首页 > 最新文献

Archives of Foundry Engineering最新文献

英文 中文
Gas evolution of GEOPOL (R) W sand mixture and comparison with organic binders GEOPOL (R) W砂混合物的气体演化及与有机粘结剂的比较
IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/AFE.2019.127115
M. Vykoukal, A. Burian, M. Přerovská, T. Bajer, J. Beňo
The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL W sand mixture is 1.9 cm/g. The measured volume of gas for GEOPOL W is 4.3 cm/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.
研究了热硬化地聚合物粘结剂体系的气相发育,并与有机粘结剂体系进行了比较。GEOPOL W技术是基于水的完全无机粘结剂体系。这一事实使得浇注过程中产生的气体仅以水蒸气为基础。没有危险的排放物,烟雾或令人不快的气味产生。计算得到的GEOPOL W砂混合物产生的水蒸气量为1.9 cm/g。GEOPOL W的实测气体体积为4.3 cm/g。气体释放测试证明无机粘结剂体系GEOPOL W与PUR冷箱amin和Croning相比,产生的气体(水蒸气)体积非常小。气体量比PUR冷箱amin(3.7倍)和Croning(4.2倍)低几倍。实验结果与文献资料一致。计算和测量的气体体积之间的差异是通过在储存和制备砂样过程中脱水后从空气中反向吸湿来证明的。产生的气体/水蒸气体积最小,主要是没有危险的排放,也有以下优点:气泡缺陷产生的风险最小,没有缺陷的好铸件,减少废气处理的成本,模具上没有冷凝物,减少清洁成本。
{"title":"Gas evolution of GEOPOL (R) W sand mixture and comparison with organic binders","authors":"M. Vykoukal, A. Burian, M. Přerovská, T. Bajer, J. Beňo","doi":"10.24425/AFE.2019.127115","DOIUrl":"https://doi.org/10.24425/AFE.2019.127115","url":null,"abstract":"The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL W sand mixture is 1.9 cm/g. The measured volume of gas for GEOPOL W is 4.3 cm/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Evaluation of the Possibility of Applying Thermal Barrier Coatings to AlSi7Mg Alloy Castings 热障涂层应用于AlSi7Mg合金铸件的可能性评价
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2023.146668
This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.
{"title":"Evaluation of the Possibility of Applying Thermal Barrier Coatings to AlSi7Mg Alloy Castings","authors":"","doi":"10.24425/afe.2023.146668","DOIUrl":"https://doi.org/10.24425/afe.2023.146668","url":null,"abstract":"This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"29 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and Thermal Properties of Aluminum Foams Manufactured by Investment Casting Method 熔模铸造泡沫铝的力学和热性能
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2022.140214
A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration
{"title":"Mechanical and Thermal Properties of Aluminum Foams Manufactured by Investment Casting Method","authors":"","doi":"10.24425/afe.2022.140214","DOIUrl":"https://doi.org/10.24425/afe.2022.140214","url":null,"abstract":"A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"7 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Oxide Inclusions in Ductile Cast Iron as Starting Materials for Production SiMo Iron Castings 球墨铸铁中氧化物夹杂物作为生产四墨铸铁铸件的原料
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2021.138663
Ł. Dyrlaga, D. Kopyciński, E. Guzik
This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium
{"title":"Oxide Inclusions in Ductile Cast Iron as Starting Materials for Production SiMo Iron Castings","authors":"Ł. Dyrlaga, D. Kopyciński, E. Guzik","doi":"10.24425/afe.2021.138663","DOIUrl":"https://doi.org/10.24425/afe.2021.138663","url":null,"abstract":"This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detectability of Defect and its Beginning on the Formed Cast-iron Cast 成形铸铁件缺陷的可检测性及其开始
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127119
E. Kantoríková
The article describes the detection of a defect in a cast iron casting. It analyzes the cause of the crack in the Turbine Component casting. In this article, we are focusing on a particular turbine casting that is commonly used in automobiles as one of the components for turbochargers. The turbine is a casting made of ductile cast iron with a visible crack on the naked eye. The formation of cracks in castings is a common but undesirable phenomenon in the foundry practice. It is important to identify the errors, but also to know the cause of defects in castings. The solution is a detailed error analysis. In this paper I used metallographic analysis and magnetic powder method. The crack formation is due to tension in the casting, which results in tensile, shear, or shear forces. The crack formation kinetics is difficult because it is still very low during hardening and shortly after the casting is overloaded. The crack is most often due to core resistance or shrinkage molds that begin after the surface layer is tightened when the strength of the material is negligible to the end of the crystallisation.
{"title":"Detectability of Defect and its Beginning on the Formed Cast-iron Cast","authors":"E. Kantoríková","doi":"10.24425/afe.2019.127119","DOIUrl":"https://doi.org/10.24425/afe.2019.127119","url":null,"abstract":"The article describes the detection of a defect in a cast iron casting. It analyzes the cause of the crack in the Turbine Component casting. In this article, we are focusing on a particular turbine casting that is commonly used in automobiles as one of the components for turbochargers. The turbine is a casting made of ductile cast iron with a visible crack on the naked eye. The formation of cracks in castings is a common but undesirable phenomenon in the foundry practice. It is important to identify the errors, but also to know the cause of defects in castings. The solution is a detailed error analysis. In this paper I used metallographic analysis and magnetic powder method. The crack formation is due to tension in the casting, which results in tensile, shear, or shear forces. The crack formation kinetics is difficult because it is still very low during hardening and shortly after the casting is overloaded. The crack is most often due to core resistance or shrinkage molds that begin after the surface layer is tightened when the strength of the material is negligible to the end of the crystallisation.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and Mechanical Properties of the CO2 Laser Welded Joint of AZ91 Cast Magnesium Alloy AZ91铸造镁合金CO2激光焊接接头的组织与力学性能
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2020.133322
Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.
{"title":"Structure and Mechanical Properties of the CO2 Laser Welded Joint of AZ91 Cast Magnesium Alloy","authors":"","doi":"10.24425/afe.2020.133322","DOIUrl":"https://doi.org/10.24425/afe.2020.133322","url":null,"abstract":"Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Temperature Distribution of a Die Casting Mold of X38CrMoV5_1 Steel X38CrMoV5_1钢压铸模具温度分布的评价
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127125
J. Majerník, M. Podařil
Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.
{"title":"Evaluation of the Temperature Distribution of a Die Casting Mold of X38CrMoV5_1 Steel","authors":"J. Majerník, M. Podařil","doi":"10.24425/afe.2019.127125","DOIUrl":"https://doi.org/10.24425/afe.2019.127125","url":null,"abstract":"Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1990 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of Liquid Glass Mixtures with Improved Knocking-Out Ability in Castings Production for Railway Transport 提高敲出能力的液态玻璃混合物在铁路运输铸件生产中的应用
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127134
Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the "Front Buffer Stop" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.
{"title":"Application of Liquid Glass Mixtures with Improved Knocking-Out Ability in Castings Production for Railway Transport","authors":"","doi":"10.24425/afe.2019.127134","DOIUrl":"https://doi.org/10.24425/afe.2019.127134","url":null,"abstract":"Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the \"Front Buffer Stop\" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"614 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Manufacturing Scheme of Spherical Grinding Bodies from Abrasion-Resistant Cast Iron Free of Shrinkage Defects 无收缩缺陷耐磨铸铁球磨体的制造方案
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127141
D.O. Pustovalov, T. Ablyaz, K.R. Muratov, K.V. Sharov, A.V. Bogomyagkov, A.A. Shumkov
This work presents a scheme for the manufacture of spherical grinding bodies used in grinding and crushing machinery as a grinding medium from abrasion-resistant cast iron CHKH16 (according to GOST 7769-82) free of shrinkage defects produced by casting into single sand molds with a vertical joint and by usingcoolers. The grinding efficiency in terms of material destruction and energy consumption has been studied according to a wide range of operating parameters and new scheme for calculating the sprue and supply system has been developed by the authors of the article. Its functionality has been substantiated, particularly the use of a central riser acting as a head and the use of coolers. The conducted numerical simulation has shown the dependence of a solid phase formation over time, which characterizes the direction of the system crystallization and determines the locations of the shrinkage defects concentration. The manufacture of the grinding body with a 100 mm diameter using the considered technology is presented in this paper.
{"title":"Manufacturing Scheme of Spherical Grinding Bodies from Abrasion-Resistant Cast Iron Free of Shrinkage Defects","authors":"D.O. Pustovalov, T. Ablyaz, K.R. Muratov, K.V. Sharov, A.V. Bogomyagkov, A.A. Shumkov","doi":"10.24425/afe.2019.127141","DOIUrl":"https://doi.org/10.24425/afe.2019.127141","url":null,"abstract":"This work presents a scheme for the manufacture of spherical grinding bodies used in grinding and crushing machinery as a grinding medium from abrasion-resistant cast iron CHKH16 (according to GOST 7769-82) free of shrinkage defects produced by casting into single sand molds with a vertical joint and by usingcoolers. The grinding efficiency in terms of material destruction and energy consumption has been studied according to a wide range of operating parameters and new scheme for calculating the sprue and supply system has been developed by the authors of the article. Its functionality has been substantiated, particularly the use of a central riser acting as a head and the use of coolers. The conducted numerical simulation has shown the dependence of a solid phase formation over time, which characterizes the direction of the system crystallization and determines the locations of the shrinkage defects concentration. The manufacture of the grinding body with a 100 mm diameter using the considered technology is presented in this paper.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1981 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5 Cs of Investment Casting Foundries in Rajkot Cluster – An Industrial Survey 拉杰科特集群精铸铸造厂的5c -产业调查
Q4 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2023-11-06 DOI: 10.24425/afe.2021.138672
Investment casting is very well-known manufacturing process for producing relatively thin and multifarious industrial components with high dimensional tolerances as well as admirable surface finish. Investment casting process is further comprised of sub-processes including pattern making, shell making, dewaxing, shell backing, melting and pouring. These sub-processes are usually followed by heat treatment, finishing as well as testing & measurement of castings. Investment castings are employed in many industrial sectors including aerospace, automobile, bio-medical, chemical, defense, etc. Overall market size of investment castings in world is nearly 12.15 billion USD and growing at a rate of 2.8% every year. India is among the top five investment casting producers in the world
{"title":"5 Cs of Investment Casting Foundries in Rajkot Cluster – An Industrial Survey","authors":"","doi":"10.24425/afe.2021.138672","DOIUrl":"https://doi.org/10.24425/afe.2021.138672","url":null,"abstract":"Investment casting is very well-known manufacturing process for producing relatively thin and multifarious industrial components with high dimensional tolerances as well as admirable surface finish. Investment casting process is further comprised of sub-processes including pattern making, shell making, dewaxing, shell backing, melting and pouring. These sub-processes are usually followed by heat treatment, finishing as well as testing & measurement of castings. Investment castings are employed in many industrial sectors including aerospace, automobile, bio-medical, chemical, defense, etc. Overall market size of investment castings in world is nearly 12.15 billion USD and growing at a rate of 2.8% every year. India is among the top five investment casting producers in the world","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"518 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Archives of Foundry Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1