首页 > 最新文献

Waste Disposal & Sustainable Energy最新文献

英文 中文
Pyrolytic gas analysis and evaluation from thermal plasma pyrolysis of simulated oil-based drill cuttings 模拟油基岩屑热等离子体热解的热解气体分析与评价
Pub Date : 2023-07-08 DOI: 10.1007/s42768-023-00153-3
Zhuofan Zhai, Junhu Zhou, Jinlong Wu, Jianzhong Liu, Weijuan Yang

Oil-based drill cuttings (OBDCs) are hazardous wastes generated during shale gas exploration, and the rapid, efficient and safe disposal methods for OBDCs have attracted the attention of many researchers. Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity. A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs. The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry (TG-DTG-DSC) analysis in the range of 50–1300 °C. The thermal decomposition process of OBDCs was divided into the following four stages: evaporation of water and light oil, evaporation and decomposition of heavy oil, carbonate decomposition, and phase change reaction from solid to liquid. The effects of the oil ratio, water content, and water/oil (W/O) ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated. The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H2, CO and C2H2, while water can promote the decomposition of the heavy oil molecules and enhance the H2 production. The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H2 were achieved at a W/O ratio of 1:4. Based on the thermal plasma pyrolysis system used in this study, the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.

Graphical abstract

油基岩屑(OBDC)是页岩气勘探过程中产生的危险废物,其快速、高效、安全的处理方法引起了许多研究人员的关注。等离子体热解技术由于其极高的温度和反应活性,在固体废物处理中得到了广泛的应用。建立了实验室规模的热等离子体热解系统,研究了模拟OBDC的等离子体热解机理。通过热重导数热重-差示扫描量热法(TG-DTG-DSC)分析研究了OBDC在50–1300°C范围内的热分解特性。OBDC的热分解过程分为以下四个阶段:水和轻质油的蒸发、重油的蒸发和分解、碳酸盐的分解以及从固体到液体的相变反应。研究了OBDC的油比、含水量和水油比对热解气体组成和气体选择性的影响。结果表明,热等离子体可以将OBDC中的矿物油裂解成H2、CO和C2H2等清洁气体,而水可以促进重油分子的分解,提高H2的产量。OBDC热解和熔融的能耗模型计算表明,在W/O比为1:4时,H2的能量利用率最高,摩尔能耗最低。基于本研究中使用的热等离子体热解系统,讨论了OBDC等离子体热解的商业应用前景和经济效益。图形摘要
{"title":"Pyrolytic gas analysis and evaluation from thermal plasma pyrolysis of simulated oil-based drill cuttings","authors":"Zhuofan Zhai,&nbsp;Junhu Zhou,&nbsp;Jinlong Wu,&nbsp;Jianzhong Liu,&nbsp;Weijuan Yang","doi":"10.1007/s42768-023-00153-3","DOIUrl":"10.1007/s42768-023-00153-3","url":null,"abstract":"<div><p>Oil-based drill cuttings (OBDCs) are hazardous wastes generated during shale gas exploration, and the rapid, efficient and safe disposal methods for OBDCs have attracted the attention of many researchers. Plasma pyrolysis technology is widely used in solid waste treatment due to its extremely high temperature and reaction activity. A laboratory-scale thermal plasma pyrolysis system was built to investigate the plasma pyrolysis mechanism of simulated OBDCs. The thermal decomposition characteristics of OBDCs were studied by thermogravimetric-derivative thermo gravimetric-differential scanning calorimetry (TG-DTG-DSC) analysis in the range of 50–1300 °C. The thermal decomposition process of OBDCs was divided into the following four stages: evaporation of water and light oil, evaporation and decomposition of heavy oil, carbonate decomposition, and phase change reaction from solid to liquid. The effects of the oil ratio, water content, and water/oil (W/O) ratio of OBDCs on the composition and gas selectivity of pyrolytic gas were investigated. The results show that thermal plasma can crack the mineral oil in the OBDCs into clean gases such as H<sub>2</sub>, CO and C<sub>2</sub>H<sub>2</sub>, while water can promote the decomposition of the heavy oil molecules and enhance the H<sub>2</sub> production. The energy consumption model calculation for the pyrolysis and melting of OBDCs shows that the highest energy utilization and the lowest molar energy consumption of H<sub>2</sub> were achieved at a W/O ratio of 1:4. Based on the thermal plasma pyrolysis system used in this study, the commercial application prospects and economic benefits of the plasma pyrolysis of OBDCs were discussed.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma cascaded solid wastes for possible adsorption of NO2 in diesel exhaust 等离子体级联固体废物对柴油废气中NO2的可能吸附
Pub Date : 2023-07-06 DOI: 10.1007/s42768-023-00158-y
Apoorva Sahu, Shivani Mishra, Preeti Jain, Bangalore S. Rajanikanth

Extensive use of fossil fuel has led to an increase in solid and gaseous particulates in the environment, which in turn necessitated newer, effective, and economical control strategies to abate pollutants, particularly gaseous pollutants. In the current research work, focus has been placed on utilizing industry wastes to adsorb nitrogen oxides present in diesel engine exhaust, which is pre-treated by plasma. Sampled exhaust from a 5 kW diesel generator is exposed to discharge plasma where the oxidation of nitric oxide to nitrogen dioxide occurs, which is then made to flow through another reactor filled with industry wastes drawn from agriculture, foundry, utility, marine industry, etc., comprising mulberry waste, rice husk, wheat husk, areca nut husk, sugarcane bagasse, coffee husk, foundry sand, lignite ash, red mud, and oyster shells. While the adsorption of nitrogen dioxide was observed in all the wastes, reduction of nitric oxide was observed in metallic compound-based industry wastes. At about 184 J/L, specific energy plasma cascaded industrial waste red mud yielded 98% NOx removal efficiency, and that with agriculture rice husk waste yielded 53% NOx removal. TiO2/Fe2O3 present in industry wastes might have exhibited photo-catalysis in visible light resulting in the possible reduction of NO. A new pathway for recycling the waste can be expected through nitrogen dioxide adsorption, and the results are further discussed with respect to plasma-alone and cascaded plasma adsorbent systems.

化石燃料的广泛使用导致环境中固体和气体颗粒物的增加,这反过来又需要更新、有效和经济的控制策略来减少污染物,特别是气体污染物。在目前的研究工作中,重点是利用工业废物吸附柴油机排气中存在的氮氧化物,并对其进行等离子体预处理。将5kW柴油发电机的取样排气暴露于放电等离子体中,在等离子体中发生一氧化氮氧化为二氧化氮,然后使其流过另一个反应器,该反应器充满了来自农业、铸造、公用事业、海洋工业等的工业废物,包括桑椹废物、稻壳、小麦壳、槟榔壳、甘蔗渣、咖啡壳、铸造砂,褐煤、红泥和牡蛎壳。虽然在所有废物中都观察到二氧化氮的吸附,但在基于金属化合物的工业废物中观察到一氧化氮的还原。在约184J/L下,比能等离子体级联工业废渣赤泥的NOx去除率为98%,而农业稻壳废渣的NOx去除效率为53%。工业废物中存在的TiO2/Fe2O3可能在可见光下表现出光催化作用,导致NO的可能还原。可以预期通过二氧化氮吸附回收废物的新途径,并就单独等离子体和级联等离子体吸附系统进一步讨论了结果。
{"title":"Plasma cascaded solid wastes for possible adsorption of NO2 in diesel exhaust","authors":"Apoorva Sahu,&nbsp;Shivani Mishra,&nbsp;Preeti Jain,&nbsp;Bangalore S. Rajanikanth","doi":"10.1007/s42768-023-00158-y","DOIUrl":"10.1007/s42768-023-00158-y","url":null,"abstract":"<div><p>Extensive use of fossil fuel has led to an increase in solid and gaseous particulates in the environment, which in turn necessitated newer, effective, and economical control strategies to abate pollutants, particularly gaseous pollutants. In the current research work, focus has been placed on utilizing industry wastes to adsorb nitrogen oxides present in diesel engine exhaust, which is pre-treated by plasma. Sampled exhaust from a 5 kW diesel generator is exposed to discharge plasma where the oxidation of nitric oxide to nitrogen dioxide occurs, which is then made to flow through another reactor filled with industry wastes drawn from agriculture, foundry, utility, marine industry, etc., comprising mulberry waste, rice husk, wheat husk, areca nut husk, sugarcane bagasse, coffee husk, foundry sand, lignite ash, red mud, and oyster shells. While the adsorption of nitrogen dioxide was observed in all the wastes, reduction of nitric oxide was observed in metallic compound-based industry wastes. At about 184 J/L, specific energy plasma cascaded industrial waste red mud yielded 98% NO<sub>x</sub> removal efficiency, and that with agriculture rice husk waste yielded 53% NOx removal. TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> present in industry wastes might have exhibited photo-catalysis in visible light resulting in the possible reduction of NO. A new pathway for recycling the waste can be expected through nitrogen dioxide adsorption, and the results are further discussed with respect to plasma-alone and cascaded plasma adsorbent systems.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00158-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41228971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative chemical pretreatment by piranha solution for enhanced methane yield of wheat straw: mechanism and kinetic study 食人鱼溶液氧化化学预处理提高麦秆甲烷产量的机理及动力学研究
Pub Date : 2023-06-10 DOI: 10.1007/s42768-023-00151-5
Nikita Kanaujia, Shalu Rawat, Jiwan Singh

The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations, i.e., 40% and 30% to reduce the recalcitrant and heterogeneous structure of wheat straw, and the treated wheat straw was denoted as WS40 and WS30. The effect of pretreatment on wheat straw was determined by anaerobic digestion (AD) in a batch mode, followed by the analysis of soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFAs). After pretreatment, the surface fibers shattered and detached, showing a distorted surface of wheat straw. An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin. Enhancement in methane yield was obtained on the 9th day, which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30, respectively. Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days. It also improved the methane yield by 2.65 (WS40) and 2.45 (WS30) fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day. The modified Gompertz model (MGM), logistic function model (LFM) and transference function model (TFM) adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield. Among the three models, MGM was found to fit best for the methane yield of WS40 and WS30.

Graphical abstract

本研究工作旨在探索食人鱼溶液在最佳优化浓度(即40%和30%)下降低麦秆难降解和不均匀结构的效力,处理后的麦秆表示为WS40和WS30。通过分批厌氧消化(AD)测定预处理对麦草的影响,然后分析可溶性化学需氧量(sCOD)和挥发性脂肪酸(VFAs)。经过预处理后,表面纤维破碎脱落,呈现出小麦秸秆的扭曲表面。由于去除了无定形纤维素和木质素,预处理后的麦草结晶度也有所提高。第9天,WS40和WS30的甲烷产量分别提高了103±6.92和99.33±0.57mL/d。置换水测定表明,麦草预处理使水解时间缩短了14天。与在第23天产生35.66mL/d甲烷的对照相比,它还将甲烷产量提高了2.65(WS40)和2.45(WS30)倍。改进的Gompertz模型(MGM)、逻辑函数模型(LFM)和传递函数模型(TFM)充分描述了降解过程,并解释了累积甲烷产量的动力学行为。在这三个模型中,MGM最适合WS40和WS30的甲烷产量
{"title":"Oxidative chemical pretreatment by piranha solution for enhanced methane yield of wheat straw: mechanism and kinetic study","authors":"Nikita Kanaujia,&nbsp;Shalu Rawat,&nbsp;Jiwan Singh","doi":"10.1007/s42768-023-00151-5","DOIUrl":"10.1007/s42768-023-00151-5","url":null,"abstract":"<div><p>The present research work aims to explore the potency of piranha solutions at the best-optimized concentrations, i.e., 40% and 30% to reduce the recalcitrant and heterogeneous structure of wheat straw, and the treated wheat straw was denoted as WS40 and WS30. The effect of pretreatment on wheat straw was determined by anaerobic digestion (AD) in a batch mode, followed by the analysis of soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFAs). After pretreatment, the surface fibers shattered and detached, showing a distorted surface of wheat straw. An increase in the crystallinity of wheat straw after pretreatment was also observed due to the removal of amorphous cellulose and lignin. Enhancement in methane yield was obtained on the 9th day, which was 103±6.92 and 99.33±0.57 mL/d for WS40 and WS30, respectively. Displaced water measurement revealed that the pretreatment of wheat straw minimized the hydrolysis period by 14 days. It also improved the methane yield by 2.65 (WS40) and 2.45 (WS30) fold in comparison with the control which yielded 35.66 mL/d methane on the 23rd day. The modified Gompertz model (MGM), logistic function model (LFM) and transference function model (TFM) adequately described the degradation process and explained the kinetic behavior of the cumulative methane yield. Among the three models, MGM was found to fit best for the methane yield of WS40 and WS30.</p><h3>Graphical abstract</h3><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying organic amendment enriches nutrient status of municipal solid waste compost and its application enhances tuber yield and nutrient concentrations of potato 施用有机改良剂可以改善城市生活垃圾堆肥的养分状况,提高马铃薯块茎产量和养分浓度
Pub Date : 2023-05-16 DOI: 10.1007/s42768-023-00142-6
M. Sultana, M. Jahiruddin, M. Kibria, M. Hosenuzzaman, M. Abedin
{"title":"Applying organic amendment enriches nutrient status of municipal solid waste compost and its application enhances tuber yield and nutrient concentrations of potato","authors":"M. Sultana, M. Jahiruddin, M. Kibria, M. Hosenuzzaman, M. Abedin","doi":"10.1007/s42768-023-00142-6","DOIUrl":"https://doi.org/10.1007/s42768-023-00142-6","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80480372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emission control and phase migration of PCDD/Fs in a rotary kiln incinerator: hazardous vs medical waste incineration 回转窑焚烧炉中多氯二苯并呋喃的排放控制和相移:危险废物与医疗废物焚烧
Pub Date : 2023-05-16 DOI: 10.1007/s42768-023-00143-5
Ying Peng, Yunfeng Ma, Xiaoqing Lin, Jisheng Long, Xiaodong Li

This study was carried out in a full-scale (50 t/d) rotary kiln incinerator to explore the removal characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by different units of air pollution control devices (APCDs), and special interest was focused on the “memory effect” phenomenon of PCDD/Fs in the wet scrubber (WS), which usually caused an undesirable rise in PCDD/F emission concentrations. The general removal efficiency of PCDD/Fs by APCDs was 99.4% (from 14.11 at exhaust heat boiler (EHB) outlet to 0.09 ng I-TEQ/Nm3 at stack) under medical waste (MW) incineration condition, and 99.2% (from 19.91 to 0.16 ng I-TEQ/Nm3) under hazardous waste (HW) incineration condition. The PCDD/F concentrations in flue gas decreased along the APCDs except for WS, in which the “memory effect” was observed. In detail, WS largely increased the I-TEQ concentration of gas-phase PCDD/Fs from 0.047 to 0.188 ng I-TEQ/Nm3 in the flue gas, and the concentration of particulate-phase PCDD/Fs increased from 0.003 to 0.030 ng I-TEQ/Nm3. In addition, this study found that phase migration promoted the accumulation of PCDD/Fs in scrubbing water, and the flow entrainment phenomenon played a great role in causing the “memory effect”. The PCDD/F concentrations of fly ash collected from cyclone and fabric filter (FF) were as high as 4.23 and 6.99 ng I-TEQ/g, respectively, which had exceeded the national landfill limitation (3 ng I-TEQ/g) in China. The system balance calculations revealed that APCDs promoted the migration of PCDD/Fs from the gas-phase to the particulate-phase, which caused fly ash to be the main carrier of PCDD/Fs and led to excessive emissions. The results of this study can contribute to the optimized design of combustion conditions and system cleaning for controlling PCDD/F emissions from rotary kiln incinerators.

本研究在全尺寸(50t/d)回转窑焚烧炉中进行,以探索不同单元的空气污染控制装置(APCD)对多氯二苯并对二恶英和二苯并呋喃(PCDD/Fs)的去除特性,特别关注的是湿式洗涤器(WS)中多氯二苯并对二恶英的“记忆效应”现象,这通常导致PCDD/F发射浓度的不希望的上升。在医疗废物(MW)焚烧条件下,APCD对PCDD/Fs的总体去除率为99.4%(从余热锅炉(EHB)出口的14.11到烟囱处的0.09 ng I-TEQ/Nm3),在危险废物(HW)焚烧条件中,APCD的总体去除效率为99.2%(从19.91到0.16 ngI-TEQ/Nm)。烟气中的多氯二苯并呋喃浓度沿APCD下降,但WS除外,其中观察到“记忆效应”。详细地说,WS使烟道气中气相PCDD/Fs的I-TEQ浓度从0.047纳克I-TEQ/Nm3大幅增加到0.188纳克I-TEQ-Nm3,颗粒相PCDD/F的浓度从0.003纳克I-TEQ=Nm3增加到0.030纳克I-TEQ.Nm3。此外,本研究发现,相迁移促进了PCDD/Fs在洗涤水中的积累,夹带流现象在引起“记忆效应”方面发挥了重要作用。从旋风除尘器和织物过滤器(FF)收集的飞灰中PCDD/F浓度分别高达4.23和6.99 ngI-TEQ/g,超过了中国国家垃圾填埋场的限值(3 ngI-TEQ-g)。系统平衡计算表明,APCD促进了多氯二苯并呋喃从气相向颗粒相的迁移,这导致飞灰成为多氯二氟并呋喃的主要载体,并导致过量排放。本研究的结果有助于优化燃烧条件和系统清洁设计,以控制回转窑焚烧炉的PCDD/F排放。
{"title":"Emission control and phase migration of PCDD/Fs in a rotary kiln incinerator: hazardous vs medical waste incineration","authors":"Ying Peng,&nbsp;Yunfeng Ma,&nbsp;Xiaoqing Lin,&nbsp;Jisheng Long,&nbsp;Xiaodong Li","doi":"10.1007/s42768-023-00143-5","DOIUrl":"10.1007/s42768-023-00143-5","url":null,"abstract":"<div><p>This study was carried out in a full-scale (50 t/d) rotary kiln incinerator to explore the removal characteristics of polychlorinated dibenzo-<i>p</i>-dioxins and dibenzofurans (PCDD/Fs) by different units of air pollution control devices (APCDs), and special interest was focused on the “memory effect” phenomenon of PCDD/Fs in the wet scrubber (WS), which usually caused an undesirable rise in PCDD/F emission concentrations. The general removal efficiency of PCDD/Fs by APCDs was 99.4% (from 14.11 at exhaust heat boiler (EHB) outlet to 0.09 ng I-TEQ/Nm<sup>3</sup> at stack) under medical waste (MW) incineration condition, and 99.2% (from 19.91 to 0.16 ng I-TEQ/Nm<sup>3</sup>) under hazardous waste (HW) incineration condition. The PCDD/F concentrations in flue gas decreased along the APCDs except for WS, in which the “memory effect” was observed. In detail, WS largely increased the I-TEQ concentration of gas-phase PCDD/Fs from 0.047 to 0.188 ng I-TEQ/Nm<sup>3</sup> in the flue gas, and the concentration of particulate-phase PCDD/Fs increased from 0.003 to 0.030 ng I-TEQ/Nm<sup>3</sup>. In addition, this study found that phase migration promoted the accumulation of PCDD/Fs in scrubbing water, and the flow entrainment phenomenon played a great role in causing the “memory effect”. The PCDD/F concentrations of fly ash collected from cyclone and fabric filter (FF) were as high as 4.23 and 6.99 ng I-TEQ/g, respectively, which had exceeded the national landfill limitation (3 ng I-TEQ/g) in China. The system balance calculations revealed that APCDs promoted the migration of PCDD/Fs from the gas-phase to the particulate-phase, which caused fly ash to be the main carrier of PCDD/Fs and led to excessive emissions. The results of this study can contribute to the optimized design of combustion conditions and system cleaning for controlling PCDD/F emissions from rotary kiln incinerators.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41228786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Energy and materials recovery from post-recycling wastes: WTE 从回收后废物中回收能源和材料:WTE
Pub Date : 2023-05-15 DOI: 10.1007/s42768-023-00138-2
Nickolas J. Themelis

One of the most misunderstood technologies in some parts of the world and widely adopted technologies in others is the recovery of energy and materials by the controlled combustion of post-recycling wastes. This technology is commonly called waste-to-energy, or simply WTE. After all possible efforts for recycling or composting wastes, there remains a large post-recycling fraction that is either landfilled or used as fuel in WTE power plants that also recover metals and minerals. Several nations, e.g., Switzerland, Japan, Sweden, Belgium, Denmark, and Germany, have succeeded in phasing out landfilling by processing all theãir post-recycling municipal solid wastes (MSW) in WTE power plants. This paper reviews the evolution and importance of WTE in the twenty-first century, with special focus on the world’s largest economies: the EU, US, and China.

Graphical abstract

世界上一些地区被误解最多、另一些地区被广泛采用的技术之一是通过控制回收后废物的燃烧来回收能源和材料。这种技术通常被称为废物转化能源,或者简称为WTE。经过所有可能的废物回收或堆肥努力,仍有大量回收后的垃圾被填埋或用作WTE发电厂的燃料,这些发电厂也回收金属和矿物。瑞士、日本、瑞典、比利时、丹麦和德国等几个国家通过在WTE发电厂处理所有回收后的城市固体废物(MSW),成功地逐步淘汰了填埋。本文回顾了WTE在21世纪的演变和重要性,特别关注世界上最大的经济体:欧盟、美国和中国
{"title":"Energy and materials recovery from post-recycling wastes: WTE","authors":"Nickolas J. Themelis","doi":"10.1007/s42768-023-00138-2","DOIUrl":"10.1007/s42768-023-00138-2","url":null,"abstract":"<div><p>One of the most misunderstood technologies in some parts of the world and widely adopted technologies in others is the recovery of energy and materials by the controlled combustion of post-recycling wastes. This technology is commonly called waste-to-energy, or simply WTE. After all possible efforts for recycling or composting wastes, there remains a large post-recycling fraction that is either landfilled or used as fuel in WTE power plants that also recover metals and minerals. Several nations, e.g., Switzerland, Japan, Sweden, Belgium, Denmark, and Germany, have succeeded in phasing out landfilling by processing all theãir post-recycling municipal solid wastes (MSW) in WTE power plants. This paper reviews the evolution and importance of WTE in the twenty-first century, with special focus on the world’s largest economies: the EU, US, and China.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00138-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkaline earth metal-based minerals/wastes-catalyzed pyrolysis of poly(ethylene terephthalate)/poly(butylene terephthalate) for benzenes-enriched oil production 碱土金属基矿物/废物催化聚对苯二甲酸乙二醇酯/聚对苯二甲酸丁二醇酯热解生产富苯石油
Pub Date : 2023-05-13 DOI: 10.1007/s42768-023-00141-7
Kai Sun, Lin Zhang, Zhenyu Lin, Qunxing Huang

The pyrolysis of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) catalyzed by five alkaline earth metal-based minerals/wastes, namely calcined dolomite, calcite, magnesite, calcium carbide slag (CCS), and ophicalcitum, was conducted by a pyrolyzer-gas chromatography-mass spectrometer (Py-GC-MS) with the objective of recovering benzenes-enriched oil. Compared with magnesium-based catalysts and pure CaO, the calcium-based catalysts with calcium hydroxide as the main component performed better catalytic effect, which could simultaneously promote the hydrolysis of ester products and the decarboxylation of aromatic acids after hydrolysis. For PET, the addition of solid base catalysts at 600 °C promoted the complete degradation of aromatic acids and aryl esters, which accounted for 32.6% and 30.7% of the pyrolysis oil, respectively. The content of benzene in oil increased from 8.8% to 31.7%–78.8%. For PBT, the addition of solid base catalysts at 600 °C completely decomposed the aromatic acids, which accounted for 67.1% of the pyrolysis oil, and the content of benzene in oil increased from 12.3% to 34.5%–81.0%. During the deoxygenation of polyester pyrolysis products, increasing temperature was more effective for the decomposition/conversion of acetone and tetrahydrofuran, while increasing the alkalinity of the reaction environment contributed to the rapid decrease in acetaldehyde and aryl ketone contents.

采用热解器气相色谱-质谱仪(Py-GC-MS)对五种碱土金属基矿物/废物,即煅烧白云石、方解石、菱镁矿、碳化钙渣(CCS)和地滑石催化聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丁二醇酯(PBT)的热解进行了研究,目的是回收富含苯的油。与镁基催化剂和纯CaO相比,以氢氧化钙为主要成分的钙基催化剂表现出更好的催化效果,可以同时促进水解后酯产物的水解和芳香酸的脱羧。对于PET,在600°C下添加固体碱催化剂促进了芳香酸和芳基酯的完全降解,它们分别占热解油的32.6%和30.7%。油中苯的含量从8.8%增加到31.7%–78.8%。对于PBT,在600°C下添加固体碱催化剂完全分解了占热解油67.1%的芳香酸,油中苯含量从12.3%增加到34.5%–81.0%。在聚酯热解产物脱氧过程中,提高温度对丙酮和四氢呋喃的分解/转化更有效,而提高反应环境的碱度有助于乙醛和芳酮含量的快速降低。
{"title":"Alkaline earth metal-based minerals/wastes-catalyzed pyrolysis of poly(ethylene terephthalate)/poly(butylene terephthalate) for benzenes-enriched oil production","authors":"Kai Sun,&nbsp;Lin Zhang,&nbsp;Zhenyu Lin,&nbsp;Qunxing Huang","doi":"10.1007/s42768-023-00141-7","DOIUrl":"10.1007/s42768-023-00141-7","url":null,"abstract":"<div><p>The pyrolysis of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) catalyzed by five alkaline earth metal-based minerals/wastes, namely calcined dolomite, calcite, magnesite, calcium carbide slag (CCS), and ophicalcitum, was conducted by a pyrolyzer-gas chromatography-mass spectrometer (Py-GC-MS) with the objective of recovering benzenes-enriched oil. Compared with magnesium-based catalysts and pure CaO, the calcium-based catalysts with calcium hydroxide as the main component performed better catalytic effect, which could simultaneously promote the hydrolysis of ester products and the decarboxylation of aromatic acids after hydrolysis. For PET, the addition of solid base catalysts at 600 °C promoted the complete degradation of aromatic acids and aryl esters, which accounted for 32.6% and 30.7% of the pyrolysis oil, respectively. The content of benzene in oil increased from 8.8% to 31.7%–78.8%. For PBT, the addition of solid base catalysts at 600 °C completely decomposed the aromatic acids, which accounted for 67.1% of the pyrolysis oil, and the content of benzene in oil increased from 12.3% to 34.5%–81.0%. During the deoxygenation of polyester pyrolysis products, increasing temperature was more effective for the decomposition/conversion of acetone and tetrahydrofuran, while increasing the alkalinity of the reaction environment contributed to the rapid decrease in acetaldehyde and aryl ketone contents.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Low-carbon stabilization/solidification of municipal solid waste incineration fly ash 修正:城市生活垃圾焚烧飞灰的低碳稳定/固化
Pub Date : 2023-04-13 DOI: 10.1007/s42768-023-00149-z
Chen Sun, Lei Wang, Xiaoqing Lin, Shengyong Lu, Qunxing Huang, Jianhua Yan
{"title":"Correction to: Low-carbon stabilization/solidification of municipal solid waste incineration fly ash","authors":"Chen Sun,&nbsp;Lei Wang,&nbsp;Xiaoqing Lin,&nbsp;Shengyong Lu,&nbsp;Qunxing Huang,&nbsp;Jianhua Yan","doi":"10.1007/s42768-023-00149-z","DOIUrl":"10.1007/s42768-023-00149-z","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4521299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Decomposition of biomass gasification tar model compounds over waste tire pyrolysis char 修正:生物质气化焦油模型化合物在废轮胎热解炭上的分解
Pub Date : 2023-04-11 DOI: 10.1007/s42768-023-00150-6
Amal S. Al-Rahbi, Paul T. Williams
{"title":"Correction to: Decomposition of biomass gasification tar model compounds over waste tire pyrolysis char","authors":"Amal S. Al-Rahbi,&nbsp;Paul T. Williams","doi":"10.1007/s42768-023-00150-6","DOIUrl":"10.1007/s42768-023-00150-6","url":null,"abstract":"","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00150-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4445002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic physicochemical characterization, carbon balance and cost of production analyses of activated carbons derived from (Co)-HTC of coal discards and sewage sludge for hydrogen storage applications 对煤炭废弃物和污水污泥中的(Co)-HTC 衍生的活性炭进行系统的物理化学表征、碳平衡和生产成本分析,以用于氢气储存
Pub Date : 2023-04-11 DOI: 10.1007/s42768-023-00136-4
Gentil Mwengula Kahilu, Samson Bada, Jean Mulopo

Hydrothermal carbonization (HTC) technologies for producing value-added carbonaceous material (hydrochar) from coal waste and sewage sludge (SS) waste might be a long-term recycling strategy for hydrogen storage applications, cutting disposal costs and solving waste disposal difficulties. In this study, hydrochars (HC) with high carbon content were produced using a combination of optimal HTC (HTC and Co-HTC) and chemical activation of coal tailings (CT), coal slurry (CS), and a mixture of coal discard and sewage sludge (CB). At 850 °C and 800 °C, respectively, with a KOH/HC ratio of 4:1 and a residence time of 135 min, activated carbons (ACs) with the highest Brunauer–Emmett–Teller specific surface (SBET) of 2299.25 m2g− 1 and 2243.57 m2g− 1 were obtained. The hydrogen adsorption capability of the produced ACs was further studied using gas adsorption isotherms at 77 K. At 35 bars, the values of hydrogen adsorbed onto AC-HCT (AC obtained from HTC  of CT), AC-HCS (AC obtained from HTC of CS), and AC-HCB (AC obtained from HTC of the blending of coal discard (CD) and SS) were approximately 6.12%, 6.8%, and 6.57% in weight, respectively. Furthermore, the cost of producing synthetic ACs for hydrogen storage is equivalent to the cost of commercial carbons. Furthermore, the high proportion of carbon retained (>70%) in ACs synthesized by HTC from CD and SS precursors should restrict their potential carbon emissions.

利用水热碳化(HTC)技术从煤炭废弃物和污水污泥(SS)废弃物中生产高附加值的碳质材料(水炭),可能是氢储存应用的一种长期回收战略,可降低处置成本并解决废弃物处置难题。在这项研究中,采用最佳氢化热处理(HTC 和 Co-HTC)和化学活化煤炭尾矿(CT)、煤泥(CS)以及煤炭废弃物和污水污泥混合物(CB)的组合方法,制备了高碳含量的水碳(HC)。在 850 ℃ 和 800 ℃ 条件下,KOH/HC 比为 4:1,停留时间为 135 分钟,分别获得了布氏-艾美特-泰勒比表面(SBET)最高的活性碳(AC),分别为 2299.25 m2g- 1 和 2243.57 m2g- 1。在 35 巴的条件下,AC-HCT(从 CT 的 HTC 中获得的 AC)、AC-HCS(从 CS 的 HTC 中获得的 AC)和 AC-HCB(从煤矸石(CD)和 SS 混合的 HTC 中获得的 AC)上的氢吸附重量值分别约为 6.12%、6.8% 和 6.57%。此外,生产用于储氢的合成 AC 的成本与商用碳的成本相当。此外,用 HTC 从 CD 和 SS 前体合成的 AC 中保留的碳比例较高(70%),这应限制其潜在的碳排放。
{"title":"Systematic physicochemical characterization, carbon balance and cost of production analyses of activated carbons derived from (Co)-HTC of coal discards and sewage sludge for hydrogen storage applications","authors":"Gentil Mwengula Kahilu,&nbsp;Samson Bada,&nbsp;Jean Mulopo","doi":"10.1007/s42768-023-00136-4","DOIUrl":"10.1007/s42768-023-00136-4","url":null,"abstract":"<div><p>Hydrothermal carbonization (HTC) technologies for producing value-added carbonaceous material (hydrochar) from coal waste and sewage sludge (SS) waste might be a long-term recycling strategy for hydrogen storage applications, cutting disposal costs and solving waste disposal difficulties. In this study, hydrochars (HC) with high carbon content were produced using a combination of optimal HTC (HTC and Co-HTC) and chemical activation of coal tailings (CT), coal slurry (CS), and a mixture of coal discard and sewage sludge (CB). At 850 °C and 800 °C, respectively, with a KOH/HC ratio of 4:1 and a residence time of 135 min, activated carbons (ACs) with the highest Brunauer–Emmett–Teller specific surface (<i>S</i><sub>BET</sub>) of 2299.25 m<sup>2</sup>g<sup>− 1</sup> and 2243.57 m<sup>2</sup>g<sup>− 1</sup> were obtained. The hydrogen adsorption capability of the produced ACs was further studied using gas adsorption isotherms at 77 K. At 35 bars, the values of hydrogen adsorbed onto AC-HCT (AC obtained from HTC  of CT), AC-HCS (AC obtained from HTC of CS), and AC-HCB (AC obtained from HTC of the blending of coal discard (CD) and SS) were approximately 6.12%, 6.8%, and 6.57% in weight, respectively. Furthermore, the cost of producing synthetic ACs for hydrogen storage is equivalent to the cost of commercial carbons. Furthermore, the high proportion of carbon retained (&gt;70%) in ACs synthesized by HTC from CD and SS precursors should restrict their potential carbon emissions.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00136-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4445535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Waste Disposal & Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1