首页 > 最新文献

Archives of Foundry Engineering最新文献

英文 中文
Ceramic-Carbon Filters for Molten Metal Alloys Filtration 用于熔融金属合金过滤的陶瓷-碳过滤器
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127101
M. Asłanowicz, A. Ościłowski, B. Lipowska, J. Witek, Z. Robak, R. Muzyka, P. Kowalski, K. Wańczyk
In 2014 we finished research works involved in the development of a technology for manufacturing innovative ceramic-carbon foam filters for molten metal alloys filtration, which were financed by the National Centre for Research and Development (NCBiR) from INNOTECH programme resources. A batch of the filters produced in this technology was tested in practice in domestic cast steel and cast iron foundries. The trials were successful and foundries declared their intention to purchase the newly-developed filters for the current production of casts. This provided an incentive for “Ferro-Term” Sp. z o.o. to start design works on the prototype line for a serial production of these filters. At the same time, in co-operation with a scientific consortium, including the co-authors of the technology, i.e. the Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Institute for the Chemical Processing of Coal in Zabrze and Foundry Research Institute in Cracow, the company made a successful attempt to raise some funds for the necessary adaptation of the developed technology from the semi-technical to industrial scale from Intelligent Development Operational Programme. In the article we have presented information on the effects of works performed within the framework of the project entitled “Modernization and adaptation of the existing technological line for purposes related to technology verification and start-up of the production of innovative ceramic-carbon filters for molten metal alloy filtration”.
{"title":"Ceramic-Carbon Filters for Molten Metal Alloys Filtration","authors":"M. Asłanowicz, A. Ościłowski, B. Lipowska, J. Witek, Z. Robak, R. Muzyka, P. Kowalski, K. Wańczyk","doi":"10.24425/afe.2019.127101","DOIUrl":"https://doi.org/10.24425/afe.2019.127101","url":null,"abstract":"In 2014 we finished research works involved in the development of a technology for manufacturing innovative ceramic-carbon foam filters for molten metal alloys filtration, which were financed by the National Centre for Research and Development (NCBiR) from INNOTECH programme resources. A batch of the filters produced in this technology was tested in practice in domestic cast steel and cast iron foundries. The trials were successful and foundries declared their intention to purchase the newly-developed filters for the current production of casts. This provided an incentive for “Ferro-Term” Sp. z o.o. to start design works on the prototype line for a serial production of these filters. At the same time, in co-operation with a scientific consortium, including the co-authors of the technology, i.e. the Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Institute for the Chemical Processing of Coal in Zabrze and Foundry Research Institute in Cracow, the company made a successful attempt to raise some funds for the necessary adaptation of the developed technology from the semi-technical to industrial scale from Intelligent Development Operational Programme. In the article we have presented information on the effects of works performed within the framework of the project entitled “Modernization and adaptation of the existing technological line for purposes related to technology verification and start-up of the production of innovative ceramic-carbon filters for molten metal alloy filtration”.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Cleaning and Melting of Fine Aluminium Alloy Chips 精细铝合金切屑的热清洗和熔化
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2020.133353
Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 o C with NaCl-KCl-Na 3 AlF 6 salt flux.
{"title":"Thermal Cleaning and Melting of Fine Aluminium Alloy Chips","authors":"","doi":"10.24425/afe.2020.133353","DOIUrl":"https://doi.org/10.24425/afe.2020.133353","url":null,"abstract":"Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 o C with NaCl-KCl-Na 3 AlF 6 salt flux.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact Strength of AE-type Alloys High Pressure Die Castings ae型合金高压压铸件的冲击强度
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2020.133321
The results of the Charpy impact test of AE-type magnesium alloys produced by the high pressure die casting method are presented. Three alloys with different weight fractions of rare earth elements (RE; e.g. 1, 3 and 5 wt%) and the same mass fraction of aluminium (5 wt%) were prepared. The casts were fabricated using a typical cold chamber high pressure die casting machine with a 3.8 MN locking force. Microstructural analyses were performed by means of a scanning electron microscope (SEM). The impact strength (IS) was determined using a Charpy V hammer with an impact energy equal to 150 J. The microstructure of the experimental alloys consisted of an -Mg solid solution and Al11RE3, Al10Ce2Mn7 and Al2RE intermetallic compounds. The obtained results show the significant influence of the rare earth elements to aluminium ratio on the impact strength of the investigated materials. Lower the RE/Al ratio in the chemical composition of the alloy results in a higher impact strength of the material.
{"title":"Impact Strength of AE-type Alloys High Pressure Die Castings","authors":"","doi":"10.24425/afe.2020.133321","DOIUrl":"https://doi.org/10.24425/afe.2020.133321","url":null,"abstract":"The results of the Charpy impact test of AE-type magnesium alloys produced by the high pressure die casting method are presented. Three alloys with different weight fractions of rare earth elements (RE; e.g. 1, 3 and 5 wt%) and the same mass fraction of aluminium (5 wt%) were prepared. The casts were fabricated using a typical cold chamber high pressure die casting machine with a 3.8 MN locking force. Microstructural analyses were performed by means of a scanning electron microscope (SEM). The impact strength (IS) was determined using a Charpy V hammer with an impact energy equal to 150 J. The microstructure of the experimental alloys consisted of an -Mg solid solution and Al11RE3, Al10Ce2Mn7 and Al2RE intermetallic compounds. The obtained results show the significant influence of the rare earth elements to aluminium ratio on the impact strength of the investigated materials. Lower the RE/Al ratio in the chemical composition of the alloy results in a higher impact strength of the material.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Process Parameters on Exudation Thickness in Continuous Unidirectional Solidification Tin Bronze Alloy 工艺参数对连续单向凝固锡青铜合金渗液厚度的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127123
Jihui Luo, Fang He
The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.
{"title":"Effect of Process Parameters on Exudation Thickness in Continuous Unidirectional Solidification Tin Bronze Alloy","authors":"Jihui Luo, Fang He","doi":"10.24425/afe.2019.127123","DOIUrl":"https://doi.org/10.24425/afe.2019.127123","url":null,"abstract":"The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effect of Inoculant Emgesal® Flux 5 on the Microstructure of Magnesium Alloy AZ91 孕育剂Emgesal®Flux 5对AZ91镁合金显微组织的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127109
C. Rapiejko, D. Mikusek, A. Andrzejczak, T. Pacyniak
This work presents the results of the research of the effect of the inoculant Emgesal Flux 5 on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in samples in the range from 0.1% to 0.6%. The thermal processes were examined with the use of Derivative and Thermal Analysis (DTA). During the examination, the DTA samplers were preheated up to 180 °C. A particular attention was paid to finding the optimum amount of inoculant, which would cause fragmentation of the microstructure. The concentration of each element was verified by means of a spark spectrometer. In addition, the microstructures of the samples were examined with the use of an optical microscope, and an image analysis with a statistical analysis using the NIS–Elements program were carried out. Those analyses aimed at examining the differences between the grain diameters of phase α Mg and eutectic α Mg +γ(Mg 17 Al 12 ) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is an introduction to a further research of grain refinement in magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the related changes of the chemical composition, which should improve the mechanical properties.
{"title":"Effect of Inoculant Emgesal® Flux 5 on the Microstructure of Magnesium Alloy AZ91","authors":"C. Rapiejko, D. Mikusek, A. Andrzejczak, T. Pacyniak","doi":"10.24425/afe.2019.127109","DOIUrl":"https://doi.org/10.24425/afe.2019.127109","url":null,"abstract":"This work presents the results of the research of the effect of the inoculant Emgesal Flux 5 on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in samples in the range from 0.1% to 0.6%. The thermal processes were examined with the use of Derivative and Thermal Analysis (DTA). During the examination, the DTA samplers were preheated up to 180 °C. A particular attention was paid to finding the optimum amount of inoculant, which would cause fragmentation of the microstructure. The concentration of each element was verified by means of a spark spectrometer. In addition, the microstructures of the samples were examined with the use of an optical microscope, and an image analysis with a statistical analysis using the NIS–Elements program were carried out. Those analyses aimed at examining the differences between the grain diameters of phase α Mg and eutectic α Mg +γ(Mg 17 Al 12 ) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is an introduction to a further research of grain refinement in magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the related changes of the chemical composition, which should improve the mechanical properties.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Mixing Efficiency and How it Affects the Properties of the New Green Sand Mixtures 混合效率评价及其对新型绿砂混合料性能的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2023.146666
The current trend in the preparation of green sand mixtures emphasizes the acceleration of the mixing process while maintaining the quality of the mixture. This requirement results in the necessity of determining the optimal conditions for mixing the mixture with a given mixer. This work aims to determine the optimal mixing conditions for the newly introduced eddy mixer LM-3e from the company Multiserw-Morek in the sand laboratory at the Department of Metallurgical Technologies, Faculty of Materials and Technology, VŠB - Technical University of Ostrava. The main monitored properties of mixtures will be green compressive strength and moisture of the mixture. The measured properties of the mixture mixed on the eddy mixer will be compared with the properties of the mixture mixed on the existing LM-2e wheel mixer. The result of the experiment confirmed that the eddy mixer is suitable for the preparation of a mixture of the same quality as the wheel mixer but with a significantly reduced mixing time
{"title":"Evaluation of Mixing Efficiency and How it Affects the Properties of the New Green Sand Mixtures","authors":"","doi":"10.24425/afe.2023.146666","DOIUrl":"https://doi.org/10.24425/afe.2023.146666","url":null,"abstract":"The current trend in the preparation of green sand mixtures emphasizes the acceleration of the mixing process while maintaining the quality of the mixture. This requirement results in the necessity of determining the optimal conditions for mixing the mixture with a given mixer. This work aims to determine the optimal mixing conditions for the newly introduced eddy mixer LM-3e from the company Multiserw-Morek in the sand laboratory at the Department of Metallurgical Technologies, Faculty of Materials and Technology, VŠB - Technical University of Ostrava. The main monitored properties of mixtures will be green compressive strength and moisture of the mixture. The measured properties of the mixture mixed on the eddy mixer will be compared with the properties of the mixture mixed on the existing LM-2e wheel mixer. The result of the experiment confirmed that the eddy mixer is suitable for the preparation of a mixture of the same quality as the wheel mixer but with a significantly reduced mixing time","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Alloying Additives and Casting Parameters on the Microstructure and Mechanical Properties of Silicon Bronzes 合金添加剂和铸造参数对硅青铜显微组织和力学性能的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2023.146669
The studied silicon bronze (CuSi3Zn3Mn1) is characterised by good strength and corrosion resistance due to the alloying elements that are present in it (Si, Zn, Mn, Fe). This study analysed the casting process in green sand moulding, gravity die casting, and centrifugal casting with a horizontal axis of rotation. The influences of Ni and Zr alloying additives as well as the casting technology that was used were evaluated on the alloy’s microstructure and mechanical properties. The results of the conducted research are presented in the form of the influence of the technology (GS, GZ, GM) and the content of the introduced alloy additives on the mechanical parameters (UTS, A10, and Proof Stress, BHN). The analysis of the tests that were carried out made it possible to determine which of the studied casting technologies had the best mechanical properties. Microstructure of metal poured into metal mould was finer than that which was cast into moulding compound. Mechanical properties of castings made in moulding compound were lower than those that were cast into metal moulds. Increased nickel content affected the BHN parameter.
{"title":"Effect of Alloying Additives and Casting Parameters on the Microstructure and Mechanical Properties of Silicon Bronzes","authors":"","doi":"10.24425/afe.2023.146669","DOIUrl":"https://doi.org/10.24425/afe.2023.146669","url":null,"abstract":"The studied silicon bronze (CuSi3Zn3Mn1) is characterised by good strength and corrosion resistance due to the alloying elements that are present in it (Si, Zn, Mn, Fe). This study analysed the casting process in green sand moulding, gravity die casting, and centrifugal casting with a horizontal axis of rotation. The influences of Ni and Zr alloying additives as well as the casting technology that was used were evaluated on the alloy’s microstructure and mechanical properties. The results of the conducted research are presented in the form of the influence of the technology (GS, GZ, GM) and the content of the introduced alloy additives on the mechanical parameters (UTS, A10, and Proof Stress, BHN). The analysis of the tests that were carried out made it possible to determine which of the studied casting technologies had the best mechanical properties. Microstructure of metal poured into metal mould was finer than that which was cast into moulding compound. Mechanical properties of castings made in moulding compound were lower than those that were cast into metal moulds. Increased nickel content affected the BHN parameter.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas evolution of GEOPOL (R) W sand mixture and comparison with organic binders GEOPOL (R) W砂混合物的气体演化及与有机粘结剂的比较
IF 0.6 Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/AFE.2019.127115
M. Vykoukal, A. Burian, M. Přerovská, T. Bajer, J. Beňo
The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL W sand mixture is 1.9 cm/g. The measured volume of gas for GEOPOL W is 4.3 cm/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.
研究了热硬化地聚合物粘结剂体系的气相发育,并与有机粘结剂体系进行了比较。GEOPOL W技术是基于水的完全无机粘结剂体系。这一事实使得浇注过程中产生的气体仅以水蒸气为基础。没有危险的排放物,烟雾或令人不快的气味产生。计算得到的GEOPOL W砂混合物产生的水蒸气量为1.9 cm/g。GEOPOL W的实测气体体积为4.3 cm/g。气体释放测试证明无机粘结剂体系GEOPOL W与PUR冷箱amin和Croning相比,产生的气体(水蒸气)体积非常小。气体量比PUR冷箱amin(3.7倍)和Croning(4.2倍)低几倍。实验结果与文献资料一致。计算和测量的气体体积之间的差异是通过在储存和制备砂样过程中脱水后从空气中反向吸湿来证明的。产生的气体/水蒸气体积最小,主要是没有危险的排放,也有以下优点:气泡缺陷产生的风险最小,没有缺陷的好铸件,减少废气处理的成本,模具上没有冷凝物,减少清洁成本。
{"title":"Gas evolution of GEOPOL (R) W sand mixture and comparison with organic binders","authors":"M. Vykoukal, A. Burian, M. Přerovská, T. Bajer, J. Beňo","doi":"10.24425/AFE.2019.127115","DOIUrl":"https://doi.org/10.24425/AFE.2019.127115","url":null,"abstract":"The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL W sand mixture is 1.9 cm/g. The measured volume of gas for GEOPOL W is 4.3 cm/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Evaluation of the Possibility of Applying Thermal Barrier Coatings to AlSi7Mg Alloy Castings 热障涂层应用于AlSi7Mg合金铸件的可能性评价
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2023.146668
This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.
{"title":"Evaluation of the Possibility of Applying Thermal Barrier Coatings to AlSi7Mg Alloy Castings","authors":"","doi":"10.24425/afe.2023.146668","DOIUrl":"https://doi.org/10.24425/afe.2023.146668","url":null,"abstract":"This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and Thermal Properties of Aluminum Foams Manufactured by Investment Casting Method 熔模铸造泡沫铝的力学和热性能
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2022.140214
A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration
{"title":"Mechanical and Thermal Properties of Aluminum Foams Manufactured by Investment Casting Method","authors":"","doi":"10.24425/afe.2022.140214","DOIUrl":"https://doi.org/10.24425/afe.2022.140214","url":null,"abstract":"A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Archives of Foundry Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1