Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100283
Yuqiong Wang, Ruoyu Zhu, Liming Wang, Yi Xu, Dong Guo, Song Gao
There are various types of obstacles in an emergency, and the traffic environment is complicated. It is critical to detect obstacles accurately and quickly in order to improve traffic safety. The obstacle detection algorithm based on deep learning cannot detect all types of obstacles because it requires pre-training. The VIDAR (Vision-IMU-based Detection and Range method) can detect any three-dimensional obstacles, but at a slow rate. In this paper, an improved VIDAR and machine learning-based obstacle detection method (hereinafter referred to as the IVM) is proposed. In the proposed method, morphological closing operation and normalized cross-correlation are used to improve VIDAR. Then, the improved VIDAR is used to quickly match and remove the detected unknown types of obstacles in the image, and the machine learning algorithm is used to detect specific types of obstacles to increase the speed of detection with the average detection time of 0.316s. Finally, the VIDAR is used to detect regions belonging to unknown types of obstacles in the remaining regions, improving detection performance with the accuracy of 92.7%. The flow of the proposed method is illustrated by the indoor simulation test. Moreover, the results of outdoor real-world vehicle tests demonstrate that the method proposed in this paper can quickly detect obstacles in real-world environments and improve detection accuracy.
{"title":"Improved VIDAR and machine learning-based road obstacle detection method","authors":"Yuqiong Wang, Ruoyu Zhu, Liming Wang, Yi Xu, Dong Guo, Song Gao","doi":"10.1016/j.array.2023.100283","DOIUrl":"10.1016/j.array.2023.100283","url":null,"abstract":"<div><p>There are various types of obstacles in an emergency, and the traffic environment is complicated. It is critical to detect obstacles accurately and quickly in order to improve traffic safety. The obstacle detection algorithm based on deep learning cannot detect all types of obstacles because it requires pre-training. The VIDAR (Vision-IMU-based Detection and Range method) can detect any three-dimensional obstacles, but at a slow rate. In this paper, an improved VIDAR and machine learning-based obstacle detection method (hereinafter referred to as the IVM) is proposed. In the proposed method, morphological closing operation and normalized cross-correlation are used to improve VIDAR. Then, the improved VIDAR is used to quickly match and remove the detected unknown types of obstacles in the image, and the machine learning algorithm is used to detect specific types of obstacles to increase the speed of detection with the average detection time of 0.316s. Finally, the VIDAR is used to detect regions belonging to unknown types of obstacles in the remaining regions, improving detection performance with the accuracy of 92.7%. The flow of the proposed method is illustrated by the indoor simulation test. Moreover, the results of outdoor real-world vehicle tests demonstrate that the method proposed in this paper can quickly detect obstacles in real-world environments and improve detection accuracy.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43302968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100291
Rokeya Siddiqua, Nusrat Islam, Jarba Farnaz Bolaka, Riasat Khan, Sifat Momen
Depression is a common psychiatric disorder that is becoming more prevalent in developing countries like Bangladesh. Depression has been found to be prevalent among youths and influences a person’s lifestyle and thought process. Unfortunately, due to the public and social stigma attached to this disease, the mental health issue of individuals are often overlooked. Early diagnosis of patients who may have depression often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict depression levels and was applied to university students in Bangladesh. In this work, a questionnaire containing 106 questions has been constructed. The questions in the questionnaire are primarily of two kinds – (i) personal, and (ii) clinical. The questionnaire was distributed amongst Bangladeshi students and a total of 684 responses (aged between 19 and 35) were obtained. After appropriate consents from the participants, they were allowed to take the survey. After carefully scrutinizing the responses, 520 samples were taken into final consideration. A hybrid depression assessment scale was developed using a voting algorithm that employs eight well-known existing scales to assess the depression level of an individual. This hybrid scale was then applied to the collected samples that comprise personal information and questions from various familiar depression measuring scales. In addition, ten machine learning and two deep learning models were applied to predict the three classes of depression (normal, moderate and extreme). Five hyperparameter optimizers and nine feature selection methods were employed to improve the predictability. Accuracies of 98.08%, 94.23%, and 92.31% were obtained using Random Forest, Gradient Boosting, and CNN models, respectively. Random Forest accomplished the lowest false negatives and highest F Measure with its optimized hyperparameters. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.
{"title":"AIDA: Artificial intelligence based depression assessment applied to Bangladeshi students","authors":"Rokeya Siddiqua, Nusrat Islam, Jarba Farnaz Bolaka, Riasat Khan, Sifat Momen","doi":"10.1016/j.array.2023.100291","DOIUrl":"10.1016/j.array.2023.100291","url":null,"abstract":"<div><p>Depression is a common psychiatric disorder that is becoming more prevalent in developing countries like Bangladesh. Depression has been found to be prevalent among youths and influences a person’s lifestyle and thought process. Unfortunately, due to the public and social stigma attached to this disease, the mental health issue of individuals are often overlooked. Early diagnosis of patients who may have depression often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict depression levels and was applied to university students in Bangladesh. In this work, a questionnaire containing 106 questions has been constructed. The questions in the questionnaire are primarily of two kinds – (i) personal, and (ii) clinical. The questionnaire was distributed amongst Bangladeshi students and a total of 684 responses (aged between 19 and 35) were obtained. After appropriate consents from the participants, they were allowed to take the survey. After carefully scrutinizing the responses, 520 samples were taken into final consideration. A hybrid depression assessment scale was developed using a voting algorithm that employs eight well-known existing scales to assess the depression level of an individual. This hybrid scale was then applied to the collected samples that comprise personal information and questions from various familiar depression measuring scales. In addition, ten machine learning and two deep learning models were applied to predict the three classes of depression (normal, moderate and extreme). Five hyperparameter optimizers and nine feature selection methods were employed to improve the predictability. Accuracies of 98.08%, 94.23%, and 92.31% were obtained using Random Forest, Gradient Boosting, and CNN models, respectively. Random Forest accomplished the lowest false negatives and highest F Measure with its optimized hyperparameters. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44005236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100292
Wahidur Rahman , Mohammad Gazi Golam Faruque , Kaniz Roksana , A H M Saifullah Sadi , Mohammad Motiur Rahman , Mir Mohammad Azad
Breast cancer, lung cancer, skin cancer, and blood malignancies such as leukemia and lymphoma are just a few instances of cancer, which is a collection of cells that proliferate uncontrollably within the body. Acute lymphoblastic leukemia is of one the significant form of malignancy. The hematologists frequently makes an oversight while determining a blood cancer diagnosis, which requires an excessive amount of time. Thus, this research reflects on a novel method for the grouping of the leukemia with the aid of the modern technologies like Machine Learning and Deep Learning. The proposed research pipeline is occupied into some interconnected parts like dataset building, feature extraction with pre-trained Convolutional Neural Network (CNN) architectures from each individual images of blood cells, and classification with the conventional classifiers. The dataset for this study is divided into two identical categories, Benign and Malignant, and then reshaped into four significant classes, each with three subtypes of malignant, namely, Benign, Early Pre-B, Pre-B, and Pro-B. The research first extracts the features from the individual images with CNN models and then transfers the extracted features to the features selections such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVC Feature Selectors along with two nature inspired algorithms like Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO). After that, research has applied the seven Machine Learning classifiers to accomplish the multi-class malignant classification. To assess the efficacy of the proposed architecture a set of experimental data have been enumerated and interpreted accordingly. The study discovered a maximum accuracy of 98.43% when solely using pre-trained CNN and classifiers. Nevertheless, after incorporating PSO and CSO, the proposed model achieved the highest accuracy of 99.84% by integrating the ResNet50 CNN architecture, SVC feature selector, and LR classifiers. Although the model has a higher accuracy rate, it does have some drawbacks. However, the proposed model may also be helpful for real-world blood cancer classification.
乳腺癌、肺癌、皮肤癌和血液恶性肿瘤如白血病和淋巴瘤只是癌症的几个例子,癌症是一种在体内不受控制地增殖的细胞的集合。急性淋巴细胞白血病是恶性肿瘤的重要形式之一。血液学家在诊断血癌时经常会出现疏忽,这需要大量的时间。因此,本研究反思了一种借助机器学习和深度学习等现代技术对白血病进行分组的新方法。所提出的研究管道分为几个相互关联的部分,如数据集构建,使用预训练的卷积神经网络(CNN)架构从每个单独的血细胞图像中提取特征,以及使用常规分类器进行分类。本研究的数据集被分为两个相同的类别,Benign和Malignant,然后重塑为四个重要的类别,每个类别有三个恶性亚型,即Benign, Early Pre-B, Pre-B和Pro-B。该研究首先利用CNN模型对单个图像进行特征提取,然后结合粒子群优化(PSO)和Cat群优化(CSO)两种自然启发算法,将提取的特征转移到主成分分析(PCA)、线性判别分析(LDA)和SVC特征选择器等特征选择中。之后,研究应用了7种机器学习分类器完成了多类恶性分类。为了评估所提出的体系结构的有效性,我们列举了一组实验数据并对其进行了相应的解释。研究发现,单独使用预训练的CNN和分类器时,准确率最高可达98.43%。然而,在结合PSO和CSO之后,通过集成ResNet50 CNN架构、SVC特征选择器和LR分类器,所提出的模型达到了99.84%的最高准确率。尽管该模型具有较高的准确率,但它也存在一些缺点。然而,所提出的模型也可能有助于现实世界的血癌分类。
{"title":"Multiclass blood cancer classification using deep CNN with optimized features","authors":"Wahidur Rahman , Mohammad Gazi Golam Faruque , Kaniz Roksana , A H M Saifullah Sadi , Mohammad Motiur Rahman , Mir Mohammad Azad","doi":"10.1016/j.array.2023.100292","DOIUrl":"10.1016/j.array.2023.100292","url":null,"abstract":"<div><p>Breast cancer, lung cancer, skin cancer, and blood malignancies such as leukemia and lymphoma are just a few instances of cancer, which is a collection of cells that proliferate uncontrollably within the body. Acute lymphoblastic leukemia is of one the significant form of malignancy. The hematologists frequently makes an oversight while determining a blood cancer diagnosis, which requires an excessive amount of time. Thus, this research reflects on a novel method for the grouping of the leukemia with the aid of the modern technologies like Machine Learning and Deep Learning. The proposed research pipeline is occupied into some interconnected parts like dataset building, feature extraction with pre-trained Convolutional Neural Network (CNN) architectures from each individual images of blood cells, and classification with the conventional classifiers. The dataset for this study is divided into two identical categories, Benign and Malignant, and then reshaped into four significant classes, each with three subtypes of malignant, namely, Benign, Early Pre-B, Pre-B, and Pro-B. The research first extracts the features from the individual images with CNN models and then transfers the extracted features to the features selections such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVC Feature Selectors along with two nature inspired algorithms like Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO). After that, research has applied the seven Machine Learning classifiers to accomplish the multi-class malignant classification. To assess the efficacy of the proposed architecture a set of experimental data have been enumerated and interpreted accordingly. The study discovered a maximum accuracy of 98.43% when solely using pre-trained CNN and classifiers. Nevertheless, after incorporating PSO and CSO, the proposed model achieved the highest accuracy of 99.84% by integrating the ResNet50 CNN architecture, SVC feature selector, and LR classifiers. Although the model has a higher accuracy rate, it does have some drawbacks. However, the proposed model may also be helpful for real-world blood cancer classification.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46573406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100279
Muhammad Irshad , Ngai-Fong Law , K.H. Loo , Sami Haider
With the proliferation of smartphones, digital data collection has become trivial. The ability to analyze images has increased, but source authentication has stagnated. Editing and tampering of images has become more common with advancements in signal processing technology. Recent developments have introduced the use of seam carving (insertion and deletion) techniques to disguise the identity of the camera, specifically in the child pornography market. In this article, we focus on the available features in the image based on PRNU (photo response nonuniformity). The forced-seam sculpting technique is a well-known method to create occlusion for camera attribution by injecting seams into each 50 × 50 pixel block. To counter this, we perform camera identification using a 1D CNN integrated with feature extractions on 20 × 20 pixel blocks. We achieve state-of-the-art performance for our proposed IMGCAT (image categorization) in three-class classification over the baselines (original, seam removed, seam inserted). Based on our experimental findings, our model is robust when dealing with blind facts related to the questionable camera.
{"title":"IMGCAT: An approach to dismantle the anonymity of a source camera using correlative features and an integrated 1D convolutional neural network","authors":"Muhammad Irshad , Ngai-Fong Law , K.H. Loo , Sami Haider","doi":"10.1016/j.array.2023.100279","DOIUrl":"10.1016/j.array.2023.100279","url":null,"abstract":"<div><p>With the proliferation of smartphones, digital data collection has become trivial. The ability to analyze images has increased, but source authentication has stagnated. Editing and tampering of images has become more common with advancements in signal processing technology. Recent developments have introduced the use of seam carving (insertion and deletion) techniques to disguise the identity of the camera, specifically in the child pornography market. In this article, we focus on the available features in the image based on PRNU (photo response nonuniformity). The forced-seam sculpting technique is a well-known method to create occlusion for camera attribution by injecting seams into each 50 × 50 pixel block. To counter this, we perform camera identification using a 1D CNN integrated with feature extractions on 20 × 20 pixel blocks. We achieve state-of-the-art performance for our proposed IMG<sub>CAT</sub> (image categorization) in three-class classification over the baselines (original, seam removed, seam inserted). Based on our experimental findings, our model is robust when dealing with blind facts related to the questionable camera.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48262634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100285
Md. Arifuzzaman Mondal , Nurzaman Ahmed , Md. Iftekhar Hussain
A large number of sensor and actuator devices are being deployed for sensing and automation in a smart environment. While enabling communication for a large number of stations with RAW in IEEE 802.11ah, the state-of-the-art solutions for channel access are deficient in dealing with both periodic uplink and event-driven downlink actuation at the same time, as per the application’s criteria. In this paper, we propose IoT-MAC, a downlink traffic-aware Medium Access Control (MAC) protocol for automation in smart spaces. The proposed scheme uses new RAW frames to schedule downlink actuation traffic, considering the periodicity and freshness of uplink traffic. IoT-MAC identifies the periodicity of uplink traffic and schedules a frame without further contention. It then prioritizes critical downlink traffic without losing fresh uplink data. The performance analysis of the proposed scheme shows significant improvement in terms of throughput, delay, power consumption and packet loss for running different IoT applications.
{"title":"IoT-MAC: A Channel Access Mechanism for IoT Smart Environment","authors":"Md. Arifuzzaman Mondal , Nurzaman Ahmed , Md. Iftekhar Hussain","doi":"10.1016/j.array.2023.100285","DOIUrl":"10.1016/j.array.2023.100285","url":null,"abstract":"<div><p>A large number of sensor and actuator devices are being deployed for sensing and automation in a smart environment. While enabling communication for a large number of stations with RAW in IEEE 802.11ah, the state-of-the-art solutions for channel access are deficient in dealing with both periodic uplink and event-driven downlink actuation at the same time, as per the application’s criteria. In this paper, we propose <em>IoT-MAC</em>, a downlink traffic-aware Medium Access Control (MAC) protocol for automation in smart spaces. The proposed scheme uses new RAW frames to schedule downlink actuation traffic, considering the periodicity and freshness of uplink traffic. IoT-MAC identifies the periodicity of uplink traffic and schedules a frame without further contention. It then prioritizes critical downlink traffic without losing fresh uplink data. The performance analysis of the proposed scheme shows significant improvement in terms of throughput, delay, power consumption and packet loss for running different IoT applications.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48797819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100287
Shashank Reddy Vadyala , Sai Nethra Betgeri
Recently, a novel type of Neural Network (NNs): the Physics-Informed Neural Networks (PINNs), was discovered to have many applications in computational physics. By integrating knowledge of physical laws and processes in Partial Differential Equations (PDEs), fast convergence and effective solutions are obtained. Since training modern Machine Learning (ML) systems is a computationally intensive endeavour, using Quantum Computing (QC) in the ML pipeline attracts increasing interest. Indeed, since several Quantum Machine Learning (QML) algorithms have already been implemented on present-day noisy intermediate-scale quantum devices, experts expect that ML on reliable, large-scale quantum computers will soon become a reality. However, after potential benefits from quantum speedup, QML may also entail reliability, trustworthiness, safety, and security risks. To solve the challenges of QML, we combine classical information processing, quantum manipulation, and processing with PINNs to accomplish a hybrid QML model named quantum based PINNs.
{"title":"General implementation of quantum physics-informed neural networks","authors":"Shashank Reddy Vadyala , Sai Nethra Betgeri","doi":"10.1016/j.array.2023.100287","DOIUrl":"10.1016/j.array.2023.100287","url":null,"abstract":"<div><p>Recently, a novel type of Neural Network (NNs): the Physics-Informed Neural Networks (PINNs), was discovered to have many applications in computational physics. By integrating knowledge of physical laws and processes in Partial Differential Equations (PDEs), fast convergence and effective solutions are obtained. Since training modern Machine Learning (ML) systems is a computationally intensive endeavour, using Quantum Computing (QC) in the ML pipeline attracts increasing interest. Indeed, since several Quantum Machine Learning (QML) algorithms have already been implemented on present-day noisy intermediate-scale quantum devices, experts expect that ML on reliable, large-scale quantum computers will soon become a reality. However, after potential benefits from quantum speedup, QML may also entail reliability, trustworthiness, safety, and security risks. To solve the challenges of QML, we combine classical information processing, quantum manipulation, and processing with PINNs to accomplish a hybrid QML model named quantum based PINNs.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41613601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100286
Pedro Bocca, Adrian Orellana, Carlos Soria, Ricardo Carelli
In the present work the capability of convolutional neural networks to extract samples of leaves in images of tree’s canopy and detect the presence of different diseases and pests that manifest in deformation, discoloration or direct presence in the leaves, is studied. The sample obtained along with its location and sampling date, allows a mapping of the diseases in the field. This mapping capability will allow better decisions to be made when fighting these canopy diseases. An example of those are fungus and Aceria oleae in olive leaves. The study begins with the analysis of a data set generated in the laboratory and divided into healthy and faulty parts. The images were captured with a RGB and a multi-spectral with the blue, green, red, near infrared and red border spectra. They were taken in an image laboratory with a white background and led lighting. The objective was to carry out tests to determine the impact of each spectral channel and the possibility of using different types of cameras for the detection of diseases, as well as important factors to consider for its application in the field. Then, Mask rcnn R 50 FPN 3 was used to obtain segmented leaves and Fast-r cnn inception v2 to detect leaves. Then the detected or segmented leaves were classified with the Inception V3 network to determine which were healthy and which were diseased. With, the combination of these tools, it is possible to determine the disease level of an olive tree in the field.
{"title":"On field disease detection in olive tree with vision systems","authors":"Pedro Bocca, Adrian Orellana, Carlos Soria, Ricardo Carelli","doi":"10.1016/j.array.2023.100286","DOIUrl":"https://doi.org/10.1016/j.array.2023.100286","url":null,"abstract":"<div><p>In the present work the capability of convolutional neural networks to extract samples of leaves in images of tree’s canopy and detect the presence of different diseases and pests that manifest in deformation, discoloration or direct presence in the leaves, is studied. The sample obtained along with its location and sampling date, allows a mapping of the diseases in the field. This mapping capability will allow better decisions to be made when fighting these canopy diseases. An example of those are fungus and Aceria oleae in olive leaves. The study begins with the analysis of a data set generated in the laboratory and divided into healthy and faulty parts. The images were captured with a RGB and a multi-spectral with the blue, green, red, near infrared and red border spectra. They were taken in an image laboratory with a white background and led lighting. The objective was to carry out tests to determine the impact of each spectral channel and the possibility of using different types of cameras for the detection of diseases, as well as important factors to consider for its application in the field. Then, Mask rcnn R 50 FPN 3 was used to obtain segmented leaves and Fast-r cnn inception v2 to detect leaves. Then the detected or segmented leaves were classified with the Inception V3 network to determine which were healthy and which were diseased. With, the combination of these tools, it is possible to determine the disease level of an olive tree in the field.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"E-HFWN: Design and performance test of a communication and sensing integrated network for enhanced 5G mmWave","authors":"C. Zhang, Zhangchao Ma, Jianquan Wang","doi":"10.2139/ssrn.4251103","DOIUrl":"https://doi.org/10.2139/ssrn.4251103","url":null,"abstract":"","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42762182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100289
Chaoyi Zhang , Zhangchao Ma , Xiangna Han , Jianquan Wang
Communication and sensing integrated networks (CSINs) refer to the ability of physical digital space perception and ubiquitous intelligent communication at the same time. These networks realize the perception and cooperative communication of multidimensional resources through the cooperative work of communication and sensing resources and have the ability of intelligent interaction and processing of new information flow. First, this study proposes the technical architecture of an enhanced CSIN (E-HFWN), studies its key technologies and performance indicators, and explains the air interface technology, including frame structure design, carrier aggregation, channel detection, physical skyline mapping, beamforming and management, resource allocation and scheduling. In the resource allocation scheme, an actor-critic reinforcement learning (RL) framework is used to divide the wireless resources. The goal is to maximize the amount of mutual information (MI) and minimize the end-to-end delay of the sensing terminal. Then, the performance of the E-HFWN is tested, including numerical simulation of wireless resource management, system peak rate, capacity, end-to-end delay and communication perception waveform sidelobe ratio. Finally, from the results of the E-HFWN index test, the E-HFWN is further enhanced on the basis of 5G mmWave. The enhanced sensing function can provide a priori information for the optimal and rapid scheduling of distributed computing power and provide richer data sources for artificial intelligence (AI) services and applications to enhance the robustness of the training model. The E-HFWN can contribute to the development of technologies related to 6G synaesthesia computing integrated networks, promote the consensus between academia and industry.
{"title":"E-HFWN: Design and performance test of a communication and sensing integrated network for enhanced 5G mmWave","authors":"Chaoyi Zhang , Zhangchao Ma , Xiangna Han , Jianquan Wang","doi":"10.1016/j.array.2023.100289","DOIUrl":"https://doi.org/10.1016/j.array.2023.100289","url":null,"abstract":"<div><p>Communication and sensing integrated networks (CSINs) refer to the ability of physical digital space perception and ubiquitous intelligent communication at the same time. These networks realize the perception and cooperative communication of multidimensional resources through the cooperative work of communication and sensing resources and have the ability of intelligent interaction and processing of new information flow. First, this study proposes the technical architecture of an enhanced CSIN (E-HFWN), studies its key technologies and performance indicators, and explains the air interface technology, including frame structure design, carrier aggregation, channel detection, physical skyline mapping, beamforming and management, resource allocation and scheduling. In the resource allocation scheme, an actor-critic reinforcement learning (RL) framework is used to divide the wireless resources. The goal is to maximize the amount of mutual information (MI) and minimize the end-to-end delay of the sensing terminal. Then, the performance of the E-HFWN is tested, including numerical simulation of wireless resource management, system peak rate, capacity, end-to-end delay and communication perception waveform sidelobe ratio. Finally, from the results of the E-HFWN index test, the E-HFWN is further enhanced on the basis of 5G mmWave. The enhanced sensing function can provide a priori information for the optimal and rapid scheduling of distributed computing power and provide richer data sources for artificial intelligence (AI) services and applications to enhance the robustness of the training model. The E-HFWN can contribute to the development of technologies related to 6G synaesthesia computing integrated networks, promote the consensus between academia and industry.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49753287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.array.2023.100310
A. Imoussaten
{"title":"The study of the hyper-parameter modelling the decision rule of the cautious classifiers based on the Fβ","authors":"A. Imoussaten","doi":"10.1016/j.array.2023.100310","DOIUrl":"https://doi.org/10.1016/j.array.2023.100310","url":null,"abstract":"","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43318408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}