The objective of this study was to produce hydrophobic porous wood ceramics as adsorbents for CO2 through the resin treatment of pine. The prepared samples underwent analysis using various methods to determine their structure and properties. An orthogonal experimental approach was employed to obtain adsorbents with optimal preparation process. The highest adsorption capacity was determined to be 1.36 mmol/g at a temperature of 30 ℃ and a CO2 concentration of 15 vol%. The effect of temperature on the microstructure of wood ceramics was studied by characterization. Increasing temperatures adversely affected the adsorption capacity. Nevertheless, the hydrophobic nature of wood ceramics resulted in little impact of humidity on CO2 absorption. The CO2 adsorption kinetics of wood ceramics were analyzed using kinetic studies, which demonstrated that the kinetics can be accurately fitted by both the pseudo-first-order and Avrami models. The findings of the adsorption isotherm analysis showed that the Langmuir model fit was optimal. Following 30 cycles of adsorption-desorption in the presence of simulated gas, the CO2 sorption capacity of the wood ceramics was maintained at over 90%. In terms of CO2/N2 selectivity, the wood ceramics showed a clear preference for CO2, especially at 30 °C, where the CO2/N2 selectivity ratio reached 24.50.
{"title":"Porous wood ceramics for CO2 adsorption: adsorption capacity, kinetics, isotherms and CO2/N2 selectivity","authors":"Xiulei Wang, Xiurong Guo, Wenjun Jiang, Mingxu Jia, Wei Zhang, Zewei Hao, Hanwen Wang, Danfeng Du, Yanlin Zhang, Zhanfeng Qi","doi":"10.1007/s00226-024-01591-w","DOIUrl":"10.1007/s00226-024-01591-w","url":null,"abstract":"<div><p>The objective of this study was to produce hydrophobic porous wood ceramics as adsorbents for CO<sub>2</sub> through the resin treatment of pine. The prepared samples underwent analysis using various methods to determine their structure and properties. An orthogonal experimental approach was employed to obtain adsorbents with optimal preparation process. The highest adsorption capacity was determined to be 1.36 mmol/g at a temperature of 30 ℃ and a CO<sub>2</sub> concentration of 15 vol%. The effect of temperature on the microstructure of wood ceramics was studied by characterization. Increasing temperatures adversely affected the adsorption capacity. Nevertheless, the hydrophobic nature of wood ceramics resulted in little impact of humidity on CO<sub>2</sub> absorption. The CO<sub>2</sub> adsorption kinetics of wood ceramics were analyzed using kinetic studies, which demonstrated that the kinetics can be accurately fitted by both the pseudo-first-order and Avrami models. The findings of the adsorption isotherm analysis showed that the Langmuir model fit was optimal. Following 30 cycles of adsorption-desorption in the presence of simulated gas, the CO<sub>2</sub> sorption capacity of the wood ceramics was maintained at over 90%. In terms of CO<sub>2</sub>/N<sub>2</sub> selectivity, the wood ceramics showed a clear preference for CO<sub>2</sub>, especially at 30 °C, where the CO<sub>2</sub>/N<sub>2</sub> selectivity ratio reached 24.50.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1797 - 1820"},"PeriodicalIF":3.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s00226-024-01587-6
Maozhi Zhang, Yun Feng, Li Li, Xun Zhang, Feng Xu
Lignin fluorescence in plant cell walls significantly interferes with Raman spectroscopic signals, resulting in compromised analytical accuracy and resolution. To address this issue, a strategy was implemented to both reduce the absolute lignin content in samples and prepare thinner plant tissue sections. This approach involved embedding plant samples in LR White resin, complemented by an ultrathin sectioning technique. Additionally, algorithms were developed to eliminate the impact of resin spectra on the imaging process. These advancements collectively enhanced the performance of Raman spectroscopy by effectively diminishing the disruptive effects of lignin fluorescence. Further analysis with confocal laser scanning microscopy (CLSM) elucidated the presence of aggregation-induced luminescence (AIE) in plant tissues, revealing a direct correlation with lignin concentration. These findings not only offer a new perspective for the application of Raman spectroscopy in plant science, but also pave the way for advancements in tip-enhanced Raman spectroscopy (TERS) detection.
植物细胞壁中的木质素荧光会严重干扰拉曼光谱信号,从而影响分析精度和分辨率。为了解决这个问题,我们采用了一种策略,既能降低样品中木质素的绝对含量,又能制备更薄的植物组织切片。这种方法包括将植物样本嵌入 LR White 树脂中,并辅以超薄切片技术。此外,还开发了算法来消除树脂光谱对成像过程的影响。这些先进技术共同提高了拉曼光谱的性能,有效降低了木质素荧光的破坏性影响。利用共焦激光扫描显微镜(CLSM)进行的进一步分析阐明了植物组织中存在聚集诱导发光(AIE),揭示了与木质素浓度的直接相关性。这些发现不仅为拉曼光谱在植物科学中的应用提供了新的视角,还为尖端增强拉曼光谱(TERS)检测技术的发展铺平了道路。
{"title":"Reducing fluorescence interference for improved Raman spectroscopic analysis of plant cell walls","authors":"Maozhi Zhang, Yun Feng, Li Li, Xun Zhang, Feng Xu","doi":"10.1007/s00226-024-01587-6","DOIUrl":"10.1007/s00226-024-01587-6","url":null,"abstract":"<div><p>Lignin fluorescence in plant cell walls significantly interferes with Raman spectroscopic signals, resulting in compromised analytical accuracy and resolution. To address this issue, a strategy was implemented to both reduce the absolute lignin content in samples and prepare thinner plant tissue sections. This approach involved embedding plant samples in LR White resin, complemented by an ultrathin sectioning technique. Additionally, algorithms were developed to eliminate the impact of resin spectra on the imaging process. These advancements collectively enhanced the performance of Raman spectroscopy by effectively diminishing the disruptive effects of lignin fluorescence. Further analysis with confocal laser scanning microscopy (CLSM) elucidated the presence of aggregation-induced luminescence (AIE) in plant tissues, revealing a direct correlation with lignin concentration. These findings not only offer a new perspective for the application of Raman spectroscopy in plant science, but also pave the way for advancements in tip-enhanced Raman spectroscopy (TERS) detection.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1697 - 1710"},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of multifunctional electromagnetic interference (EMI) shielding materials with low cost, stable performance and mass production is still facing great challenges. High-density traditional metals limit the application of EMI shielding materials. The unique structure of wood is considered an effective way to solve the above-mentioned problems. In this study, waste wood was used as raw material to prepare low-energy metallized particleboard. The particleboard was functionally finished to show excellent hydrophobic properties and been used stably in a humid environment. Dynamic thermal mechanical properties and mechanical properties analyses of particleboard were carried out. The bend strength (MOR), elastic modulus (MOE) and tensile strength were 30.50 MPa, 5384 MPa and 7.85 MPa, respectively. Metallized particleboard exhibited excellent electromagnetic shielding effectiveness (EMI SE) (average value 81.62 dB) in the entire X-band. The preparation of wood-based shielding metallized particleboard provides a feasible strategy for replacing traditional metal materials.
{"title":"Multifunctional metallized particleboard for enhanced electromagnetic interference shielding and mechanical thermal stability","authors":"Qiang Guo, Yanfei Pan, Shuaiqi Hu, Long Qing, Yu Wang, Jintian Huang","doi":"10.1007/s00226-024-01588-5","DOIUrl":"10.1007/s00226-024-01588-5","url":null,"abstract":"<div><p>The development of multifunctional electromagnetic interference (EMI) shielding materials with low cost, stable performance and mass production is still facing great challenges. High-density traditional metals limit the application of EMI shielding materials. The unique structure of wood is considered an effective way to solve the above-mentioned problems. In this study, waste wood was used as raw material to prepare low-energy metallized particleboard. The particleboard was functionally finished to show excellent hydrophobic properties and been used stably in a humid environment. Dynamic thermal mechanical properties and mechanical properties analyses of particleboard were carried out. The bend strength (MOR), elastic modulus (MOE) and tensile strength were 30.50 MPa, 5384 MPa and 7.85 MPa, respectively. Metallized particleboard exhibited excellent electromagnetic shielding effectiveness (EMI SE) (average value 81.62 dB) in the entire X-band. The preparation of wood-based shielding metallized particleboard provides a feasible strategy for replacing traditional metal materials.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1711 - 1734"},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s00226-024-01570-1
Zhaojun Xu, Yuxuan Wang, Jing Zhang, Nanfeng Zhu, Xinzhou Wang
This study proposed a linear model between internal bond strength and compressive elastic modulus based on Griffith’s fracture theory. The local compressive elastic modulus was determined by non-destructively detecting the inherent frequency of material vibration using a method based on rod longitudinal vibration theory. In the experiment, the inherent vibration frequencies of 10 types of medium-density fiberboard (MDF) were measured through excitation and vibration of piezoelectric ceramics based on longitudinal wave vibration theory. Then, the compressive elastic modulus of each board was calculated. The calculated compressive elastic modulus of MDF and the measured internal bond strength values were fitted into a linear regression model. A high linear correlation between them (r2 = 0.972) was found, having a mean square error of (2.6times {10}^{-5}). In addition, the average error between the model prediction value and the measured value was 0.014 MPa, having an average relative error of 1.49%. The maximum error was 0.044 MPa with a maximum relative error of 5.06%, indicating that the developed model was highly consistent with reality and had very small deviations. The results indicated that this proposed method can be used to accurately estimate the internal bond strength by non-destructively detecting the compressive elastic modulus of MDF.
{"title":"A study on internal bond strength detection model based on vibration mechanics","authors":"Zhaojun Xu, Yuxuan Wang, Jing Zhang, Nanfeng Zhu, Xinzhou Wang","doi":"10.1007/s00226-024-01570-1","DOIUrl":"10.1007/s00226-024-01570-1","url":null,"abstract":"<div><p>This study proposed a linear model between internal bond strength and compressive elastic modulus based on Griffith’s fracture theory. The local compressive elastic modulus was determined by non-destructively detecting the inherent frequency of material vibration using a method based on rod longitudinal vibration theory. In the experiment, the inherent vibration frequencies of 10 types of medium-density fiberboard (MDF) were measured through excitation and vibration of piezoelectric ceramics based on longitudinal wave vibration theory. Then, the compressive elastic modulus of each board was calculated. The calculated compressive elastic modulus of MDF and the measured internal bond strength values were fitted into a linear regression model. A high linear correlation between them (r<sup>2</sup> = 0.972) was found, having a mean square error of <span>(2.6times {10}^{-5})</span>. In addition, the average error between the model prediction value and the measured value was 0.014 MPa, having an average relative error of 1.49%. The maximum error was 0.044 MPa with a maximum relative error of 5.06%, indicating that the developed model was highly consistent with reality and had very small deviations. The results indicated that this proposed method can be used to accurately estimate the internal bond strength by non-destructively detecting the compressive elastic modulus of MDF.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1683 - 1695"},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s00226-024-01589-4
M. Braun, J. Aranda-Ruiz, G. Sal-Anglada, M. P. Ariza
In this study, we have implemented the first lattice model that incorporates progressive material damage, taking into account ductile failure under compression and brittle failure under tension. The model also considers fracture energy within the constitutive model by incorporating progressive material degradation, where damage variables depend on the fracture energy of the material. In addition, the lattice fracture criterion includes a typical failure criterion for wood and assumes a coefficient of variation in elastic constants and strengths to account for the heterogeneity of wood. The lattice model relies on axial springs, with their mechanical properties explicitly calculated based on the wood’s macroscopic mechanical properties. The model’s capability is evidenced by simulating two fracture tests and comparing the results with previously presented numerical and experimental data. The observed results align well with experimental observations.
{"title":"A lattice model with a progressive damage applied to fracture problems of wood","authors":"M. Braun, J. Aranda-Ruiz, G. Sal-Anglada, M. P. Ariza","doi":"10.1007/s00226-024-01589-4","DOIUrl":"10.1007/s00226-024-01589-4","url":null,"abstract":"<div><p>In this study, we have implemented the first lattice model that incorporates progressive material damage, taking into account ductile failure under compression and brittle failure under tension. The model also considers fracture energy within the constitutive model by incorporating progressive material degradation, where damage variables depend on the fracture energy of the material. In addition, the lattice fracture criterion includes a typical failure criterion for wood and assumes a coefficient of variation in elastic constants and strengths to account for the heterogeneity of wood. The lattice model relies on axial springs, with their mechanical properties explicitly calculated based on the wood’s macroscopic mechanical properties. The model’s capability is evidenced by simulating two fracture tests and comparing the results with previously presented numerical and experimental data. The observed results align well with experimental observations.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1663 - 1682"},"PeriodicalIF":3.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper production industry annually produces approximately 50 million tons of lignin, an intermediate product. While lignin has the potential for producing valuable chemicals and energy materials, an effective method for its conversion is yet to be developed. This study aims to establish a sustainable and environmentally friendly approach for electrochemically synthesizing valuable compounds from lignin with using natural deep eutectic solvents as electrolytes. The study used cyclic voltammetry (CV) for the electrochemical depolymerization of Kraft lignin, examining the effects of different scan numbers on depolymerization and the resulting lignin derivatives. Observed changes in the depolymerization peak current of lignin were reported as the number of scans increased. Choline chloride: Lactic acid (CC:LA), Choline chloride: Ethylene glycol (CC:EG), and Lactic acid:1,2-propanediol (LA:PR) were used as green electrolytes. Syringaldehyde was found to be the major compound obtained by this method. As a result of statistical analysis performed using The Grey Relations Analysis method, it was determined that the conditions that utilized Kraft lignin with the highest added value involved performing five cycles of CV scans with the CC:LA electrolyte. CV scans in DES environments increased the yield of lignin-derived phenolic compounds.
{"title":"Electro-depolymerization of Kraft lignin with deep eutectic solvents","authors":"Esra Ceylan, Berrin Gürler-Akyüz, Rıfat Kurt, Ayhan Gencer, Mehmet Akyüz, Ayben Kilic-Pekgözlü","doi":"10.1007/s00226-024-01582-x","DOIUrl":"10.1007/s00226-024-01582-x","url":null,"abstract":"<div><p>The paper production industry annually produces approximately 50 million tons of lignin, an intermediate product. While lignin has the potential for producing valuable chemicals and energy materials, an effective method for its conversion is yet to be developed. This study aims to establish a sustainable and environmentally friendly approach for electrochemically synthesizing valuable compounds from lignin with using natural deep eutectic solvents as electrolytes. The study used cyclic voltammetry (CV) for the electrochemical depolymerization of Kraft lignin, examining the effects of different scan numbers on depolymerization and the resulting lignin derivatives. Observed changes in the depolymerization peak current of lignin were reported as the number of scans increased. Choline chloride: Lactic acid (CC:LA), Choline chloride: Ethylene glycol (CC:EG), and Lactic acid:1,2-propanediol (LA:PR) were used as green electrolytes. Syringaldehyde was found to be the major compound obtained by this method. As a result of statistical analysis performed using The Grey Relations Analysis method, it was determined that the conditions that utilized Kraft lignin with the highest added value involved performing five cycles of CV scans with the CC:LA electrolyte. CV scans in DES environments increased the yield of lignin-derived phenolic compounds.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1645 - 1662"},"PeriodicalIF":3.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01582-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1007/s00226-024-01585-8
Jing Liu, Lin Lin, Jian Zhang, Hongda Zeng, Junyou Shi
Water has different forms of existence in wood (free water and bound water), which can generate different effects on the microstructure of wood. Compared to other methods, the freeze-thawing method is equipped with simple, environmentally friendly, and low-cost features. In this paper, the permeability of wood with different ratios of free water to bound water (water content), as well as the pore structure characteristics and electrochemical properties after carbonization, were investigated by the freeze–thaw method. The results show that dry samples of poplar chips with a moisture content of 15–17% after KMnO4 and freeze–thaw cycle treatment and carbonization (PC@15%-MnO) have a specific surface area of 936.94 m2/g. The areal specific capacitance is 4784 mF/cm2 at a current density of 12 mA/cm2, which is 3.3 and 22 times higher than those of wood-derived carbon without freeze–thaw treatment, respectively. Additionally, PC@15%-MnO maintains 80% of its specific capacitance after 2000 testing cycles, indicating that the freeze–thaw method effectively enhances the permeability, pore structure, and electrochemical properties of wood-derived carbon materials. This strategy offers new avenues for the research and application of wood in electrode materials.
{"title":"A novel process for improving the pore structure and electrochemical performance of wood-derived carbon/MnO composites","authors":"Jing Liu, Lin Lin, Jian Zhang, Hongda Zeng, Junyou Shi","doi":"10.1007/s00226-024-01585-8","DOIUrl":"10.1007/s00226-024-01585-8","url":null,"abstract":"<div><p>Water has different forms of existence in wood (free water and bound water), which can generate different effects on the microstructure of wood. Compared to other methods, the freeze-thawing method is equipped with simple, environmentally friendly, and low-cost features. In this paper, the permeability of wood with different ratios of free water to bound water (water content), as well as the pore structure characteristics and electrochemical properties after carbonization, were investigated by the freeze–thaw method. The results show that dry samples of poplar chips with a moisture content of 15–17% after KMnO<sub>4</sub> and freeze–thaw cycle treatment and carbonization (PC@15%-MnO) have a specific surface area of 936.94 m<sup>2</sup>/g. The areal specific capacitance is 4784 mF/cm<sup>2</sup> at a current density of 12 mA/cm<sup>2</sup>, which is 3.3 and 22 times higher than those of wood-derived carbon without freeze–thaw treatment, respectively. Additionally, PC@15%-MnO maintains 80% of its specific capacitance after 2000 testing cycles, indicating that the freeze–thaw method effectively enhances the permeability, pore structure, and electrochemical properties of wood-derived carbon materials. This strategy offers new avenues for the research and application of wood in electrode materials.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1629 - 1644"},"PeriodicalIF":3.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01585-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bamboo is one of the most rapidly growing plants with a highly sophisticated root and rhizome system in its culm base, where conducting tissue plays a key role in water and nutrient absorption and transportation. However, our knowledge of the three-dimensional structure of the conducting tissue is incomplete due to the opacity of the bamboo. In this paper, the spatial relationships of the conducting tissues among the main stem, root and rhizome of the culm base are explored. The culm base of a Chimonobambusa tumidissinoda was used for the analysis and high-resolution X-ray microtomography (μCT) was employed. A deep learning algorithm was used to segment the conducting tissue from the culm base. 3D model reconstruction and semi-quantitative characterization of the conducting tissue were realized. It was found that the anatomical characteristics among the main stem, root and rhizome are different, but the conducting tissues in these structures are interconnected in different ways. The transverse conducting tissue mainly originated from the rhizome rather than the root, and its thickness gradually decreased from the bottom of culm base to its top, contrary to the structure of the axial conducting tissue. The results indicate that μCT combined with deep learning segmentation effectively visualizes complex conducting tissue structures, volume filtering enhances detailed observation of network structures within conducting tissues, which provides new insights into the bamboo’s culm base structure and evidence of the sophisticated and interconnected fluid motion pathways among the different tissues of the culm base.
竹子是生长最迅速的植物之一,在其茎秆基部有非常复杂的根和根茎系统,其中导电组织在水分和养分的吸收和运输中起着关键作用。然而,由于竹子的不透明性,我们对导电组织三维结构的了解并不全面。本文探讨了秆基部主茎、根和根茎之间导电组织的空间关系。分析采用了高分辨率 X 射线显微层析成像(μCT)技术,并利用深度学习算法对竹子秆基部的导电组织进行了划分。利用深度学习算法对茎秆基部的导电组织进行分割。实现了导电组织的三维模型重建和半定量表征。研究发现,主茎、根和根茎的解剖特征不同,但这些结构中的导电组织以不同的方式相互连接。横向导电组织主要来源于根茎而非根部,其厚度从茎秆基部底部到顶部逐渐减小,这与轴向导电组织的结构相反。结果表明,μCT结合深度学习分割技术可有效地将复杂的导电组织结构可视化,体积过滤技术可增强对导电组织内部网络结构的详细观察,从而为了解竹子秆基部结构提供了新的视角,并证明了秆基部不同组织之间复杂而相互关联的流体运动路径。
{"title":"Three-dimensional visualization of the conducting tissue in a bamboo culm base","authors":"Shan Li, Chenjun Liu, Yangao Wang, Lili Shang, Xing’e Liu, Siyuan Wang, Shumin Yang","doi":"10.1007/s00226-024-01579-6","DOIUrl":"10.1007/s00226-024-01579-6","url":null,"abstract":"<div><p>Bamboo is one of the most rapidly growing plants with a highly sophisticated root and rhizome system in its culm base, where conducting tissue plays a key role in water and nutrient absorption and transportation. However, our knowledge of the three-dimensional structure of the conducting tissue is incomplete due to the opacity of the bamboo. In this paper, the spatial relationships of the conducting tissues among the main stem, root and rhizome of the culm base are explored. The culm base of a <i>Chimonobambusa tumidissinoda</i> was used for the analysis and high-resolution X-ray microtomography (μCT) was employed. A deep learning algorithm was used to segment the conducting tissue from the culm base. 3D model reconstruction and semi-quantitative characterization of the conducting tissue were realized. It was found that the anatomical characteristics among the main stem, root and rhizome are different, but the conducting tissues in these structures are interconnected in different ways. The transverse conducting tissue mainly originated from the rhizome rather than the root, and its thickness gradually decreased from the bottom of culm base to its top, contrary to the structure of the axial conducting tissue. The results indicate that μCT combined with deep learning segmentation effectively visualizes complex conducting tissue structures, volume filtering enhances detailed observation of network structures within conducting tissues, which provides new insights into the bamboo’s culm base structure and evidence of the sophisticated and interconnected fluid motion pathways among the different tissues of the culm base.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1585 - 1603"},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steaming of green timber, a common industrial process for various hardwood species, significantly influences wood properties, including coloration and drying characteristics. However, the environmental implications of substantial volumes of condensate generated during wood steaming underscore the urgency for its sustainable management. This study explores the chemical composition of the condensate obtained during the 90-hour indirect steaming of walnut timber (WTSC), aiming to identify potential applications for this wastewater while addressing environmental risks. Chemical characterization of WTSC included qualitative LC-MS/MS analysis, determination of the total phenolic content (TPC), total flavonoid content (TFC) and the content of selected phenolics. WTSC exhibited high TPC (188 mg gallic acid equivalents per L) and TFC (9.74 mg quercetin equivalents per L) values. Additionally, WTSC showed significant antioxidant activity (IC50 (DPPH) = 61.4 µg/mL and 103 µg ascorbic acid equivalents per mL in FRAP assay). Specific phenolic compounds detected in the WTSC distinguish it from other wood industry effluents and are a consequence of the unique characteristics of walnut wood and conditions during steaming process. A variety of acids (p-hydroxybenzoic, protocatechuic, syringic, gallic, cinnamic, cinnamic, p-coumaric, o-coumaric, vanillic) and flavonoids (apigenin, genistein, naringenin, luteolin, kaempferol, chrysoeriol, isorhamnetin, apigenin 7-O-glucoside, vitexin, kaempferol 3-O-glucoside, catechin, epicatechin, and quercitrin) were identified and quantified. The condensate exhibited higher TPC value and antioxidant activity than other wood industry effluents, positioning it as a promising natural antioxidant with potential applications in pharmaceutical and food industries. However, our short-term goal is to explore the potential use of WTSC as received – without isolating individual compounds – in studies focused on plant protection, textile dyeing, and wood-based panel production.
{"title":"Walnut wood steaming: chemical profile and antioxidant activity of the condensate to assess the potential application","authors":"Goran Milić, Milica Rančić, Nebojša Todorović, Nemanja Živanović, Dejan Orčić, Nataša Simin","doi":"10.1007/s00226-024-01584-9","DOIUrl":"10.1007/s00226-024-01584-9","url":null,"abstract":"<div><p>Steaming of green timber, a common industrial process for various hardwood species, significantly influences wood properties, including coloration and drying characteristics. However, the environmental implications of substantial volumes of condensate generated during wood steaming underscore the urgency for its sustainable management. This study explores the chemical composition of the condensate obtained during the 90-hour indirect steaming of walnut timber (WTSC), aiming to identify potential applications for this wastewater while addressing environmental risks. Chemical characterization of WTSC included qualitative LC-MS/MS analysis, determination of the total phenolic content (TPC), total flavonoid content (TFC) and the content of selected phenolics. WTSC exhibited high TPC (188 mg gallic acid equivalents per L) and TFC (9.74 mg quercetin equivalents per L) values. Additionally, WTSC showed significant antioxidant activity (IC<sub>50</sub> (DPPH) = 61.4 µg/mL and 103 µg ascorbic acid equivalents per mL in FRAP assay). Specific phenolic compounds detected in the WTSC distinguish it from other wood industry effluents and are a consequence of the unique characteristics of walnut wood and conditions during steaming process. A variety of acids (<i>p-</i>hydroxybenzoic, protocatechuic, syringic, gallic, cinnamic, cinnamic, p-coumaric, o-coumaric, vanillic) and flavonoids (apigenin, genistein, naringenin, luteolin, kaempferol, chrysoeriol, isorhamnetin, apigenin 7-O-glucoside, vitexin, kaempferol 3-O-glucoside, catechin, epicatechin, and quercitrin) were identified and quantified. The condensate exhibited higher TPC value and antioxidant activity than other wood industry effluents, positioning it as a promising natural antioxidant with potential applications in pharmaceutical and food industries. However, our short-term goal is to explore the potential use of WTSC as received – without isolating individual compounds – in studies focused on plant protection, textile dyeing, and wood-based panel production.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1605 - 1628"},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1007/s00226-024-01574-x
Robert Pečenko, Nataša Knez, Tomaž Hozjan, Jakub Šejna, Kamila Cabová, Goran Turk
The article investigates the charring and the char front temperature of beech, the most widespread hardwood species in Central Europe. The current Eurocode standard EN 1995-1-2 specifies the char front temperature to be 300 (^{circ })C, albeit this determination primarily applies to softwood species. Consequently, this article aims to examine whether this assumption applies to beech. Through advanced experimental analysis and numerical modelling, it was determined that the char front temperature for beech exceeds 300 (^{circ })C. This finding represents crucial information for the correct validation of fire-resistant design for structural elements made of beech. Moreover, it lays the groundwork for improving simplified methods of fire design, particularly for a more accurate determination of the charring depth.
{"title":"On the char front temperature of beech (Fagus sylvatica)","authors":"Robert Pečenko, Nataša Knez, Tomaž Hozjan, Jakub Šejna, Kamila Cabová, Goran Turk","doi":"10.1007/s00226-024-01574-x","DOIUrl":"10.1007/s00226-024-01574-x","url":null,"abstract":"<div><p>The article investigates the charring and the char front temperature of beech, the most widespread hardwood species in Central Europe. The current Eurocode standard EN 1995-1-2 specifies the char front temperature to be 300 <span>(^{circ })</span>C, albeit this determination primarily applies to softwood species. Consequently, this article aims to examine whether this assumption applies to beech. Through advanced experimental analysis and numerical modelling, it was determined that the char front temperature for beech exceeds 300 <span>(^{circ })</span>C. This finding represents crucial information for the correct validation of fire-resistant design for structural elements made of beech. Moreover, it lays the groundwork for improving simplified methods of fire design, particularly for a more accurate determination of the charring depth.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1535 - 1553"},"PeriodicalIF":3.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01574-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}