The exploitation of low-cost, non-fossil membrane materials with flourishing pore structure is essential to complete an organic dye wastewater treatment in Fenton-like catalytic technology. The accessible and scalable veneer functionalized Fenton-like catalysis has been manufactured to decolorize the effluents by a hydrogen peroxide-Mn-based oxides system. The nanocatalyst of Mn-based oxides has been loaded on the veneer surface by the hydrothermal in-situ growth, which could accomplish the coupling of Fenton-like catalyst and membrane technology. Fir and poplar veneers with unique three-dimensional porous structure have been investigated in detail to manifest the respective performance of decolorization during the dye wastewater treatment. This work not only has invented a promising membrane material coupling with Fenton-like catalysis to dispose dye wastewater, but also provides a reference in high-performance membrane design of biomimetic membrane.
{"title":"Tangential veneer fabrication of Fenton-like catalyst for the removal of organic dye from wastewater","authors":"Jiani Zhou, Gonggang Liu, Xuebing Yi, Yuanyuan Liao, Chongqing Wang, Shanshan Chang, Jinbo Hu","doi":"10.1007/s00226-024-01608-4","DOIUrl":"10.1007/s00226-024-01608-4","url":null,"abstract":"<div><p>The exploitation of low-cost, non-fossil membrane materials with flourishing pore structure is essential to complete an organic dye wastewater treatment in Fenton-like catalytic technology. The accessible and scalable veneer functionalized Fenton-like catalysis has been manufactured to decolorize the effluents by a hydrogen peroxide-Mn-based oxides system. The nanocatalyst of Mn-based oxides has been loaded on the veneer surface by the hydrothermal in-situ growth, which could accomplish the coupling of Fenton-like catalyst and membrane technology. Fir and poplar veneers with unique three-dimensional porous structure have been investigated in detail to manifest the respective performance of decolorization during the dye wastewater treatment. This work not only has invented a promising membrane material coupling with Fenton-like catalysis to dispose dye wastewater, but also provides a reference in high-performance membrane design of biomimetic membrane.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s00226-024-01612-8
María E. Eugenio, Luisa García-Fuentevilla, Raquel Martín-Sampedro, José I. Santos, Bernd Wicklein, David ibarra
Turning lignin from black liquor waste into value-added bioactive agents is one of the possible routes for improving the sustainability and profitability of lignocellulosic industry. However, due to chemical and structural variability of lignin, it is necessary to isolate specific lignin fractions from black liquor with the purpose to achieve samples with unique chemical and structural characteristics and therefore, specific biological activities. In this study, poplar lignin fractions isolated from Kraft black liquor by sequential acid precipitation at pH´s 7.5, 5 and 2.5 (denoted as P-7.5, P-5 and P-2.5) were characterized according to their physicochemical, antioxidant and antibacterial properties. In general, lignin fractions displayed a wide elimination of lateral chains (aryl-β ether and C–C) and, therefore a high phenolic content and low molecular weight, as the pH sequential precipitation was decreased from 7.5 to 2.5. Moreover, thermal analysis revealed that the P-7.5 lignin fraction showed higher thermal stability than P-2.5 and P-5. In terms of antioxidant activity, the P-7.5 lignin fraction, with a higher S/G ratio and a less oxidized structure compared to P-5 and P-2.5, exhibited higher antioxidant activity. In addition, lower antibacterial effect was observed for all lignin fractions against Escherichia coli compared to that obtained against Staphylococcus aureus. Among them, the P-2.5 and P-5 fractions, with higher phenolic content and lower molecular weight values than P-7.5, showed a greater antibacterial effect against S. aureus.
{"title":"Tuning the antioxidant and antibacterial properties of lignin by physicochemical modification during sequential acid precipitation from Kraft black liquor","authors":"María E. Eugenio, Luisa García-Fuentevilla, Raquel Martín-Sampedro, José I. Santos, Bernd Wicklein, David ibarra","doi":"10.1007/s00226-024-01612-8","DOIUrl":"10.1007/s00226-024-01612-8","url":null,"abstract":"<div><p>Turning lignin from black liquor waste into value-added bioactive agents is one of the possible routes for improving the sustainability and profitability of lignocellulosic industry. However, due to chemical and structural variability of lignin, it is necessary to isolate specific lignin fractions from black liquor with the purpose to achieve samples with unique chemical and structural characteristics and therefore, specific biological activities. In this study, poplar lignin fractions isolated from Kraft black liquor by sequential acid precipitation at pH´s 7.5, 5 and 2.5 (denoted as P-7.5, P-5 and P-2.5) were characterized according to their physicochemical, antioxidant and antibacterial properties. In general, lignin fractions displayed a wide elimination of lateral chains (aryl-β ether and C–C) and, therefore a high phenolic content and low molecular weight, as the pH sequential precipitation was decreased from 7.5 to 2.5. Moreover, thermal analysis revealed that the P-7.5 lignin fraction showed higher thermal stability than P-2.5 and P-5. In terms of antioxidant activity, the P-7.5 lignin fraction, with a higher S/G ratio and a less oxidized structure compared to P-5 and P-2.5, exhibited higher antioxidant activity. In addition, lower antibacterial effect was observed for all lignin fractions against <i>Escherichia coli</i> compared to that obtained against <i>Staphylococcus aureus.</i> Among them, the P-2.5 and P-5 fractions, with higher phenolic content and lower molecular weight values than P-7.5, showed a greater antibacterial effect against <i>S. aureus</i>.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01612-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1007/s00226-024-01605-7
Gensheng Wu, Tong Su, Pingan Li, Yunfeng Gu, Weiyu Chen, Bo Yu
Dye wastewater produced from industry production is difficult to degrade naturally. Natural wood possesses a hierarchical and three-dimensional (3D) interconnected microstructure, making it a desirable material for water treatment. However, limited water transport pathways can reduce the efficiency of removing high-concentration organic dyes. To address this, we present a low-cost, scalable, and efficient cross-flow Ag/wood composite filter by combing the structural design and hydrothermal treatment using a silver-ammonia solution. Silver ions (Ag+) are effectively reduced to silver nanoparticles (Ag NPs) by wood lignin and then anchored by hydroxyl groups in the cellulose and hemicellulose of the wood. Importantly, the incorporation of Ag NPs does not compromise the 3D porous structure of the wood. Diagonal grooves and exposed channels on both sides of the filter guide pollutants, ensuring extensive interaction with Ag NPs along elongated reaction pathways and through microstructural vessel disturbances. An 8 mm-thick cross-flow Ag/wood composite filter, featuring grooves with a diameter of 15 mm and a depth of 4 mm, achieves a remarkable 99% degradation efficiency of methylene blue (MB) at a water flux of up to 1775 L/(m2∙h). The performance in water flux and decolorization efficiency hinges significantly on groove diameter, groove depth, and filter thickness. This cross-flow Ag/wood composite filter represents a promising advancement for rapid and effective removal of various organic pollutants in a single-step process, showcasing extensive potential for applications in water treatment. This work aims to enhance clarity and readability while maintaining the technical details and impact of the research.
{"title":"A novel cross-flow Ag/wood composite filter for high-concentration organic dye wastewater treatment","authors":"Gensheng Wu, Tong Su, Pingan Li, Yunfeng Gu, Weiyu Chen, Bo Yu","doi":"10.1007/s00226-024-01605-7","DOIUrl":"10.1007/s00226-024-01605-7","url":null,"abstract":"<div><p>Dye wastewater produced from industry production is difficult to degrade naturally. Natural wood possesses a hierarchical and three-dimensional (3D) interconnected microstructure, making it a desirable material for water treatment. However, limited water transport pathways can reduce the efficiency of removing high-concentration organic dyes. To address this, we present a low-cost, scalable, and efficient cross-flow Ag/wood composite filter by combing the structural design and hydrothermal treatment using a silver-ammonia solution. Silver ions (Ag<sup>+</sup>) are effectively reduced to silver nanoparticles (Ag NPs) by wood lignin and then anchored by hydroxyl groups in the cellulose and hemicellulose of the wood. Importantly, the incorporation of Ag NPs does not compromise the 3D porous structure of the wood. Diagonal grooves and exposed channels on both sides of the filter guide pollutants, ensuring extensive interaction with Ag NPs along elongated reaction pathways and through microstructural vessel disturbances. An 8 mm-thick cross-flow Ag/wood composite filter, featuring grooves with a diameter of 15 mm and a depth of 4 mm, achieves a remarkable 99% degradation efficiency of methylene blue (MB) at a water flux of up to 1775 L/(m<sup>2</sup>∙h). The performance in water flux and decolorization efficiency hinges significantly on groove diameter, groove depth, and filter thickness. This cross-flow Ag/wood composite filter represents a promising advancement for rapid and effective removal of various organic pollutants in a single-step process, showcasing extensive potential for applications in water treatment. This work aims to enhance clarity and readability while maintaining the technical details and impact of the research.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1007/s00226-024-01611-9
Toru Tuziuti, Kyuichi Yasui, Wataru Kanematsu
This paper investigates the impregnation of Japanese cedar (Cryptomeria japonica D. Don) with water using ultrasound irradiation, followed by immersion in water containing bulk nanobubbles (NBs). Cavitation bubbles generated during ultrasound irradiation mechanically remove extractives from the wood surface, enhancing the mass transfer of water into the wood. Water containing bulk NBs has a lower surface tension compared to pure water, enabling superior permeability into narrow spaces. However, the application of water containing NBs for wood impregnation post-sonication remains underexplored. In this study, wood was subjected to ultrasound irradiation at 38 kHz, followed by immersion in water containing bulk NBs, to determine the optimal sonication time and NB concentration for efficient impregnation. The results indicate that water uptake by the wood initially increases and then decreases with increasing NB concentration and sonication time. Optimal sonication time and NB concentration resulted in highly efficient impregnation.
本文研究了利用超声波辐照对日本杉木(Cryptomeria japonica D. Don)进行水浸渍,然后将其浸入含有大量纳米气泡(NBs)的水中。超声波辐照时产生的空化气泡可以机械地去除木材表面的萃取物,促进水向木材的传质。与纯水相比,含有大量 NBs 的水表面张力较低,因此在狭窄空间中具有极佳的渗透性。然而,含 NBs 的水在木材浸渍后超声波处理中的应用仍未得到充分探索。在这项研究中,对木材进行了 38 千赫的超声波辐照,然后将其浸入含有大量 NBs 的水中,以确定有效浸渍的最佳超声时间和 NB 浓度。结果表明,木材的吸水率最初会随着 NB 浓度和超声时间的增加而增加,然后减少。最佳超声时间和 NB 浓度可实现高效浸渍。
{"title":"Impregnation of wood with water using ultrasonic irradiation and water containing bulk nanobubbles","authors":"Toru Tuziuti, Kyuichi Yasui, Wataru Kanematsu","doi":"10.1007/s00226-024-01611-9","DOIUrl":"10.1007/s00226-024-01611-9","url":null,"abstract":"<div><p>This paper investigates the impregnation of Japanese cedar (<i>Cryptomeria japonica</i> D. Don) with water using ultrasound irradiation, followed by immersion in water containing bulk nanobubbles (NBs). Cavitation bubbles generated during ultrasound irradiation mechanically remove extractives from the wood surface, enhancing the mass transfer of water into the wood. Water containing bulk NBs has a lower surface tension compared to pure water, enabling superior permeability into narrow spaces. However, the application of water containing NBs for wood impregnation post-sonication remains underexplored. In this study, wood was subjected to ultrasound irradiation at 38 kHz, followed by immersion in water containing bulk NBs, to determine the optimal sonication time and NB concentration for efficient impregnation. The results indicate that water uptake by the wood initially increases and then decreases with increasing NB concentration and sonication time. Optimal sonication time and NB concentration resulted in highly efficient impregnation.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A reed (Arundo donax) was acetylated to prevent serious cheilitis (reed allergy) in woodwind musicians in contact with the vibrating plate made of the reed. The reed was acetylated almost completely at 120 °C for 8 to 24 h. The maximum weight% gain (WPG) of the reed was lower than that of wood, reflecting a lower number of active reaction sites. The WPG of the inner part of the reed was slightly higher than that of the outer part, probably because the reactivity of the parenchyma cells is higher than that of the bundle sheaths. The acetylated reeds were tested by eleven skilled musicians suffering from the reed allergy. Eight musicians reported no allergic reactions. Three musicians reacted with the acetylated reed, but the reactions were much weaker than those induced by the unmodified reed. Thus, acetylation has been proven effective in preventing reed allergy. The patch test was not sufficient to detect allergies because although some musicians tested negative in the patch test, their mouths reacted seriously.
{"title":"Acetylation of reed (Arundo donax) to prevent the contact dermatitis of woodwind musicians","authors":"Yoshikazu Arai, Eiichi Obataya, Akiko Nakagawa-Izumi, Naoko Okiyama","doi":"10.1007/s00226-024-01604-8","DOIUrl":"10.1007/s00226-024-01604-8","url":null,"abstract":"<div><p>A reed (<i>Arundo donax</i>) was acetylated to prevent serious cheilitis (reed allergy) in woodwind musicians in contact with the vibrating plate made of the reed. The reed was acetylated almost completely at 120 °C for 8 to 24 h. The maximum weight% gain (WPG) of the reed was lower than that of wood, reflecting a lower number of active reaction sites. The WPG of the inner part of the reed was slightly higher than that of the outer part, probably because the reactivity of the parenchyma cells is higher than that of the bundle sheaths. The acetylated reeds were tested by eleven skilled musicians suffering from the reed allergy. Eight musicians reported no allergic reactions. Three musicians reacted with the acetylated reed, but the reactions were much weaker than those induced by the unmodified reed. Thus, acetylation has been proven effective in preventing reed allergy. The patch test was not sufficient to detect allergies because although some musicians tested negative in the patch test, their mouths reacted seriously.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1007/s00226-024-01602-w
Siavosh Vojdani Saghir, Elaheh K. Goharshadi
This study presents the development of a wood sponge (WS) modified with MnO2 nanorods (MnO2/WS) derived from balsa natural wood, an abundant and environmentally friendly raw material, for the adsorption of organic solvents, oils, and heavy metal ions from water. The MnO2/WS composite exhibits an exceptionally low density of 0.014 g cm− 3 and a high porosity of approximately 97%. It demonstrates consistent sorption-desorption performance over 20 cycles. Zeta potential analysis reveals that MnO2 nanorods carry a negative charge (-22.31 mV) at pH 4.68, indicating their affinity for adsorbing positively charged heavy metal ions, which are commonly found in industrial effluents. Moreover, WS shows remarkable mechanical robustness, enduring 1000 stress-strain cycles with high shape recovery, ensuring its durability under operational conditions. The data highlight several strengths of MnO2/WS, including cost-effective production process, high reusability, remarkable sorption capacities for carbon tetrachloride and soybean oil (29.56 and 17.65 times its mass, respectively), and efficient performance. Its capability to produce potable water from real industrial effluents positions MnO2/WS as an ideal solution for addressing water crises.
{"title":"Multifunctional MnO2 nanorods-modified wood sponge for water remediation: applications for heavy metal sorption and oil/water separation","authors":"Siavosh Vojdani Saghir, Elaheh K. Goharshadi","doi":"10.1007/s00226-024-01602-w","DOIUrl":"10.1007/s00226-024-01602-w","url":null,"abstract":"<div><p>This study presents the development of a wood sponge (WS) modified with MnO<sub>2</sub> nanorods (MnO<sub>2</sub>/WS) derived from balsa natural wood, an abundant and environmentally friendly raw material, for the adsorption of organic solvents, oils, and heavy metal ions from water. The MnO<sub>2</sub>/WS composite exhibits an exceptionally low density of 0.014 g cm<sup>− 3</sup> and a high porosity of approximately 97%. It demonstrates consistent sorption-desorption performance over 20 cycles. Zeta potential analysis reveals that MnO<sub>2</sub> nanorods carry a negative charge (-22.31 mV) at pH 4.68, indicating their affinity for adsorbing positively charged heavy metal ions, which are commonly found in industrial effluents. Moreover, WS shows remarkable mechanical robustness, enduring 1000 stress-strain cycles with high shape recovery, ensuring its durability under operational conditions. The data highlight several strengths of MnO<sub>2</sub>/WS, including cost-effective production process, high reusability, remarkable sorption capacities for carbon tetrachloride and soybean oil (29.56 and 17.65 times its mass, respectively), and efficient performance. Its capability to produce potable water from real industrial effluents positions MnO<sub>2</sub>/WS as an ideal solution for addressing water crises.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"2097 - 2113"},"PeriodicalIF":3.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s00226-024-01601-x
Xuefeng Xing, Shanming Li, Juwan Jin, Zhenyu Wang, Feng Fu
This study investigated the effects of high-intensity microwave (HIMW) treatment on the mechanical properties of radiata pine wood. The treatment, conducted on sapwood and heartwood with 60% initial moisture content, involved varied microwave energy densities: 60, 80, and 100 kWh/m3. Tests evaluated tensile and compressive properties in three directions, alongside shear strength and bending properties. Acoustic emission (AE) and digital image correlation (DIC) techniques probed damage evolution under bending loads before and after HIMW treatment. As microwave energy density increased, compressive, tensile, and shear strength decreased, with heartwood being the most susceptible. Substantial reductions occurred in longitudinal compressive properties and tensile properties perpendicular to the grain. After HIMW treatment (80 kWh/m3 and 100 kWh/m3 for sapwood and heartwood, respectively), although there was a slight decrease in the modulus of elasticity and bending strength, there was a significant increase in bending plasticity. HIMW-treated specimens exhibited more high-frequency AE signals during elastic–plastic deformation, indicating more frequent fractures in the treated wood during three-point bending. Changes in the microscopic structure of the wood specimens caused by HIMW treatment increased the damage growth rate and stress redistribution efficiency during loading, augmenting the bending plasticity of wood.
{"title":"Effects of high-intensity microwave (HIMW) treatment on mechanical properties and bending failure mechanisms of radiata pine (Pinus radiata D. Don)","authors":"Xuefeng Xing, Shanming Li, Juwan Jin, Zhenyu Wang, Feng Fu","doi":"10.1007/s00226-024-01601-x","DOIUrl":"10.1007/s00226-024-01601-x","url":null,"abstract":"<div><p>This study investigated the effects of high-intensity microwave (HIMW) treatment on the mechanical properties of radiata pine wood. The treatment, conducted on sapwood and heartwood with 60% initial moisture content, involved varied microwave energy densities: 60, 80, and 100 kWh/m<sup>3</sup>. Tests evaluated tensile and compressive properties in three directions, alongside shear strength and bending properties. Acoustic emission (AE) and digital image correlation (DIC) techniques probed damage evolution under bending loads before and after HIMW treatment. As microwave energy density increased, compressive, tensile, and shear strength decreased, with heartwood being the most susceptible. Substantial reductions occurred in longitudinal compressive properties and tensile properties perpendicular to the grain. After HIMW treatment (80 kWh/m<sup>3</sup> and 100 kWh/m<sup>3</sup> for sapwood and heartwood, respectively), although there was a slight decrease in the modulus of elasticity and bending strength, there was a significant increase in bending plasticity. HIMW-treated specimens exhibited more high-frequency AE signals during elastic–plastic deformation, indicating more frequent fractures in the treated wood during three-point bending. Changes in the microscopic structure of the wood specimens caused by HIMW treatment increased the damage growth rate and stress redistribution efficiency during loading, augmenting the bending plasticity of wood.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"2073 - 2096"},"PeriodicalIF":3.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s00226-024-01596-5
Micaela B. Peralta, Nicolò Pajer, Claudia Crestini, Verónica V. Nicolau
In view of developing upcycling strategies for hardwood Kraft lignin, hydroxy-methylation of Eucalyptus Kraft lignin under alkaline conditions (pH 9 and 11) at different temperatures (50 °C and 70 °C) was studied in the present effort with the double objective of optimizing the reaction conditions and understanding the functionalization mechanism of C5 in either terminal or internal guaiacyl units during hydroxy-methylation. Formaldehyde consumption was estimated via titration of the oximated free formaldehyde; the hydroxy-methylation degree under the reaction was estimated by calculating the ratio in Condensed hydroxyl/Guaiacyl (Condensed OH/G-OH) via a new difference UV-spectroscopy. The reliability of the difference UV-method results for the analyses of the hydroxy-methylated lignins was statistically analysed and compared with that of vacuum-dried and sonicated samples. Hydroxy-methylated samples were then fully characterised by NMR (31P and HSQC) and GPC. The reaction temperature of 50 °C, pH 11, and period time of one hour resulted as the optimal conditions for the hydroxy-methylation, preventing the side-reactions leading to the formation of dimethylene-glycol addition products. The 31P and 1H–13C HSQC NMR revealed the absence of undesirable formaldehyde Cannizzaro by-products and the lack of hydroxymethyl groups in the aliphatic side chain under the studied conditions. GPC analyses, comparing two methodologies, revealed increases in molar mass of the hydroxy-methylated samples upon the formaldehyde addition. The selective hydroxy-methylation at the C5 guaiacyl site demonstrates that Eucalyptus Kraft lignin is as a promising candidate for resol production.
{"title":"Mechanistic insight into hydroxy-methylation of hardwood Kraft lignin","authors":"Micaela B. Peralta, Nicolò Pajer, Claudia Crestini, Verónica V. Nicolau","doi":"10.1007/s00226-024-01596-5","DOIUrl":"10.1007/s00226-024-01596-5","url":null,"abstract":"<div><p>In view of developing upcycling strategies for hardwood Kraft lignin, hydroxy-methylation of Eucalyptus Kraft lignin under alkaline conditions (pH 9 and 11) at different temperatures (50 °C and 70 °C) was studied in the present effort with the double objective of optimizing the reaction conditions and understanding the functionalization mechanism of C<sub>5</sub> in either terminal or internal guaiacyl units during hydroxy-methylation. Formaldehyde consumption was estimated via titration of the oximated free formaldehyde; the hydroxy-methylation degree under the reaction was estimated by calculating the ratio in Condensed hydroxyl/Guaiacyl (Condensed OH/G-OH) via a new difference UV-spectroscopy. The reliability of the difference UV-method results for the analyses of the hydroxy-methylated lignins was statistically analysed and compared with that of vacuum-dried and sonicated samples. Hydroxy-methylated samples were then fully characterised by NMR (<sup>31</sup>P and HSQC) and GPC. The reaction temperature of 50 °C, pH 11, and period time of one hour resulted as the optimal conditions for the hydroxy-methylation, preventing the side-reactions leading to the formation of dimethylene-glycol addition products. The <sup>31</sup>P and <sup>1</sup>H–<sup>13</sup>C HSQC NMR revealed the absence of undesirable formaldehyde <i>Cannizzaro</i> by-products and the lack of hydroxymethyl groups in the aliphatic side chain under the studied conditions. GPC analyses, comparing two methodologies, revealed increases in molar mass of the hydroxy-methylated samples upon the formaldehyde addition. The selective hydroxy-methylation at the C5 guaiacyl site demonstrates that Eucalyptus Kraft lignin is as a promising candidate for resol production.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"2047 - 2072"},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s00226-024-01600-y
Yusuke Taga, Kosei Yamauchi, Tohru Mitsunaga
Three novel phenolic compounds were isolated from the heartwood of Millettia pendula along with eight known compounds. Among the known compounds, six were isolated from this species for the first time. Structural determination of the isolated compounds was accomplished using 1D and 2D nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two of the isolated compounds, 2 and 6, showed red and purple pigmentation, respectively. These compounds contained a conjugated π system composed of benzofuran and p-benzoquinone moieties. We therefore hypothesize that a hydroquinone moiety, present in precursors of 2 and 6, is autoxidized by activated oxygen in the air to form p-benzoquinone. The difference in colors between these two compounds was due to the difference in the B ring substituents. Expansion of their conjugated pi systems allows 2 and 6 to absorb and reflect light in the visible region, and results in the characteristic purple coloring of M.pendula.
从垂盆草心材中分离出三种新型酚类化合物和八种已知化合物。在已知化合物中,有六个是首次从该物种中分离出来的。利用一维和二维核磁共振波谱以及基质辅助激光解吸/电离飞行时间质谱对分离出的化合物进行了结构测定。分离出的两种化合物(2 和 6)分别呈现红色和紫色色素沉淀。这些化合物含有由苯并呋喃和对苯醌分子组成的共轭 π 系统。因此,我们假设 2 和 6 的前体中含有对苯二酚分子,在空气中被活性氧自氧化后形成对苯醌。这两种化合物颜色的不同是由于 B 环取代基的不同。共轭 pi 系统的扩展使 2 和 6 能够在可见光区域吸收和反射光线,从而形成垂盆草特有的紫色。
{"title":"Phenolic compounds related to heartwood coloration of Millettia pendula","authors":"Yusuke Taga, Kosei Yamauchi, Tohru Mitsunaga","doi":"10.1007/s00226-024-01600-y","DOIUrl":"10.1007/s00226-024-01600-y","url":null,"abstract":"<div><p>Three novel phenolic compounds were isolated from the heartwood of <i>Millettia pendula</i> along with eight known compounds. Among the known compounds, six were isolated from this species for the first time. Structural determination of the isolated compounds was accomplished using 1D and 2D nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two of the isolated compounds, <b>2</b> and <b>6</b>, showed red and purple pigmentation, respectively. These compounds contained a conjugated π system composed of benzofuran and <i>p</i>-benzoquinone moieties. We therefore hypothesize that a hydroquinone moiety, present in precursors of <b>2</b> and <b>6</b>, is autoxidized by activated oxygen in the air to form <i>p</i>-benzoquinone. The difference in colors between these two compounds was due to the difference in the B ring substituents. Expansion of their conjugated pi systems allows <b>2</b> and <b>6</b> to absorb and reflect light in the visible region, and results in the characteristic purple coloring of <i>M.pendula</i>.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"2033 - 2046"},"PeriodicalIF":3.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s00226-024-01577-8
Josef Stöcklein, Gerald Grajcarek, Daniel Konopka, Michael Kaliske
Lime wood, spruce and pine are investigated with regard to its hygro-mechanical long-term behaviour. Experiments are conducted for an identification of model parameters and for model validation. Swelling and shrinkage coefficients, dry density, sorption characteristics and parameters for visco-elasticity, visco-plasticity and mechano-sorption are determined for the main material directions. Supplemented by literature values, a complete set of parameters for long-term hygro-mechanical modelling of wood species is found. Constrained swelling and shrinkage are analysed and the origin of the stress development is investigated. It is demonstrated, that creep phenomena lead to significant stress reduction by relaxation, in case of moisture changes especially due to mechano-sorption. The influence of different model parts is investigated. A numerical parameter study shows the influence of several material parameters on the stress evolution. Experimental material investigations such as those presented here are essential for the application of numerical simulation methods for the prediction of material behaviour and for the assessment of deformations, stresses and damage potential of climatically loaded timber structures.
{"title":"Hygro-mechanical long-term behaviour of spruce, pine and lime wood: parameter identification and model validation","authors":"Josef Stöcklein, Gerald Grajcarek, Daniel Konopka, Michael Kaliske","doi":"10.1007/s00226-024-01577-8","DOIUrl":"10.1007/s00226-024-01577-8","url":null,"abstract":"<div><p>Lime wood, spruce and pine are investigated with regard to its hygro-mechanical long-term behaviour. Experiments are conducted for an identification of model parameters and for model validation. Swelling and shrinkage coefficients, dry density, sorption characteristics and parameters for visco-elasticity, visco-plasticity and mechano-sorption are determined for the main material directions. Supplemented by literature values, a complete set of parameters for long-term hygro-mechanical modelling of wood species is found. Constrained swelling and shrinkage are analysed and the origin of the stress development is investigated. It is demonstrated, that creep phenomena lead to significant stress reduction by relaxation, in case of moisture changes especially due to mechano-sorption. The influence of different model parts is investigated. A numerical parameter study shows the influence of several material parameters on the stress evolution. Experimental material investigations such as those presented here are essential for the application of numerical simulation methods for the prediction of material behaviour and for the assessment of deformations, stresses and damage potential of climatically loaded timber structures.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"2007 - 2031"},"PeriodicalIF":3.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01577-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}