Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.360708
Yuan Ye, Zhaoyu Huang, Yun Jiang, Li-an Bian, Chang Zhu, Jingjian Huang, N. Yuan
A low profile ultra-wideband tightly coupled dipole array is studied. The antenna elements are fed by Marchand baluns of small size and low cost. A metasurface based wide-angle impedance matching (MSWAIM) layer is introduced to replace the traditional dielectric WAIM, improving the beam scan performance and reducing the antenna profile. The simulation shows that the proposed antenna array can operate over 2.4-12.4 GHz, approximately 5:1 bandwidth with maximum scanning angle of 50o for both E plane and 45o for H plane. The antenna profile above the ground is only 0.578λH at the highest operating frequency. This antenna array can find its application in the forthcoming massive MIMO beamforming systems for 5G.
{"title":"A Wideband and Wide Scanning Tightly Coupled Dipole Array with Meta-Surface Wide-Angle Impedance Matching","authors":"Yuan Ye, Zhaoyu Huang, Yun Jiang, Li-an Bian, Chang Zhu, Jingjian Huang, N. Yuan","doi":"10.47037/2021.aces.j.360708","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360708","url":null,"abstract":"A low profile ultra-wideband tightly coupled dipole array is studied. The antenna elements are fed by Marchand baluns of small size and low cost. A metasurface based wide-angle impedance matching (MSWAIM) layer is introduced to replace the traditional dielectric WAIM, improving the beam scan performance and reducing the antenna profile. The simulation shows that the proposed antenna array can operate over 2.4-12.4 GHz, approximately 5:1 bandwidth with maximum scanning angle of 50o for both E plane and 45o for H plane. The antenna profile above the ground is only 0.578λH at the highest operating frequency. This antenna array can find its application in the forthcoming massive MIMO beamforming systems for 5G.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72679354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2020.aces.j.360612
T. A. Khan, M. I. Khattak, A. Tariq
This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).
{"title":"Radiation Pattern Synthesis and Mutual Coupling Compensation in Spherical Conformal Array Antennas","authors":"T. A. Khan, M. I. Khattak, A. Tariq","doi":"10.47037/2020.aces.j.360612","DOIUrl":"https://doi.org/10.47037/2020.aces.j.360612","url":null,"abstract":"This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91027427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.360824
R. Khan, K. Ng
─ The numerical study of electrocardiology involves prohibitive computational costs because of its complex and nonlinear dynamics. In this paper, a lowdimensional model of the cardiac monodomain formulation has been developed by using the deep learning method. The restricted Boltzmann machine and deep autoencoder machine learning techniques have been used to approximate the cardiac tissue’s full order dynamics. The proposed reduced order modeling begins with the development of the low-dimensional representations of the original system by implementing the neural networks from the numerical simulations of the full order monodomain system. Consequently, the reduced order representations have been utilized to construct the lower-dimensional model, and finally, it has been reconstructed back to the original system. Numerical results show that, the proposed deep learning MOR framework gained computational efficiency by a factor of 85 with acceptable accuracy. This paper compares the accuracy of the deep learning based model order reduction method with the two different techniques of model reduction: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The model order reduction deploying the deep learning method outperforms the POD and DMD concerning the modeling accuracy. Index Term ─ Autoencoder, Cardiac monodomain model, deep learning technique, dynamic mode decomposition, proper orthogonal decomposition, reduced order modeling, semi-implicit scheme.
{"title":"Model Order Reduction of Cardiac Monodomain Model using Deep Autoencoder Based Neural Networks","authors":"R. Khan, K. Ng","doi":"10.47037/2021.aces.j.360824","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360824","url":null,"abstract":"─ The numerical study of electrocardiology involves prohibitive computational costs because of its complex and nonlinear dynamics. In this paper, a lowdimensional model of the cardiac monodomain formulation has been developed by using the deep learning method. The restricted Boltzmann machine and deep autoencoder machine learning techniques have been used to approximate the cardiac tissue’s full order dynamics. The proposed reduced order modeling begins with the development of the low-dimensional representations of the original system by implementing the neural networks from the numerical simulations of the full order monodomain system. Consequently, the reduced order representations have been utilized to construct the lower-dimensional model, and finally, it has been reconstructed back to the original system. Numerical results show that, the proposed deep learning MOR framework gained computational efficiency by a factor of 85 with acceptable accuracy. This paper compares the accuracy of the deep learning based model order reduction method with the two different techniques of model reduction: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The model order reduction deploying the deep learning method outperforms the POD and DMD concerning the modeling accuracy. Index Term ─ Autoencoder, Cardiac monodomain model, deep learning technique, dynamic mode decomposition, proper orthogonal decomposition, reduced order modeling, semi-implicit scheme.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85093672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.360711
Demiao Chu, Yujun Xiong, Ping Li
This paper presents a low-profile, high gain, beam-tilted continuous transverse stub (CTS) array antenna at W-band. The antenna compromises 32 radiating slots and is fed by a parallel plate waveguide (PPW) network with a linear source generator. To deflect the outgoing beam, the principle of linear array scanning is adopted to design inverted T-type structure in each stub to introduce wave path difference. PPW network allows the antenna to obtain lower profile compared to other transmission lines. The design procedure, and the antenna characterization are described. The main beam of the antenna is titled 12 degree in H-plane. The simulation and measured results show that this antenna achieves peak gain of 32.4 dB and a 12 degree beam tilt angle at 99GHz. S11 parameters of the antenna is less than -10 dB in a broadband from 96 GHz to 103 GHz. This antenna has an advantage of miniaturization over other high-gain antenna solutions. The promising performance of this proposed CTS antenna reveals the possible candidate for Millimeter wave (MMW) telecommunication applications.
{"title":"A Low-Profile and Beam-tilted Continuous Transverse Stub Array Antenna at W-band","authors":"Demiao Chu, Yujun Xiong, Ping Li","doi":"10.47037/2021.aces.j.360711","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360711","url":null,"abstract":"This paper presents a low-profile, high gain, beam-tilted continuous transverse stub (CTS) array antenna at W-band. The antenna compromises 32 radiating slots and is fed by a parallel plate waveguide (PPW) network with a linear source generator. To deflect the outgoing beam, the principle of linear array scanning is adopted to design inverted T-type structure in each stub to introduce wave path difference. PPW network allows the antenna to obtain lower profile compared to other transmission lines. The design procedure, and the antenna characterization are described. The main beam of the antenna is titled 12 degree in H-plane. The simulation and measured results show that this antenna achieves peak gain of 32.4 dB and a 12 degree beam tilt angle at 99GHz. S11 parameters of the antenna is less than -10 dB in a broadband from 96 GHz to 103 GHz. This antenna has an advantage of miniaturization over other high-gain antenna solutions. The promising performance of this proposed CTS antenna reveals the possible candidate for Millimeter wave (MMW) telecommunication applications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83970170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.360914
O. K. Jensen, Yilin Ji, Fengchun Zhang, W. Fan
─ In production testing, it is of importance to measure the key radiation parameters of an antenna under test (AUT), e.g., main beam peak and direction, sidelobes, and null depth and direction in a cost-effective setup with a short measurement time. As a result, practical measurement setups are often compact and equipped with only a few probes (or probe locations). However, these system limitations would introduce errors for antenna testing. This problem has become even more pronounced for 5G radios due to utilization of large-scale antenna configurations and high frequency bands. Spherical near-field measurements are nowadays an accurate and mature technique for characterizing AUTs, which however, necessitates a full spherical acquisition, leading to a long measurement time. Singlecut near-to-far-field transformation is a promising strategy since most of the key AUT parameters are available in the single-cut pattern and it requires much reduced measurement time. In this work, a simple and flexible scheme is proposed to evaluate errors introduced by limitations in practical setups for single-cut far-field (FF) antenna radiation pattern reconstruction, where the near-field data can be easily generated and modified according to the limitations introduced in practical multi-probe anechoic chamber setups, e.g., measurement distance, truncation range, and sampling interval. The reconstructed FF pattern is obtained using a commercial near-field to far-field transformation tool, SNIFT. The proposed scheme is numerically validated via comparing the reference FF pattern of a 4 × 8 uniform planar array composed of ideal Hertzian dipoles and reconstructed FF pattern. With the proposed scheme, the impact of practical system limitations on single-cut reconstruction accuracy can be easily analyzed. Index Terms ─ Antenna pattern measurement, nearfield far-field transformation, near field measurement, over-the-air testing, and single-cut antenna pattern.
{"title":"Single-cut Far-Field Antenna Radiation Pattern Reconstruction Accuracy Analysis in Compact Anechoic Chamber Setup","authors":"O. K. Jensen, Yilin Ji, Fengchun Zhang, W. Fan","doi":"10.47037/2021.aces.j.360914","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360914","url":null,"abstract":"─ In production testing, it is of importance to measure the key radiation parameters of an antenna under test (AUT), e.g., main beam peak and direction, sidelobes, and null depth and direction in a cost-effective setup with a short measurement time. As a result, practical measurement setups are often compact and equipped with only a few probes (or probe locations). However, these system limitations would introduce errors for antenna testing. This problem has become even more pronounced for 5G radios due to utilization of large-scale antenna configurations and high frequency bands. Spherical near-field measurements are nowadays an accurate and mature technique for characterizing AUTs, which however, necessitates a full spherical acquisition, leading to a long measurement time. Singlecut near-to-far-field transformation is a promising strategy since most of the key AUT parameters are available in the single-cut pattern and it requires much reduced measurement time. In this work, a simple and flexible scheme is proposed to evaluate errors introduced by limitations in practical setups for single-cut far-field (FF) antenna radiation pattern reconstruction, where the near-field data can be easily generated and modified according to the limitations introduced in practical multi-probe anechoic chamber setups, e.g., measurement distance, truncation range, and sampling interval. The reconstructed FF pattern is obtained using a commercial near-field to far-field transformation tool, SNIFT. The proposed scheme is numerically validated via comparing the reference FF pattern of a 4 × 8 uniform planar array composed of ideal Hertzian dipoles and reconstructed FF pattern. With the proposed scheme, the impact of practical system limitations on single-cut reconstruction accuracy can be easily analyzed. Index Terms ─ Antenna pattern measurement, nearfield far-field transformation, near field measurement, over-the-air testing, and single-cut antenna pattern.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87061176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
─ In this paper, a compact multi-probe reverberation chamber (RC) is proposed for over-the-air (OTA) testing. 16 probe antennas are used to reduce the measurement time. Typical parameters of the RC, such as field uniformity (FU), quality factor (Q factor), and independent samples are given. Total radiated power (TRP) and pattern correlation measurements have been performed to validate the RC system. Index Terms ─ Compact, multi-probe RC, OTA.
{"title":"A Compact Multi-Probe Reverberation Chamber for Over-the-Air Testing","authors":"Wenjun Qi, Feng Fang, Wen-Qing Xia, Yongjiu Zhao, Lei Xing, Qian Xu","doi":"10.47037/2021.aces.j.360911","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360911","url":null,"abstract":"─ In this paper, a compact multi-probe reverberation chamber (RC) is proposed for over-the-air (OTA) testing. 16 probe antennas are used to reduce the measurement time. Typical parameters of the RC, such as field uniformity (FU), quality factor (Q factor), and independent samples are given. Total radiated power (TRP) and pattern correlation measurements have been performed to validate the RC system. Index Terms ─ Compact, multi-probe RC, OTA.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83585677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
─ With decades of development, the reverberation chamber (RC) has been proven to be a popular facility to determine antenna efficiency. One-, twoand threeantenna methods have been proposed to measure antenna efficiency without the need of a reference antenna. Due to the stochastic nature of RCbased measurements, the statistical analysis of the uncertainty is indispensable. Recently, the statistical uncertainty models for the oneand three-antenna methods were derived, however, the statistical model for the two-antenna method is still unknown to date. In this paper, the statistical uncertainty model of the twoantenna method is proposed. The approximated relative uncertainty is also given. The derived statistical uncertainty is verified by both simulations and measurements. It is experimentally verified that the statistical model can cope with hybrid stirring and assess the measurement uncertainty with and without frequency stirring in an efficient and convenient way. Index Terms ─ Antenna efficiency, measurement uncertainty, reverberation chamber, two-antenna method, hybrid stirring.
{"title":"Measurement Uncertainty of Antenna Efficiency Measured Using the Two-Antenna Method in a Reverberation Chamber","authors":"Wei Xue, Yuxin Ren, Xiaoming Chen, Zhengpeng Wang, Yingsong Li, Yi Huang","doi":"10.47037/2021.aces.j.36095","DOIUrl":"https://doi.org/10.47037/2021.aces.j.36095","url":null,"abstract":"─ With decades of development, the reverberation chamber (RC) has been proven to be a popular facility to determine antenna efficiency. One-, twoand threeantenna methods have been proposed to measure antenna efficiency without the need of a reference antenna. Due to the stochastic nature of RCbased measurements, the statistical analysis of the uncertainty is indispensable. Recently, the statistical uncertainty models for the oneand three-antenna methods were derived, however, the statistical model for the two-antenna method is still unknown to date. In this paper, the statistical uncertainty model of the twoantenna method is proposed. The approximated relative uncertainty is also given. The derived statistical uncertainty is verified by both simulations and measurements. It is experimentally verified that the statistical model can cope with hybrid stirring and assess the measurement uncertainty with and without frequency stirring in an efficient and convenient way. Index Terms ─ Antenna efficiency, measurement uncertainty, reverberation chamber, two-antenna method, hybrid stirring.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72899824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.36093
Xiaoyu Huang, Xiaoming Chen, Huiling Pei, Yingsong Li
─ Multiple-input-multiple-output (MIMO) overthe-air (OTA) testing has been seen as a promising solution for evaluation of the radio performance of MIMO devices. In this work, we compare the accuracy of two channel emulation methods, i.e., the prefaded signal synthesis (PFS) and the plane wave synthesis (PWS), in two-dimensional (2D) uniform and 3D sectored multi-probe anechoic chamber (MPAC), respectively. The PWS method is proven to be more accurate than the PFS for 2D uniform MPAC system. However, for 3D sectored MPAC system, the PFS method emerged to be better than the PWS method. To explain these seemingly contradicting findings, both the required number of active probes and the leakage of power spectrum are considered in this paper. It is found that the PWS method has higher emulation accuracy than the PFS method when the number of active probes becomes sufficiently large, whereas the PFS is more robust to the undersampling due to the limited number of active probes in practical 3D sectored MPAC system. Moreover, when the number of active probes is particularly small (less than the number of clusters in the probe panel), the emulation accuracy of the PWS method outperform its counterpart. Index Terms ─Multi-probe anechoic chamber (MPAC), over-the-air (OTA), pre-faded signal synthesis (PFS), plane wave synthesis (PWS).
{"title":"Accuracy Comparisons of Channel Emulation Methods for Two-dimensional Uniform and Three-dimensional Sectored Multi-probe Anechoic Chamber","authors":"Xiaoyu Huang, Xiaoming Chen, Huiling Pei, Yingsong Li","doi":"10.47037/2021.aces.j.36093","DOIUrl":"https://doi.org/10.47037/2021.aces.j.36093","url":null,"abstract":"─ Multiple-input-multiple-output (MIMO) overthe-air (OTA) testing has been seen as a promising solution for evaluation of the radio performance of MIMO devices. In this work, we compare the accuracy of two channel emulation methods, i.e., the prefaded signal synthesis (PFS) and the plane wave synthesis (PWS), in two-dimensional (2D) uniform and 3D sectored multi-probe anechoic chamber (MPAC), respectively. The PWS method is proven to be more accurate than the PFS for 2D uniform MPAC system. However, for 3D sectored MPAC system, the PFS method emerged to be better than the PWS method. To explain these seemingly contradicting findings, both the required number of active probes and the leakage of power spectrum are considered in this paper. It is found that the PWS method has higher emulation accuracy than the PFS method when the number of active probes becomes sufficiently large, whereas the PFS is more robust to the undersampling due to the limited number of active probes in practical 3D sectored MPAC system. Moreover, when the number of active probes is particularly small (less than the number of clusters in the probe panel), the emulation accuracy of the PWS method outperform its counterpart. Index Terms ─Multi-probe anechoic chamber (MPAC), over-the-air (OTA), pre-faded signal synthesis (PFS), plane wave synthesis (PWS).","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87394891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.360823
N. Colon-Diaz, D. Janning, Patrick M. McCormick, J. Aberle, D. Bliss
─ In this work an experimental radar testbed and dual directional couplers (DDC) are used to collect measurements of the forward and reverse waves at each element, its mutual coupling, and beam-patterns. The collected measured data is used to validate a methodology for assessing radio frequency (RF) performance of a co-located multiple-input multipleoutput (MIMO) radar system transmitting binary phased coded (BP) waveforms. The estimated and measured active reflection coefficient (ARC) and beam-patterns are presented. The effect of different excitations and mutual coupling on the radiated fields is also presented. Index Terms ─ Active reflection coefficient, co-located MIMO radar, coupled power, mutual coupling.
{"title":"Novel Methodology to Assess RF Performance of Co-located MIMO Radar Systems Transmitting Binary Phased Coded Waveforms","authors":"N. Colon-Diaz, D. Janning, Patrick M. McCormick, J. Aberle, D. Bliss","doi":"10.47037/2021.aces.j.360823","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360823","url":null,"abstract":"─ In this work an experimental radar testbed and dual directional couplers (DDC) are used to collect measurements of the forward and reverse waves at each element, its mutual coupling, and beam-patterns. The collected measured data is used to validate a methodology for assessing radio frequency (RF) performance of a co-located multiple-input multipleoutput (MIMO) radar system transmitting binary phased coded (BP) waveforms. The estimated and measured active reflection coefficient (ARC) and beam-patterns are presented. The effect of different excitations and mutual coupling on the radiated fields is also presented. Index Terms ─ Active reflection coefficient, co-located MIMO radar, coupled power, mutual coupling.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87433955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.47037/2021.aces.j.36091
K. Chung, Aiqi Cui, Mingliang Ma, Botao Feng, Yingsong Li
─ This article presents a novel decoupling technique for the circularly polarized multiple-inputmultiple-output (CP-MIMO) system composed of Guoshaped patch antennas. A comparative study has been conducted on antenna performance as a function of packing distance before and after applying the technique. A prototype of two-element Guo-shaped patch MIMO at a small inter-element spacing of 12.5 mm has devised aiming for the 5G new radio n38 (2.57-2.62 GHz) applications. Simulation reinforced with experimental results confirmed the effectiveness of the proposed technique, whereas the two Guo-shaped patch elements packed in such small spacing can be operated independently. Both the envelope correlation coefficient and diversity gain are approaching their ideal values. Index Terms ─ Antenna isolation, artistic patch antenna, Chinese-character-shaped patch antenna, CP-MIMO, decoupling technique.
{"title":"Central-Symmetry Decoupling Technique for Circularly-Polarized MIMO System of Tightly Packed Chinese-character Shaped Patch Antennas","authors":"K. Chung, Aiqi Cui, Mingliang Ma, Botao Feng, Yingsong Li","doi":"10.47037/2021.aces.j.36091","DOIUrl":"https://doi.org/10.47037/2021.aces.j.36091","url":null,"abstract":"─ This article presents a novel decoupling technique for the circularly polarized multiple-inputmultiple-output (CP-MIMO) system composed of Guoshaped patch antennas. A comparative study has been conducted on antenna performance as a function of packing distance before and after applying the technique. A prototype of two-element Guo-shaped patch MIMO at a small inter-element spacing of 12.5 mm has devised aiming for the 5G new radio n38 (2.57-2.62 GHz) applications. Simulation reinforced with experimental results confirmed the effectiveness of the proposed technique, whereas the two Guo-shaped patch elements packed in such small spacing can be operated independently. Both the envelope correlation coefficient and diversity gain are approaching their ideal values. Index Terms ─ Antenna isolation, artistic patch antenna, Chinese-character-shaped patch antenna, CP-MIMO, decoupling technique.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86969239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}