Structural Active Noise Control (ANC) systems are one of few solutions of the ANC problem which allow to obtain a global noise reduction effect. Unfortunately, due to high dimensionality of these multichannel adaptation systems, which use many sensors and actuators, structural ANC systems are systems with high computational power requirements. A promising group of methods allowing to reduce these requirements are partial update LMS algorithms. In this communication, a modification of partial update LMS algorithms with leakage is presented. The computational power savings are discussed
{"title":"51st Winter School on Wave and Quantum Acoustics Lth Winter School on Environmental Acoustics and Vibroacoustics Szczyrk, Poland, February 27 – March 3, 2023","authors":"Dzido Grzegorz, Turczyn Roman, Jędrysiak Rafał, Kolanowska Anna, Tracz Anna, Zięba Wojciech, Cyganiuk Aleksandra, P. TerzykArtur","doi":"10.24425/aoa.2023.145237","DOIUrl":"https://doi.org/10.24425/aoa.2023.145237","url":null,"abstract":"Structural Active Noise Control (ANC) systems are one of few solutions of the ANC problem which allow to obtain a global noise reduction effect. Unfortunately, due to high dimensionality of these multichannel adaptation systems, which use many sensors and actuators, structural ANC systems are systems with high computational power requirements. A promising group of methods allowing to reduce these requirements are partial update LMS algorithms. In this communication, a modification of partial update LMS algorithms with leakage is presented. The computational power savings are discussed","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48083225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.24425/aoa.2023.145244
Song-Hun Kim, Myong-jin Kim
Sound insulation of the finite double-panel structure (DPS) inserted with a cylindrical shell array is investigated by varying the sound incidence direction to improve its applicability. The effects of the vibro-acoustic characteristics of its constituents on the sound transmission loss (STL) are estimated in one-third octave bands from 20 Hz to 5 kHz for different incidence conditions. It shows that the first acoustic mode in the direction parallel to two panels (longitudinal modes) produces both the sudden variation of sound insulation with frequency and a large dependency on the incidence angle. Mineral wools are placed on two boundaries perpendicular to the panels, and the sound insulation is explored for different thicknesses of the porous materials. An absorbent layer with a certain thickness (more than 30 mm in our work) sufficiently eliminates the longitudinal mode, resulting in the improvement in the sound insulation by more than 15 dB and the decrease of its large variation with incidence direction. STLs with varying shell thicknesses are also assessed. It shows that the natural vibrations of the thin shells can give an enhancement in sound insulation by more than 10 dB in the frequency range of 1600–3700 Hz, corresponding to constructive interference.
{"title":"Relationship Between the Sound Transmission Through the Finite Double-Panel Structure with a Cylindrical Shell Array and the Vibro-Acoustic Characteristics of its Constituents","authors":"Song-Hun Kim, Myong-jin Kim","doi":"10.24425/aoa.2023.145244","DOIUrl":"https://doi.org/10.24425/aoa.2023.145244","url":null,"abstract":"Sound insulation of the finite double-panel structure (DPS) inserted with a cylindrical shell array is investigated by varying the sound incidence direction to improve its applicability. The effects of the vibro-acoustic characteristics of its constituents on the sound transmission loss (STL) are estimated in one-third octave bands from 20 Hz to 5 kHz for different incidence conditions. It shows that the first acoustic mode in the direction parallel to two panels (longitudinal modes) produces both the sudden variation of sound insulation with frequency and a large dependency on the incidence angle. Mineral wools are placed on two boundaries perpendicular to the panels, and the sound insulation is explored for different thicknesses of the porous materials. An absorbent layer with a certain thickness (more than 30 mm in our work) sufficiently eliminates the longitudinal mode, resulting in the improvement in the sound insulation by more than 15 dB and the decrease of its large variation with incidence direction. STLs with varying shell thicknesses are also assessed. It shows that the natural vibrations of the thin shells can give an enhancement in sound insulation by more than 10 dB in the frequency range of 1600–3700 Hz, corresponding to constructive interference.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45939597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.24425/aoa.2023.145239
Alfio Yori
Small boats, possessing outboard engines, are widely used in tourism and mammal watching within marine protected areas. Noise generated by this type of vessels has the capacity to negatively affect marine fauna, especially marine mammals, which use sound throughout all the phases of their lives. These tourism boats used in mammal watching may use different propulsion systems, such as gas, diesel or electric engines. To characterize underwater noise emitted by this type of vessels becomes relevant not only when assessing the acoustic impact produced by these different propulsion systems over the marine fauna living inside these protected marine areas, but also when determining which one produces the least impact. A comparative study of underwater noise emissions coming from small touristic boats was made in this study. Boats were similar in capacity and functions, although possessing different propulsion systems. Measurements were made on two boats with a 50 Hp internal combustion engine and one 5 Hp electric boat. These boats were selected to be studied because they have practically the same size, possess the same passenger-capacity and are used to make similar jobs and routes inside the protected area where they are operated. The electric boat showed a considerable decrease in underwater noise emissions, especially in low frequencies. This boat will produce a lower accumulated exposition of the fauna to the noise or will allow a closer approach to the observed species. Measurements were made between September 2018 and January 2020.
{"title":"Field Study on Underwater Noise Emitted by Small Tourist Boats. Comparison Between the Use of Electric and Combustion Motors","authors":"Alfio Yori","doi":"10.24425/aoa.2023.145239","DOIUrl":"https://doi.org/10.24425/aoa.2023.145239","url":null,"abstract":"Small boats, possessing outboard engines, are widely used in tourism and mammal watching within marine protected areas. Noise generated by this type of vessels has the capacity to negatively affect marine fauna, especially marine mammals, which use sound throughout all the phases of their lives. These tourism boats used in mammal watching may use different propulsion systems, such as gas, diesel or electric engines. To characterize underwater noise emitted by this type of vessels becomes relevant not only when assessing the acoustic impact produced by these different propulsion systems over the marine fauna living inside these protected marine areas, but also when determining which one produces the least impact. A comparative study of underwater noise emissions coming from small touristic boats was made in this study. Boats were similar in capacity and functions, although possessing different propulsion systems. Measurements were made on two boats with a 50 Hp internal combustion engine and one 5 Hp electric boat. These boats were selected to be studied because they have practically the same size, possess the same passenger-capacity and are used to make similar jobs and routes inside the protected area where they are operated. The electric boat showed a considerable decrease in underwater noise emissions, especially in low frequencies. This boat will produce a lower accumulated exposition of the fauna to the noise or will allow a closer approach to the observed species. Measurements were made between September 2018 and January 2020.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45956559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.24425/aoa.2023.145247
Quanbo Lu, Li Mei
Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classification approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
{"title":"VMD and CNN-Based Classification Model for Infrasound Signal","authors":"Quanbo Lu, Li Mei","doi":"10.24425/aoa.2023.145247","DOIUrl":"https://doi.org/10.24425/aoa.2023.145247","url":null,"abstract":"Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classification approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48620552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.24425/aoa.2023.146641
Tahir Mushtaq, Ahmad Kamran, Muhammad Zubair, Akbar Qureshi
Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels / O /, /i/, / E /, / A /, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.
{"title":"A Symmetric Approach in the Three-Dimensional Digital Waveguide Modeling of the Vocal Tract","authors":"Tahir Mushtaq, Ahmad Kamran, Muhammad Zubair, Akbar Qureshi","doi":"10.24425/aoa.2023.146641","DOIUrl":"https://doi.org/10.24425/aoa.2023.146641","url":null,"abstract":"Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels / O /, /i/, / E /, / A /, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48260570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.24425/aoa.2023.145246
Chao Jiang, Xiaoli Cao, Feng Yang, Zejun Liu
,
,
{"title":"Numerical Investigation of the Propagation Characteristics of Surface Transverse Wave Considering Various Quartz Substrate and Electrode Configurations","authors":"Chao Jiang, Xiaoli Cao, Feng Yang, Zejun Liu","doi":"10.24425/aoa.2023.145246","DOIUrl":"https://doi.org/10.24425/aoa.2023.145246","url":null,"abstract":",","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48862575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wiktor Staszewski, Tadeusz Gudra, Krzysztof J. Opielinski
This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ $n$ ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.
{"title":"The Acoustic Field Distribution Inside the Ultrasonic Ring Array","authors":"Wiktor Staszewski, Tadeusz Gudra, Krzysztof J. Opielinski","doi":"10.24425/123917","DOIUrl":"https://doi.org/10.24425/123917","url":null,"abstract":"This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ $n$ ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.24425/aoa.2023.146811
{"title":"146811","authors":"","doi":"10.24425/aoa.2023.146811","DOIUrl":"https://doi.org/10.24425/aoa.2023.146811","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45705172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.24425/aoa.2020.132485
Adam Zagubień, Katarzyna Wolniewicz
The aim of the research was to determine the occurrence of possible, significant levels of infrasound and low frequency noise both in classrooms and around the primary school. Two sources of noise during research were significant: traffic on the national road and a wind farm, located near the school building. So far, few studies have been published regarding the impact of low-frequency, environmental noise from communication routes. The identification of hazards in a form of estimated noise levels resulted in preliminary information whether the location of the school near the road with significant traffic and the nearby wind farm can cause nuisance to children. There have been determined the criteria for assessing infrasound and low frequency noise. There have been made third octave band analyses of noise spectrum and the essential noise indicators were calculated. The results of learning in that school were thoroughly analysed for a long period of time and they were compared to the results obtained in other schools within a radius of 200 km situated near similar noise sources. Chosen assessment criteria show small exposure to low frequency noise. Measured infrasound noise levels are below hearing threshold.
{"title":"Dear Dr. Schweitzer, Thank you for your email. I believe that you should contact Ms. Borowa-Malinowska (PAN) as mentioned by Prof. Stolarski. We (PWN) are not the holders of the rights in the journal described below. Yours sincerely,Agnieszka Piotrowska-Strojna","authors":"Adam Zagubień, Katarzyna Wolniewicz","doi":"10.24425/aoa.2020.132485","DOIUrl":"https://doi.org/10.24425/aoa.2020.132485","url":null,"abstract":"The aim of the research was to determine the occurrence of possible, significant levels of infrasound and low frequency noise both in classrooms and around the primary school. Two sources of noise during research were significant: traffic on the national road and a wind farm, located near the school building. So far, few studies have been published regarding the impact of low-frequency, environmental noise from communication routes. The identification of hazards in a form of estimated noise levels resulted in preliminary information whether the location of the school near the road with significant traffic and the nearby wind farm can cause nuisance to children. There have been determined the criteria for assessing infrasound and low frequency noise. There have been made third octave band analyses of noise spectrum and the essential noise indicators were calculated. The results of learning in that school were thoroughly analysed for a long period of time and they were compared to the results obtained in other schools within a radius of 200 km situated near similar noise sources. Chosen assessment criteria show small exposure to low frequency noise. Measured infrasound noise levels are below hearing threshold.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}