首页 > 最新文献

Annual review of plant biology最新文献

英文 中文
Fighting for Survival at the Stomatal Gate. 在气孔门为生存而战
IF 21.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1146/annurev-arplant-070623-091552
Maeli Melotto, Brianna Fochs, Zachariah Jaramillo, Olivier Rodrigues

Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.

气孔是植物与植物病原体之间的战场。植物能感知病原体,促使气孔关闭,而病原体则能利用植物毒素和诱导剂克服这种免疫反应。在这篇综述中,我们总结了气孔与病原体相互作用方面的新发现。最近的研究表明,在细菌感染过程中,气孔运动继续以关闭-打开-关闭-打开的模式进行,这使我们对气孔免疫有了新的认识。此外,典型模式触发的免疫途径和离子通道活动似乎是植物与病原体相互作用的共同特点,而不是研究得很清楚的拟南芥-假单胞菌病理系统。这些进展有助于实现作物改良的目标。研究完整叶片的新技术和现有全息数据集的进步为了解气孔门的斗争提供了新方法。未来的研究应旨在进一步调查与气孔免疫有关的防御-生长权衡,因为目前所知甚少。
{"title":"Fighting for Survival at the Stomatal Gate.","authors":"Maeli Melotto, Brianna Fochs, Zachariah Jaramillo, Olivier Rodrigues","doi":"10.1146/annurev-arplant-070623-091552","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070623-091552","url":null,"abstract":"<p><p>Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied <i>Arabidopsis</i>-<i>Pseudomonas</i> pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"75 1","pages":"551-577"},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation 保护进化潜力:将景观基因组学与现有方法相结合,为植物保护提供信息
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-04-10 DOI: 10.1146/annurev-arplant-070523-044239
Sally N. Aitken, Rebecca Jordan, Hayley R. Tumas
Biodiversity conservation requires conserving evolutionary potential—the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
保护生物多样性需要保护进化潜力--野生种群的适应能力。了解遗传多样性和进化动态对于为保护决策提供信息、提高环境变化下的适应性和持久性至关重要。我们回顾了新兴的景观基因组学方法如何为植物保护计划提供有关进化动态的见解,包括当地适应性及其环境驱动因素。探索基因组变异与环境之间关系的景观基因组学方法可以补充而不是取代现有的种群基因组学和普通园林方法,以评估适应性表型变异、种群结构、基因流和人口统计。这些方法共同为保护行动提供信息,包括基因拯救、适应不良预测和辅助基因流。当保护工作者积极参与研究和监测时,这些研究将产生最大的实地影响。了解影响野生植物种群遗传多样性的进化动态将为植物保护决策提供信息,从而提高物种在不确定的未来的适应性和持久性。
{"title":"Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation","authors":"Sally N. Aitken, Rebecca Jordan, Hayley R. Tumas","doi":"10.1146/annurev-arplant-070523-044239","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070523-044239","url":null,"abstract":"Biodiversity conservation requires conserving evolutionary potential—the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"2 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An RNA World. RNA世界。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-070622-021021
David C Baulcombe

My research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems-artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge-but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution. On the way, I have learned about approaches to research, finding tractable systems, and taking academic research into the real world. I have always tried to consider the broader significance of our work, and my current projects address the definition of epigenetics, the arms race concept of disease resistance, and Darwin's abominable mystery.

我的研究生涯始于研究植物基因是如何调控的。我尝试了各种实验系统——在爱丁堡的洋蓟组织培养;蒙特利尔大豆根瘤;佐治亚州雅典的大豆下胚轴;和谷物糊粉,但最终我发现了植物病毒。病毒卫星RNA是我的第一个兴趣,但后来我探索了转基因和自然抗病,并被好奇心引导到病毒学以外的主题,包括RNA沉默,表观遗传学,以及最近的基因组进化。在此过程中,我学会了研究方法,找到可处理的系统,并将学术研究带入现实世界。我一直试图考虑我们工作的更广泛的意义,我目前的项目涉及表观遗传学的定义,抗病的军备竞赛概念,以及达尔文令人憎恶的奥秘。
{"title":"An RNA World.","authors":"David C Baulcombe","doi":"10.1146/annurev-arplant-070622-021021","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070622-021021","url":null,"abstract":"<p><p>My research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems-artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge-but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution. On the way, I have learned about approaches to research, finding tractable systems, and taking academic research into the real world. I have always tried to consider the broader significance of our work, and my current projects address the definition of epigenetics, the arms race concept of disease resistance, and Darwin's abominable mystery.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"1-20"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9505870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Replicated Evolution in Plants. 植物的复制进化。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-071221-090809
Maddie E James, Tim Brodribb, Ian J Wright, Loren H Rieseberg, Daniel Ortiz-Barrientos

Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.

相似的特征和功能通常在自然界中进化。在这里,我们探索了整个植物界的复制进化模式,并讨论了负责这种模式的过程。我们从定义复制进化和有助于解释它的理论、遗传和生态概念开始这篇综述。然后,我们将注意力集中在表型和基因型水平上复制进化的经验案例上。我们发现,在生态型水平上的复制是常见的,但重复的生态物种形成的证据却少得惊人。另一方面,在相似的生物群系中,生态策略和生理机制的复制进化似乎普遍存在。最后,我们强调了未来的努力可以帮助我们跨越不同层次的生物组织的复制进化的理解。地球的景观是多样的,但也在不断重复。生物似乎也效仿了。
{"title":"Replicated Evolution in Plants.","authors":"Maddie E James,&nbsp;Tim Brodribb,&nbsp;Ian J Wright,&nbsp;Loren H Rieseberg,&nbsp;Daniel Ortiz-Barrientos","doi":"10.1146/annurev-arplant-071221-090809","DOIUrl":"https://doi.org/10.1146/annurev-arplant-071221-090809","url":null,"abstract":"<p><p>Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"697-725"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9513034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Temperature Sensing in Plants. 植物的温度感应。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-102820-102235
Sandra M Kerbler, Philip A Wigge

Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in Arabidopsis thaliana occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.

温度是影响全球植物分布和行为的关键环境线索。了解植物如何感知温度并将这些信息整合到它们的发育中,对于确定植物如何适应气候变化以及将这些知识应用于气候适应型作物的育种非常重要。真核生物的温度感知机制才刚刚开始被理解,许多具有固有温度依赖性的分子现象,如RNA熔化、光敏色素暗还原和蛋白质相变,被自然界利用来创建热感觉信号网络。本文综述了拟南芥在春化、冷胁迫、热形态发生和热胁迫这四种主要温度感应途径中的研究进展。我们讨论了该领域的突出问题以及这些机制在培育气候适应型作物方面的重要性。
{"title":"Temperature Sensing in Plants.","authors":"Sandra M Kerbler,&nbsp;Philip A Wigge","doi":"10.1146/annurev-arplant-102820-102235","DOIUrl":"https://doi.org/10.1146/annurev-arplant-102820-102235","url":null,"abstract":"<p><p>Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in <i>Arabidopsis thaliana</i> occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"341-366"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9514863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Salt-Tolerant Crops: Time to Deliver. 耐盐作物:交付时间。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-061422-104322
Vanessa Melino, Mark Tester

Despite the numerous advances made in our understanding of the physiology and molecular genetics of salinity tolerance, there have been relatively few applications of these to improve the salt tolerance of crops. The most significant advances have historically utilized intraspecific variation, introgression of traits from close crop wild relatives, or, less frequently, introgression from more distant relatives. Advanced lines often fail due to difficulties in the introgression or tracking of traits or due to yield penalties associated with the alleles in nonsaline environments. However, the greatest limitation is that salinity is not a primary trait for breeders. We must close the gap between research and delivery, especially for farmers who have precious few alternatives. These efforts should include a reassessment of old techniques such as grafting current crops with salt-tolerant hybrid rootstocks. Alternatively, future crops can be produced via domestication of salt-tolerant wild species-an approach that is now feasible in our lifetime.

尽管我们对耐盐生理和分子遗传学的理解取得了许多进展,但这些在提高作物耐盐性方面的应用相对较少。历史上最重要的进展是利用种内变异,来自近缘作物野生亲缘性状的渐渗,或者较少出现的来自远亲的渐渗。高级品系的失败往往是由于性状的渗透或跟踪困难,或由于在非盐环境中与等位基因相关的产量损失。然而,最大的限制是盐度不是育种者的主要特征。我们必须缩小研究和交付之间的差距,特别是对那些别无选择的农民来说。这些努力应包括重新评估旧技术,例如用耐盐杂交砧木嫁接现有作物。或者,未来的作物可以通过驯化耐盐的野生物种来生产——这种方法现在在我们的有生之年是可行的。
{"title":"Salt-Tolerant Crops: Time to Deliver.","authors":"Vanessa Melino,&nbsp;Mark Tester","doi":"10.1146/annurev-arplant-061422-104322","DOIUrl":"https://doi.org/10.1146/annurev-arplant-061422-104322","url":null,"abstract":"<p><p>Despite the numerous advances made in our understanding of the physiology and molecular genetics of salinity tolerance, there have been relatively few applications of these to improve the salt tolerance of crops. The most significant advances have historically utilized intraspecific variation, introgression of traits from close crop wild relatives, or, less frequently, introgression from more distant relatives. Advanced lines often fail due to difficulties in the introgression or tracking of traits or due to yield penalties associated with the alleles in nonsaline environments. However, the greatest limitation is that salinity is not a primary trait for breeders. We must close the gap between research and delivery, especially for farmers who have precious few alternatives. These efforts should include a reassessment of old techniques such as grafting current crops with salt-tolerant hybrid rootstocks. Alternatively, future crops can be produced via domestication of salt-tolerant wild species-an approach that is now feasible in our lifetime.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"671-696"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9514865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Optogenetic Methods in Plant Biology. 植物生物学中的光遗传学方法。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-071122-094840
Kai R Konrad, Shiqiang Gao, Matias D Zurbriggen, Georg Nagel

Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.

光遗传学是一种利用转基因生物中的天然或基因工程光感受器来操纵光的生物活动的技术。光可以打开或关闭,并且调节其强度和持续时间允许以非侵入性和时空分辨的方式对细胞过程进行光遗传学微调。自近20年前引入通道视紫红质-2和基于光敏色素的开关以来,光遗传学工具已经在各种模式生物中获得了巨大的成功,但在植物中却很少应用。长期以来,植物生长对光的依赖和视紫红质发色团视网膜的缺失阻碍了植物光遗传学的建立,直到最近的进展克服了这些困难。本文综述了近年来通过绿光门控离子通道控制植物生长和细胞运动的研究成果,并介绍了利用单个或组合光开关在植物光控基因表达方面的成功应用。此外,我们还强调了未来植物光遗传研究的技术要求和选择。
{"title":"Optogenetic Methods in Plant Biology.","authors":"Kai R Konrad,&nbsp;Shiqiang Gao,&nbsp;Matias D Zurbriggen,&nbsp;Georg Nagel","doi":"10.1146/annurev-arplant-071122-094840","DOIUrl":"https://doi.org/10.1146/annurev-arplant-071122-094840","url":null,"abstract":"<p><p>Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"313-339"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Diversity and Functions of Plant RNA Modifications: What We Know and Where We Go from Here. 植物RNA修饰的多样性和功能:我们所知道的和我们从这里走到哪里。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-071122-085813
Bishwas Sharma, Wil Prall, Garima Bhatia, Brian D Gregory

Since the discovery of the first ribonucleic acid (RNA) modifications in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), scientists have been on a quest to decipher the identities and functions of RNA modifications in biological systems. The last decade has seen monumental growth in the number of studies that have characterized and assessed the functionalities of RNA modifications in the field of plant biology. Owing to these studies, we now categorize RNA modifications based on their chemical nature and the RNA on which they are found, as well as the array of proteins that are involved in the processes that add, read, and remove them from an RNA molecule. Beyond their identity, another key piece of the puzzle is the functional significance of the various types of RNA modifications. Here, we shed light on recent studies that help establish our current understanding of the diversity of RNA modifications found in plant transcriptomes and the functions they play at both the molecular (e.g., RNA stability, translation, and transport) and organismal (e.g., stress response and development) levels. Finally, we consider the key research questions related to plant gene expression and biology in general and highlight developments in various technologies that are driving our insights forward in this research area.

自从在转运RNA (tRNAs)和核糖体RNA (RNAs)中首次发现核糖核酸(RNA)修饰以来,科学家们一直在寻求破译生物系统中RNA修饰的身份和功能。在过去的十年中,在植物生物学领域中,对RNA修饰功能进行表征和评估的研究数量有了巨大的增长。由于这些研究,我们现在根据它们的化学性质和发现它们的RNA,以及参与从RNA分子中添加,读取和去除它们的过程的一系列蛋白质,对RNA修饰进行分类。除了它们的身份之外,这个谜题的另一个关键部分是各种类型的RNA修饰的功能意义。在这里,我们阐明了最近的研究,这些研究有助于建立我们目前对植物转录组中发现的RNA修饰多样性的理解,以及它们在分子(例如RNA稳定性,翻译和运输)和生物体(例如应激反应和发育)水平上发挥的功能。最后,我们考虑了与植物基因表达和生物学相关的关键研究问题,并强调了各种技术的发展,这些技术正在推动我们在这一研究领域的见解。
{"title":"The Diversity and Functions of Plant RNA Modifications: What We Know and Where We Go from Here.","authors":"Bishwas Sharma,&nbsp;Wil Prall,&nbsp;Garima Bhatia,&nbsp;Brian D Gregory","doi":"10.1146/annurev-arplant-071122-085813","DOIUrl":"https://doi.org/10.1146/annurev-arplant-071122-085813","url":null,"abstract":"<p><p>Since the discovery of the first ribonucleic acid (RNA) modifications in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), scientists have been on a quest to decipher the identities and functions of RNA modifications in biological systems. The last decade has seen monumental growth in the number of studies that have characterized and assessed the functionalities of RNA modifications in the field of plant biology. Owing to these studies, we now categorize RNA modifications based on their chemical nature and the RNA on which they are found, as well as the array of proteins that are involved in the processes that add, read, and remove them from an RNA molecule. Beyond their identity, another key piece of the puzzle is the functional significance of the various types of RNA modifications. Here, we shed light on recent studies that help establish our current understanding of the diversity of RNA modifications found in plant transcriptomes and the functions they play at both the molecular (e.g., RNA stability, translation, and transport) and organismal (e.g., stress response and development) levels. Finally, we consider the key research questions related to plant gene expression and biology in general and highlight developments in various technologies that are driving our insights forward in this research area.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"53-85"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Decoding the Auxin Matrix: Auxin Biology Through the Eye of the Computer. 解码生长素矩阵:通过计算机之眼的生长素生物学。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-102720-033523
Raquel Martin-Arevalillo, Teva Vernoux

The plant hormone auxin is certainly the most studied developmental regulator in plants. The many functions of auxin during development, from the embryo to the root and shoot construction, are mediated by an ever-growing collection of molecular regulators, with an overwhelming degree of both ubiquity and complexity that we are still far from fully understanding and that biological experiments alone cannot grasp. In this review, we discuss how bioinformatics and computational modeling approaches have helped in recent years to explore this complexity and to push the frontiers of our understanding of auxin biology. We focus on how analysis of massive amounts of genomic data and construction of computational models to simulate auxin-regulated processes at different scales have complemented wet experiments to increase the understanding of how auxin acts in the nucleus to regulate transcription and how auxin movement between cells regulates development at the tissular scale.

植物激素生长素无疑是研究最多的植物发育调节剂。生长素在发育过程中的许多功能,从胚胎到根和芽的构建,都是由不断增长的分子调节因子调节的,其普遍性和复杂性是我们远远不能完全理解的,单靠生物学实验也无法掌握。在这篇综述中,我们讨论了近年来生物信息学和计算建模方法如何帮助探索这种复杂性,并推动我们对生长素生物学理解的前沿。我们专注于如何分析大量的基因组数据和构建计算模型来模拟生长素在不同尺度上的调节过程,以补充湿实验,以增加对生长素如何在细胞核中调节转录以及细胞间生长素如何在组织尺度上调节发育的理解。
{"title":"Decoding the Auxin Matrix: Auxin Biology Through the Eye of the Computer.","authors":"Raquel Martin-Arevalillo,&nbsp;Teva Vernoux","doi":"10.1146/annurev-arplant-102720-033523","DOIUrl":"https://doi.org/10.1146/annurev-arplant-102720-033523","url":null,"abstract":"<p><p>The plant hormone auxin is certainly the most studied developmental regulator in plants. The many functions of auxin during development, from the embryo to the root and shoot construction, are mediated by an ever-growing collection of molecular regulators, with an overwhelming degree of both ubiquity and complexity that we are still far from fully understanding and that biological experiments alone cannot grasp. In this review, we discuss how bioinformatics and computational modeling approaches have helped in recent years to explore this complexity and to push the frontiers of our understanding of auxin biology. We focus on how analysis of massive amounts of genomic data and construction of computational models to simulate auxin-regulated processes at different scales have complemented wet experiments to increase the understanding of how auxin acts in the nucleus to regulate transcription and how auxin movement between cells regulates development at the tissular scale.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"387-413"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9505879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Proximity Labeling in Plants. 植物中的邻近标签。
IF 23.9 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-05-22 Epub Date: 2023-02-28 DOI: 10.1146/annurev-arplant-070522-052132
Shou-Ling Xu, Ruben Shrestha, Sumudu S Karunadasa, Pei-Qiao Xie

Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.

蛋白质是细胞中的主力;它们形成稳定的、更经常是动态的、短暂的蛋白质-蛋白质相互作用、组装和网络,并与DNA和RNA密切相互作用。这些网络相互作用是基本生物过程的基础,在细胞功能中发挥着重要作用。最近,与质谱法(PL-MS)相结合的邻近依赖性生物素标记方法已成为在分子水平上剖析复杂细胞网络的一种强大技术。在PL-MS中,通过将遗传编码的邻近标记(PL)酶融合到蛋白质或定位信号肽,该酶被靶向感兴趣的蛋白质复合物或细胞器,从而允许在缩放半径内标记邻近蛋白质。然后,这些生物素化的蛋白质可以被链亲和素珠捕获,并通过质谱法进行鉴定和定量。最近工程化的PL酶,如TurboID,具有显著提高的酶活性,能够以显著提高的信噪比进行时空映射。PL-MS通过克服传统技术带来的几个障碍,如生化分馏和亲和纯化质谱,彻底改变了我们进行蛋白质组学的方式。在这篇综述中,我们重点关注已经或可能被植物领域采用的基于生物素连接酶的PL-MS应用。我们讨论了实验设计,并回顾了工程化生物素连接酶的不同选择、富集和定量策略。最后,我们回顾了验证并讨论了未来的展望。
{"title":"Proximity Labeling in Plants.","authors":"Shou-Ling Xu,&nbsp;Ruben Shrestha,&nbsp;Sumudu S Karunadasa,&nbsp;Pei-Qiao Xie","doi":"10.1146/annurev-arplant-070522-052132","DOIUrl":"10.1146/annurev-arplant-070522-052132","url":null,"abstract":"<p><p>Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"74 ","pages":"285-312"},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9514866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Annual review of plant biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1