combined, to reduce the operation cost.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00156-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pyrolytic gas analysis and evaluation from thermal plasma pyrolysis of simulated oil-based drill cuttings 模拟油基岩屑热等离子体热解的热解气体分析与评价
Pub Date : 2023-07-08 DOI: 10.1007/s42768-023-00153-3
Zhuofan Zhai, Junhu Zhou, Jinlong Wu, Jianzhong Liu, Weijuan Yang

Oil-based drill cuttings (OBDCs) are hazardous wastes generated during shale gas exploration, and the rapid, efficient and safe disposal methods for OBDCs have attracted the attention of many researchers. Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity. A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs. The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry (TG-DTG-DSC) analysis in the range of 50–1300 °C. The thermal decomposition process of OBDCs was divided into the following four stages: evaporation of water and light oil, evaporation and decomposition of heavy oil, carbonate decomposition, and phase change reaction from solid to liquid. The effects of the oil ratio, water content, and water/oil (W/O) ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated. The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H2, CO and C2H2, while water can promote the decomposition of the heavy oil molecules and enhance the H2 production. The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H2 were achieved at a W/O ratio of 1:4. Based on the thermal plasma pyrolysis system used in this study, the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.

Graphical abstract

油基岩屑(OBDC)是页岩气勘探过程中产生的危险废物,其快速、高效、安全的处理方法引起了许多研究人员的关注。等离子体热解技术由于其极高的温度和反应活性,在固体废物处理中得到了广泛的应用。建立了实验室规模的热等离子体热解系统,研究了模拟OBDC的等离子体热解机理。通过热重导数热重-差示扫描量热法(TG-DTG-DSC)分析研究了OBDC在50–1300°C范围内的热分解特性。OBDC的热分解过程分为以下四个阶段:水和轻质油的蒸发、重油的蒸发和分解、碳酸盐的分解以及从固体到液体的相变反应。研究了OBDC的油比、含水量和水油比对热解气体组成和气体选择性的影响。结果表明,热等离子体可以将OBDC中的矿物油裂解成H2、CO和C2H2等清洁气体,而水可以促进重油分子的分解,提高H2的产量。OBDC热解和熔融的能耗模型计算表明,在W/O比为1:4时,H2的能量利用率最高,摩尔能耗最低。基于本研究中使用的热等离子体热解系统,讨论了OBDC等离子体热解的商业应用前景和经济效益。图形摘要
{"title":"Pyrolytic gas analysis and evaluation from thermal plasma pyrolysis of simulated oil-based drill cuttings","authors":"Zhuofan Zhai,&nbsp;Junhu Zhou,&nbsp;Jinlong Wu,&nbsp;Jianzhong Liu,&nbsp;Weijuan Yang","doi":"10.1007/s42768-023-00153-3","DOIUrl":"10.1007/s42768-023-00153-3","url":null,"abstract":"<div><p>Oil-based drill cuttings (OBDCs) are hazardous wastes generated during shale gas exploration, and the rapid, efficient and safe disposal methods for OBDCs have attracted the attention of many researchers. Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity. A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs. The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry (TG-DTG-DSC) analysis in the range of 50–1300 °C. The thermal decomposition process of OBDCs was divided into the following four stages: evaporation of water and light oil, evaporation and decomposition of heavy oil, carbonate decomposition, and phase change reaction from solid to liquid. The effects of the oil ratio, water content, and water/oil (W/O) ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated. The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H<sub>2</sub>, CO and C<sub>2</sub>H<sub>2</sub>, while water can promote the decomposition of the heavy oil molecules and enhance the H<sub>2</sub> production. The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H<sub>2</sub> were achieved at a W/O ratio of 1:4. Based on the thermal plasma pyrolysis system used in this study, the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma cascaded solid wastes for possible adsorption of NO2 in diesel exhaust 等离子体级联固体废物对柴油废气中NO2的可能吸附
Pub Date : 2023-07-06 DOI: 10.1007/s42768-023-00158-y
Apoorva Sahu, Shivani Mishra, Preeti Jain, Bangalore S. Rajanikanth

Extensive use of fossil fuel has led to an increase in solid and gaseous particulates in the environment, which in turn necessitated newer, effective, and economical control strategies to abate pollutants, particularly gaseous pollutants. In the current research work, focus has been placed on utilizing industry wastes to adsorb nitrogen oxides present in diesel engine exhaust, which is pre-treated by plasma. Sampled exhaust from a 5 kW diesel generator is exposed to discharge plasma where the oxidation of nitric oxide to nitrogen dioxide occurs, which is then made to flow through another reactor filled with industry wastes drawn from agriculture, foundry, utility, marine industry, etc., comprising mulberry waste, rice husk, wheat husk, areca nut husk, sugarcane bagasse, coffee husk, foundry sand, lignite ash, red mud, and oyster shells. While the adsorption of nitrogen dioxide was observed in all the wastes, reduction of nitric oxide was observed in metallic compound-based industry wastes. At about 184 J/L, specific energy plasma cascaded industrial waste red mud yielded 98% NOx removal efficiency, and that with agriculture rice husk waste yielded 53% NOx removal. TiO2/Fe2O3 present in industry wastes might have exhibited photo-catalysis in visible light resulting in the possible reduction of NO. A new pathway for recycling the waste can be expected through nitrogen dioxide adsorption, and the results are further discussed with respect to plasma-alone and cascaded plasma adsorbent systems.

化石燃料的广泛使用导致环境中固体和气体颗粒物的增加,这反过来又需要更新、有效和经济的控制策略来减少污染物,特别是气体污染物。在目前的研究工作中,重点是利用工业废物吸附柴油机排气中存在的氮氧化物,并对其进行等离子体预处理。将5kW柴油发电机的取样排气暴露于放电等离子体中,在等离子体中发生一氧化氮氧化为二氧化氮,然后使其流过另一个反应器,该反应器充满了来自农业、铸造、公用事业、海洋工业等的工业废物,包括桑椹废物、稻壳、小麦壳、槟榔壳、甘蔗渣、咖啡壳、铸造砂,褐煤、红泥和牡蛎壳。虽然在所有废物中都观察到二氧化氮的吸附,但在基于金属化合物的工业废物中观察到一氧化氮的还原。在约184J/L下,比能等离子体级联工业废渣赤泥的NOx去除率为98%,而农业稻壳废渣的NOx去除效率为53%。工业废物中存在的TiO2/Fe2O3可能在可见光下表现出光催化作用,导致NO的可能还原。可以预期通过二氧化氮吸附回收废物的新途径,并就单独等离子体和级联等离子体吸附系统进一步讨论了结果。
{"title":"Plasma cascaded solid wastes for possible adsorption of NO2 in diesel exhaust","authors":"Apoorva Sahu,&nbsp;Shivani Mishra,&nbsp;Preeti Jain,&nbsp;Bangalore S. Rajanikanth","doi":"10.1007/s42768-023-00158-y","DOIUrl":"10.1007/s42768-023-00158-y","url":null,"abstract":"<div><p>Extensive use of fossil fuel has led to an increase in solid and gaseous particulates in the environment, which in turn necessitated newer, effective, and economical control strategies to abate pollutants, particularly gaseous pollutants. In the current research work, focus has been placed on utilizing industry wastes to adsorb nitrogen oxides present in diesel engine exhaust, which is pre-treated by plasma. Sampled exhaust from a 5 kW diesel generator is exposed to discharge plasma where the oxidation of nitric oxide to nitrogen dioxide occurs, which is then made to flow through another reactor filled with industry wastes drawn from agriculture, foundry, utility, marine industry, etc., comprising mulberry waste, rice husk, wheat husk, areca nut husk, sugarcane bagasse, coffee husk, foundry sand, lignite ash, red mud, and oyster shells. While the adsorption of nitrogen dioxide was observed in all the wastes, reduction of nitric oxide was observed in metallic compound-based industry wastes. At about 184 J/L, specific energy plasma cascaded industrial waste red mud yielded 98% NO<sub>x</sub> removal efficiency, and that with agriculture rice husk waste yielded 53% NOx removal. TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> present in industry wastes might have exhibited photo-catalysis in visible light resulting in the possible reduction of NO. A new pathway for recycling the waste can be expected through nitrogen dioxide adsorption, and the results are further discussed with respect to plasma-alone and cascaded plasma adsorbent systems.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00158-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41228971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative chemical pretreatment by piranha solution for enhanced methane yield of wheat straw: mechanism and kinetic study 食人鱼溶液氧化化学预处理提高麦秆甲烷产量的机理及动力学研究
Pub Date : 2023-06-10 DOI: 10.1007/s42768-023-00151-5
Nikita Kanaujia, Shalu Rawat, Jiwan Singh

The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations, i.e., 40% and 30% to reduce the recalcitrant and heterogeneous structure of wheat straw, and the treated wheat straw was denoted as WS40 and WS30. The effect of pretreatment on wheat straw was determined by anaerobic digestion (AD) in a batch mode, followed by the analysis of soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFAs). After pretreatment, the surface fibers shattered and detached, showing a distorted surface of wheat straw. An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin. Enhancement in methane yield was obtained on the 9th day, which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30, respectively. Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days. It also improved the methane yield by 2.65 (WS40) and 2.45 (WS30) fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day. The modified Gompertz model (MGM), logistic function model (LFM) and transference function model (TFM) adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield. Among the three models, MGM was found to fit best for the methane yield of WS40 and WS30.

Graphical abstract

本研究工作旨在探索食人鱼溶液在最佳优化浓度(即40%和30%)下降低麦秆难降解和不均匀结构的效力,处理后的麦秆表示为WS40和WS30。通过分批厌氧消化(AD)测定预处理对麦草的影响,然后分析可溶性化学需氧量(sCOD)和挥发性脂肪酸(VFAs)。经过预处理后,表面纤维破碎脱落,呈现出小麦秸秆的扭曲表面。由于去除了无定形纤维素和木质素,预处理后的麦草结晶度也有所提高。第9天,WS40和WS30的甲烷产量分别提高了103±6.92和99.33±0.57mL/d。置换水测定表明,麦草预处理使水解时间缩短了14天。与在第23天产生35.66mL/d甲烷的对照相比,它还将甲烷产量提高了2.65(WS40)和2.45(WS30)倍。改进的Gompertz模型(MGM)、逻辑函数模型(LFM)和传递函数模型(TFM)充分描述了降解过程,并解释了累积甲烷产量的动力学行为。在这三个模型中,MGM最适合WS40和WS30的甲烷产量
{"title":"Oxidative chemical pretreatment by piranha solution for enhanced methane yield of wheat straw: mechanism and kinetic study","authors":"Nikita Kanaujia,&nbsp;Shalu Rawat,&nbsp;Jiwan Singh","doi":"10.1007/s42768-023-00151-5","DOIUrl":"10.1007/s42768-023-00151-5","url":null,"abstract":"<div><p>The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations, i.e., 40% and 30% to reduce the recalcitrant and heterogeneous structure of wheat straw, and the treated wheat straw was denoted as WS40 and WS30. The effect of pretreatment on wheat straw was determined by anaerobic digestion (AD) in a batch mode, followed by the analysis of soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFAs). After pretreatment, the surface fibers shattered and detached, showing a distorted surface of wheat straw. An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin. Enhancement in methane yield was obtained on the 9th day, which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30, respectively. Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days. It also improved the methane yield by 2.65 (WS40) and 2.45 (WS30) fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day. The modified Gompertz model (MGM), logistic function model (LFM) and transference function model (TFM) adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield. Among the three models, MGM was found to fit best for the methane yield of WS40 and WS30.</p><h3>Graphical abstract</h3><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Waste Disposal & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1