首页 > 最新文献

Array最新文献

英文 中文
SSFuzzyART: A Semi-Supervised Fuzzy ART through seeding initialization and a clustered data generation algorithm to deeply study clustering solutions SSFuzyART:一种通过种子初始化的半监督模糊ART和聚类数据生成算法来深入研究聚类解决方案
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-09-01 DOI: 10.1016/j.array.2023.100319
Siwar Jendoubi, Aurélien Baelde, Thong Tran

Semi-supervised clustering is a machine learning technique that was introduced to boost clustering performance when labeled data is available. Indeed, some labeled data are usually available in real use cases, and can be used to initialize the clustering process to guide it and to make it more efficient. Fuzzy ART is a clustering technique that is proved to be efficient in several real cases, but as an unsupervised algorithm, it cannot use available labeled data. This paper introduces a semi-supervised variant of the FuzzyART clustering algorithm (SSFuzzyART). The proposed solution uses the available labeled data to initialize clusters centers. In another hand, to deeply evaluate the characteristics of the proposed algorithm, a clustered binary data generation algorithm with controlled partitioning is also introduced in this paper. Indeed, the controlled generated clusters allows studying the characteristics of the proposed SSFuzzyART. Furthermore, a set of experiments is carried out on some available benchmarks. SSFuzzyART demonstrated better clustering prediction results than its classic counterpart.

半监督聚类是一种机器学习技术,用于在标记数据可用时提高聚类性能。事实上,一些标记的数据通常在实际用例中是可用的,并且可以用于初始化集群过程,以指导它并使它更高效。模糊ART是一种聚类技术,在一些实际情况下被证明是有效的,但作为一种无监督算法,它不能使用可用的标记数据。本文介绍了FuzzyART聚类算法的一个半监督变体(SSFuzzyART)。所提出的解决方案使用可用的标记数据来初始化集群中心。另一方面,为了深入评估该算法的特点,本文还介绍了一种具有控制分区的聚类二进制数据生成算法。事实上,受控生成的簇允许研究所提出的SSFuzyART的特性。此外,还在一些可用的基准上进行了一系列实验。SSFuzyART的聚类预测结果优于传统的聚类预测方法。
{"title":"SSFuzzyART: A Semi-Supervised Fuzzy ART through seeding initialization and a clustered data generation algorithm to deeply study clustering solutions","authors":"Siwar Jendoubi,&nbsp;Aurélien Baelde,&nbsp;Thong Tran","doi":"10.1016/j.array.2023.100319","DOIUrl":"https://doi.org/10.1016/j.array.2023.100319","url":null,"abstract":"<div><p>Semi-supervised clustering is a machine learning technique that was introduced to boost clustering performance when labeled data is available. Indeed, some labeled data are usually available in real use cases, and can be used to initialize the clustering process to guide it and to make it more efficient. Fuzzy ART is a clustering technique that is proved to be efficient in several real cases, but as an unsupervised algorithm, it cannot use available labeled data. This paper introduces a semi-supervised variant of the FuzzyART clustering algorithm (SSFuzzyART). The proposed solution uses the available labeled data to initialize clusters centers. In another hand, to deeply evaluate the characteristics of the proposed algorithm, a clustered binary data generation algorithm with controlled partitioning is also introduced in this paper. Indeed, the controlled generated clusters allows studying the characteristics of the proposed SSFuzzyART. Furthermore, a set of experiments is carried out on some available benchmarks. SSFuzzyART demonstrated better clustering prediction results than its classic counterpart.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"19 ","pages":"Article 100319"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation on work-stealing featured parallel programs on asymmetric performance multicore processors 非对称性能多核处理器上偷工特征并行程序的性能评价
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-09-01 DOI: 10.1016/j.array.2023.100311
Adnan

The speed difference between high-performance CPUs and energy-efficient CPUs, which are found in asymmetric performance multicore processors, affects the current form of Amdahl’s law equation. This paper proposes two updates to that equation based on the performance evaluation results of a simple parallel pi program written with OpenCilk. Performance evaluation was done by measuring execution time and instructions per cycle (IPC). The performance evaluation of the parallel program executed on the Intel Core i5 1240P processor did not indicate decreased performance due to asymmetric performance. Instead, the program with efficient work-stealing advantages from OpenCilk performed well. In the case of using the execution time of the P-CPU as a reference to obtain speedup, the evaluation results in a sublinear speedup. Conversely, in the case of using the execution time of the E-CPU as a reference, the evaluation results in a superlinear speedup. This paper proposes two updates to Amdahl’s law equation based on these two evaluation results.

在非对称性能多核处理器中发现的高性能CPU和节能CPU之间的速度差异影响了Amdahl定律方程的当前形式。本文根据用OpenCilk编写的一个简单并行pi程序的性能评估结果,对该方程提出了两种更新。通过测量每个周期的执行时间和指令(IPC)来进行性能评估。在英特尔酷睿i5 1240P处理器上执行的并行程序的性能评估没有表明性能由于不对称而降低。相反,具有高效工作窃取OpenCilk优势的程序表现良好。在使用P-CPU的执行时间作为获得加速的参考的情况下,评估结果是次线性加速。相反,在使用E-CPU的执行时间作为参考的情况下,评估结果是超线性加速。基于这两个评价结果,本文对Amdahl定律方程提出了两个更新。
{"title":"Performance evaluation on work-stealing featured parallel programs on asymmetric performance multicore processors","authors":"Adnan","doi":"10.1016/j.array.2023.100311","DOIUrl":"https://doi.org/10.1016/j.array.2023.100311","url":null,"abstract":"<div><p>The speed difference between high-performance CPUs and energy-efficient CPUs, which are found in asymmetric performance multicore processors, affects the current form of Amdahl’s law equation. This paper proposes two updates to that equation based on the performance evaluation results of a simple parallel pi program written with OpenCilk. Performance evaluation was done by measuring execution time and instructions per cycle (IPC). The performance evaluation of the parallel program executed on the Intel Core i5 1240P processor did not indicate decreased performance due to asymmetric performance. Instead, the program with efficient work-stealing advantages from OpenCilk performed well. In the case of using the execution time of the P-CPU as a reference to obtain speedup, the evaluation results in a sublinear speedup. Conversely, in the case of using the execution time of the E-CPU as a reference, the evaluation results in a superlinear speedup. This paper proposes two updates to Amdahl’s law equation based on these two evaluation results.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"19 ","pages":"Article 100311"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49759091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple robust approaches for EEG-based driving fatigue detection and classification 基于脑电的驾驶疲劳检测与分类的多种鲁棒方法
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-09-01 DOI: 10.1016/j.array.2023.100320
Sunil Kumar Prabhakar, Dong-Ok Won

Electroencephalography (EEG) signals are used to evaluate the activities of the brain. For the accidents occurring on the road, one of the primary reasons is driver fatigueness and it can be easily identified by the EEG. In this work, five efficient and robust approaches for the EEG-based driving fatigue detection and classification are proposed. In the first proposed strategy, the concept of Multi-Dimensional Scaling (MDS) and Singular Value Decomposition (SVD) are merged and then the Fuzzy C Means based Support Vector Regression (FCM-SVR) classification module is utilized to get the output. In the second proposed strategy, the Marginal Fisher Analysis (MFA) is implemented and the concepts of conditional feature mapping and cross domain transfer learning are implemented and classified with machine learning classifiers. In the third proposed strategy, the concepts of Flexible Analytic Wavelet Transform (FAWT) and Tunable Q Wavelet Transform (TQWT) are implemented and merged and then it is classified with Extreme Learning Machine (ELM), Kernel ELM and Adaptive Neuro Fuzzy Inference System (ANFIS) classifiers. In the fourth proposed strategy, the concepts of Correntropy spectral density and Lyapunov exponent with Rosenstein algorithm is implemented and then the multi distance signal level difference is computed followed by the calculation of the Geodesic minimum distance to the Riemannian means and finally tangent space mapping is implemented to it before feeding it to classification. In the fifth or final proposed strategy, the Hilbert Huang Transform (HHT) is implemented and then the Hilbert marginal spectrum is computed. Then using the Blackhole optimization algorithm, the features are selected and finally it is classified with Cascade Adaboost classifier. The proposed techniques are applied on publicly available EEG datasets and the best result of 99.13% is obtained when the proposed Correntropy spectral density and Lyapunov exponent with Rosenstein algorithm is implemented with the multi distance signal level difference followed by the calculation of the Geodesic minimum distance to the Riemannian means and finally tangent space mapping is implemented with Support Vector Machine (SVM) classifier.

脑电图(EEG)信号用于评估大脑的活动。对于道路上发生的事故,驾驶员疲劳是主要原因之一,脑电图很容易识别。在这项工作中,提出了五种有效且稳健的基于脑电的驾驶疲劳检测和分类方法。在第一种策略中,融合了多维尺度(MDS)和奇异值分解(SVD)的概念,然后利用基于模糊C均值的支持向量回归(FCM-SVR)分类模块来获得输出。在第二种策略中,实现了边际Fisher分析(MFA),并利用机器学习分类器实现了条件特征映射和跨域迁移学习的概念并进行了分类。在第三种策略中,实现并融合了柔性分析小波变换(FAWT)和可调Q小波变换(TQWT)的概念,并将其与极限学习机(ELM)、核ELM和自适应神经模糊推理系统(ANFIS)分类器进行了分类。在第四种策略中,用Rosenstein算法实现了相关谱密度和李雅普诺夫指数的概念,然后计算了多距离信号电平差,然后计算到黎曼均值的大地测量最小距离,最后在将其输入分类之前实现了切空间映射。在第五种或最后一种策略中,实现了希尔伯特-黄变换(HHT),然后计算了希尔伯特边缘谱。然后使用黑洞优化算法对特征进行选择,最后用级联Adaboost分类器对其进行分类。将所提出的技术应用于公开的EEG数据集,当利用多距离信号电平差实现所提出的Rosenstein算法的Correntropy谱密度和Lyapunov指数,然后计算到黎曼均值的大地测量最小距离,最后得到切空间映射时,获得了99.13%的最佳结果用支持向量机(SVM)分类器实现。
{"title":"Multiple robust approaches for EEG-based driving fatigue detection and classification","authors":"Sunil Kumar Prabhakar,&nbsp;Dong-Ok Won","doi":"10.1016/j.array.2023.100320","DOIUrl":"https://doi.org/10.1016/j.array.2023.100320","url":null,"abstract":"<div><p>Electroencephalography (EEG) signals are used to evaluate the activities of the brain. For the accidents occurring on the road, one of the primary reasons is driver fatigueness and it can be easily identified by the EEG. In this work, five efficient and robust approaches for the EEG-based driving fatigue detection and classification are proposed. In the first proposed strategy, the concept of Multi-Dimensional Scaling (MDS) and Singular Value Decomposition (SVD) are merged and then the Fuzzy C Means based Support Vector Regression (FCM-SVR) classification module is utilized to get the output. In the second proposed strategy, the Marginal Fisher Analysis (MFA) is implemented and the concepts of conditional feature mapping and cross domain transfer learning are implemented and classified with machine learning classifiers. In the third proposed strategy, the concepts of Flexible Analytic Wavelet Transform (FAWT) and Tunable Q Wavelet Transform (TQWT) are implemented and merged and then it is classified with Extreme Learning Machine (ELM), Kernel ELM and Adaptive Neuro Fuzzy Inference System (ANFIS) classifiers. In the fourth proposed strategy, the concepts of Correntropy spectral density and Lyapunov exponent with Rosenstein algorithm is implemented and then the multi distance signal level difference is computed followed by the calculation of the Geodesic minimum distance to the Riemannian means and finally tangent space mapping is implemented to it before feeding it to classification. In the fifth or final proposed strategy, the Hilbert Huang Transform (HHT) is implemented and then the Hilbert marginal spectrum is computed. Then using the Blackhole optimization algorithm, the features are selected and finally it is classified with Cascade Adaboost classifier. The proposed techniques are applied on publicly available EEG datasets and the best result of 99.13% is obtained when the proposed Correntropy spectral density and Lyapunov exponent with Rosenstein algorithm is implemented with the multi distance signal level difference followed by the calculation of the Geodesic minimum distance to the Riemannian means and finally tangent space mapping is implemented with Support Vector Machine (SVM) classifier.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"19 ","pages":"Article 100320"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correspondenceless scan-to-map-scan matching of 2D panoramic range scans 二维全景范围扫描的对应扫描到地图扫描匹配
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100288
Alexandros Filotheou, Andreas L. Symeonidis, Georgios D. Sergiadis, Antonis G. Dimitriou

In this article a real-time method is proposed that reduces the pose estimate error for robots capable of motion on the 2D plane. The solution that the method provides addresses the recent introduction of low-cost panoramic range scanners (2D LIDAR range sensors whose field of view is 360), whose use in robot localisation induces elevated pose uncertainty due to their significantly increased measurement noise compared to prior, costlier sensors. The solution employs scan-to-map-scan matching and, in contrast to prior art, its novelty lies in that matching is performed without establishing correspondences between the two input scans; rather, the matching problem is solved in closed form by virtue of exploiting the periodicity of the input signals. The correspondence-free nature of the solution allows for dispensing with the calculation of correspondences between the input range scans, which (a) becomes non-trivial and more error-prone with increasing input noise, and (b) involves the setting of parameters whose output effects are sensitive to the parameters’ correct configuration, and which does not hold universal or predictive validity. The efficacy of the proposed method is illustrated through extensive experiments on public domain data and over various measurement noise levels exhibited by the aforementioned class of sensors. Through these experiments we show that the proposed method exhibits (a) lower pose errors compared to state of the art methods, and (b) more robust pose error reduction rates compared to those which are capable of real-time execution. The source code of its implementation is available for download.

本文提出了一种降低机器人在二维平面上运动时姿态估计误差的实时方法。该方法提供的解决方案解决了最近引入的低成本全景距离扫描仪(视场为360°的2D激光雷达距离传感器)的问题。与之前更昂贵的传感器相比,在机器人定位中使用这种扫描仪会导致姿态不确定性升高,因为它们的测量噪声显著增加。该解决方案采用扫描-映射-扫描匹配,与现有技术相比,其新颖性在于在不建立两个输入扫描之间的对应关系的情况下执行匹配;相反,通过利用输入信号的周期性,以封闭形式解决匹配问题。该解决方案的无对应性允许免除输入范围扫描之间对应的计算,这(a)随着输入噪声的增加而变得不平凡且更容易出错,并且(b)涉及参数的设置,其输出效果对参数的正确配置很敏感,并且不具有普遍或预测有效性。通过对公共领域数据和上述传感器所显示的各种测量噪声水平的广泛实验,证明了所提出方法的有效性。通过这些实验,我们表明,与现有的方法相比,该方法具有(a)更低的位姿误差,(b)与能够实时执行的方法相比,该方法具有更强的位姿误差降低率。其实现的源代码可以下载。
{"title":"Correspondenceless scan-to-map-scan matching of 2D panoramic range scans","authors":"Alexandros Filotheou,&nbsp;Andreas L. Symeonidis,&nbsp;Georgios D. Sergiadis,&nbsp;Antonis G. Dimitriou","doi":"10.1016/j.array.2023.100288","DOIUrl":"10.1016/j.array.2023.100288","url":null,"abstract":"<div><p>In this article a real-time method is proposed that reduces the pose estimate error for robots capable of motion on the 2D plane. The solution that the method provides addresses the recent introduction of low-cost panoramic range scanners (2D LIDAR range sensors whose field of view is 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>), whose use in robot localisation induces elevated pose uncertainty due to their significantly increased measurement noise compared to prior, costlier sensors. The solution employs scan-to-map-scan matching and, in contrast to prior art, its novelty lies in that matching is performed without establishing correspondences between the two input scans; rather, the matching problem is solved in closed form by virtue of exploiting the periodicity of the input signals. The correspondence-free nature of the solution allows for dispensing with the calculation of correspondences between the input range scans, which (a) becomes non-trivial and more error-prone with increasing input noise, and (b) involves the setting of parameters whose output effects are sensitive to the parameters’ correct configuration, and which does not hold universal or predictive validity. The efficacy of the proposed method is illustrated through extensive experiments on public domain data and over various measurement noise levels exhibited by the aforementioned class of sensors. Through these experiments we show that the proposed method exhibits (a) lower pose errors compared to state of the art methods, and (b) more robust pose error reduction rates compared to those which are capable of real-time execution. The source code of its implementation is available for download.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100288"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45249262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comprehensive review on 5G-based Smart Healthcare Network Security: Taxonomy, Issues, Solutions and Future research directions 基于5G的智能医疗网络安全综述:分类、问题、解决方案和未来研究方向
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100290
Abdul Ahad , Zahra Ali , Abdul Mateen , Mohammad Tahir , Abdul Hannan , Nuno M. Garcia , Ivan Miguel Pires

Healthcare is experiencing a fast change from a hospital-centric and specialist-focused model to one that is dispersed and patient-centric. Numerous technological advancements are driving this fast evolution of the healthcare sector. Communication technologies, among others, have permitted the delivery of customized and distant healthcare services. The present 4G networks and other wireless communication technologies are being utilized by the healthcare industry to create smart healthcare applications. These technologies are continuously evolving to meet the expectations and requirements of future smart healthcare applications. At the moment, current communication technologies are incapable of meeting the dynamic and complex demands of smart healthcare applications. Thus, the future 5G and beyond 5G networks are expected to support smart healthcare applications such as remote surgery, tactile internet and Brain-computer Interfaces. Future smart healthcare networks will combine IoT and advanced wireless communication technologies that will address current limitations related to coverage, network performance and security issues. This paper presents 5G-based smart healthcare architecture, key enabling technologies and a deep examination of the threats and solutions for maintaining the security and privacy of 5G-based smart healthcare networks.

医疗保健正在经历从以医院为中心和以专家为中心的模式向分散和以患者为中心的模式的快速变化。许多技术进步正在推动医疗保健行业的快速发展。除其他外,通信技术使提供定制的远程医疗保健服务成为可能。目前,医疗保健行业正在利用4G网络和其他无线通信技术来创建智能医疗保健应用程序。这些技术不断发展,以满足未来智能医疗应用的期望和要求。目前,现有的通信技术还无法满足智能医疗应用的动态性和复杂性需求。因此,未来的5G及5G以上网络有望支持智能医疗保健应用,如远程手术、触觉互联网和脑机接口。未来的智能医疗网络将结合物联网和先进的无线通信技术,解决目前与覆盖范围、网络性能和安全问题相关的限制。本文介绍了基于5g的智能医疗架构、关键使能技术,并深入研究了维护基于5g的智能医疗网络安全和隐私的威胁和解决方案。
{"title":"A Comprehensive review on 5G-based Smart Healthcare Network Security: Taxonomy, Issues, Solutions and Future research directions","authors":"Abdul Ahad ,&nbsp;Zahra Ali ,&nbsp;Abdul Mateen ,&nbsp;Mohammad Tahir ,&nbsp;Abdul Hannan ,&nbsp;Nuno M. Garcia ,&nbsp;Ivan Miguel Pires","doi":"10.1016/j.array.2023.100290","DOIUrl":"10.1016/j.array.2023.100290","url":null,"abstract":"<div><p>Healthcare is experiencing a fast change from a hospital-centric and specialist-focused model to one that is dispersed and patient-centric. Numerous technological advancements are driving this fast evolution of the healthcare sector. Communication technologies, among others, have permitted the delivery of customized and distant healthcare services. The present 4G networks and other wireless communication technologies are being utilized by the healthcare industry to create smart healthcare applications. These technologies are continuously evolving to meet the expectations and requirements of future smart healthcare applications. At the moment, current communication technologies are incapable of meeting the dynamic and complex demands of smart healthcare applications. Thus, the future 5G and beyond 5G networks are expected to support smart healthcare applications such as remote surgery, tactile internet and Brain-computer Interfaces. Future smart healthcare networks will combine IoT and advanced wireless communication technologies that will address current limitations related to coverage, network performance and security issues. This paper presents 5G-based smart healthcare architecture, key enabling technologies and a deep examination of the threats and solutions for maintaining the security and privacy of 5G-based smart healthcare networks.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100290"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42634701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Improved VIDAR and machine learning-based road obstacle detection method 改进的基于VIDAR和机器学习的道路障碍物检测方法
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100283
Yuqiong Wang, Ruoyu Zhu, Liming Wang, Yi Xu, Dong Guo, Song Gao

There are various types of obstacles in an emergency, and the traffic environment is complicated. It is critical to detect obstacles accurately and quickly in order to improve traffic safety. The obstacle detection algorithm based on deep learning cannot detect all types of obstacles because it requires pre-training. The VIDAR (Vision-IMU-based Detection and Range method) can detect any three-dimensional obstacles, but at a slow rate. In this paper, an improved VIDAR and machine learning-based obstacle detection method (hereinafter referred to as the IVM) is proposed. In the proposed method, morphological closing operation and normalized cross-correlation are used to improve VIDAR. Then, the improved VIDAR is used to quickly match and remove the detected unknown types of obstacles in the image, and the machine learning algorithm is used to detect specific types of obstacles to increase the speed of detection with the average detection time of 0.316s. Finally, the VIDAR is used to detect regions belonging to unknown types of obstacles in the remaining regions, improving detection performance with the accuracy of 92.7%. The flow of the proposed method is illustrated by the indoor simulation test. Moreover, the results of outdoor real-world vehicle tests demonstrate that the method proposed in this paper can quickly detect obstacles in real-world environments and improve detection accuracy.

突发事件中障碍物种类繁多,交通环境复杂。准确、快速地检测障碍物是提高交通安全的关键。基于深度学习的障碍物检测算法由于需要预训练,无法检测到所有类型的障碍物。VIDAR(基于视觉imu的检测和距离方法)可以检测任何三维障碍物,但速度较慢。本文提出了一种改进的基于VIDAR和机器学习的障碍物检测方法(以下简称IVM)。该方法采用形态闭合运算和归一化互相关来改进VIDAR。然后,利用改进的VIDAR对图像中检测到的未知类型障碍物进行快速匹配和去除,利用机器学习算法对特定类型障碍物进行检测,提高检测速度,平均检测时间为0.316s。最后,利用VIDAR对剩余区域中属于未知类型障碍物的区域进行检测,提高了检测性能,准确率达到92.7%。通过室内模拟试验说明了该方法的流程。此外,室外真实环境车辆试验结果表明,本文方法可以快速检测真实环境中的障碍物,提高检测精度。
{"title":"Improved VIDAR and machine learning-based road obstacle detection method","authors":"Yuqiong Wang,&nbsp;Ruoyu Zhu,&nbsp;Liming Wang,&nbsp;Yi Xu,&nbsp;Dong Guo,&nbsp;Song Gao","doi":"10.1016/j.array.2023.100283","DOIUrl":"10.1016/j.array.2023.100283","url":null,"abstract":"<div><p>There are various types of obstacles in an emergency, and the traffic environment is complicated. It is critical to detect obstacles accurately and quickly in order to improve traffic safety. The obstacle detection algorithm based on deep learning cannot detect all types of obstacles because it requires pre-training. The VIDAR (Vision-IMU-based Detection and Range method) can detect any three-dimensional obstacles, but at a slow rate. In this paper, an improved VIDAR and machine learning-based obstacle detection method (hereinafter referred to as the IVM) is proposed. In the proposed method, morphological closing operation and normalized cross-correlation are used to improve VIDAR. Then, the improved VIDAR is used to quickly match and remove the detected unknown types of obstacles in the image, and the machine learning algorithm is used to detect specific types of obstacles to increase the speed of detection with the average detection time of 0.316s. Finally, the VIDAR is used to detect regions belonging to unknown types of obstacles in the remaining regions, improving detection performance with the accuracy of 92.7%. The flow of the proposed method is illustrated by the indoor simulation test. Moreover, the results of outdoor real-world vehicle tests demonstrate that the method proposed in this paper can quickly detect obstacles in real-world environments and improve detection accuracy.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100283"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43302968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AIDA: Artificial intelligence based depression assessment applied to Bangladeshi students AIDA:应用于孟加拉国学生的基于人工智能的抑郁评估
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100291
Rokeya Siddiqua, Nusrat Islam, Jarba Farnaz Bolaka, Riasat Khan, Sifat Momen

Depression is a common psychiatric disorder that is becoming more prevalent in developing countries like Bangladesh. Depression has been found to be prevalent among youths and influences a person’s lifestyle and thought process. Unfortunately, due to the public and social stigma attached to this disease, the mental health issue of individuals are often overlooked. Early diagnosis of patients who may have depression often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict depression levels and was applied to university students in Bangladesh. In this work, a questionnaire containing 106 questions has been constructed. The questions in the questionnaire are primarily of two kinds – (i) personal, and (ii) clinical. The questionnaire was distributed amongst Bangladeshi students and a total of 684 responses (aged between 19 and 35) were obtained. After appropriate consents from the participants, they were allowed to take the survey. After carefully scrutinizing the responses, 520 samples were taken into final consideration. A hybrid depression assessment scale was developed using a voting algorithm that employs eight well-known existing scales to assess the depression level of an individual. This hybrid scale was then applied to the collected samples that comprise personal information and questions from various familiar depression measuring scales. In addition, ten machine learning and two deep learning models were applied to predict the three classes of depression (normal, moderate and extreme). Five hyperparameter optimizers and nine feature selection methods were employed to improve the predictability. Accuracies of 98.08%, 94.23%, and 92.31% were obtained using Random Forest, Gradient Boosting, and CNN models, respectively. Random Forest accomplished the lowest false negatives and highest F Measure with its optimized hyperparameters. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.

抑郁症是一种常见的精神疾病,在孟加拉国等发展中国家越来越普遍。研究发现,抑郁症在年轻人中很普遍,会影响一个人的生活方式和思维过程。不幸的是,由于公众和社会对这种疾病的耻辱感,个人的心理健康问题往往被忽视。对抑郁症患者的早期诊断通常有助于提供有效的治疗。本研究旨在开发检测和预测抑郁水平的机制,并应用于孟加拉国的大学生。在这项工作中,我们构建了一份包含106个问题的问卷。问卷中的问题主要有两种——(i)个人问题和(ii)临床问题。调查问卷在孟加拉国学生中分发,共收到684份答复(年龄在19至35岁之间)。在得到参与者的适当同意后,他们被允许参加调查。在仔细审查了回答后,520个样本被纳入最终考虑。采用投票算法开发了一种混合抑郁评估量表,该量表采用八种已知的现有量表来评估个人的抑郁水平。然后将这种混合量表应用于收集的样本,这些样本包括个人信息和来自各种熟悉的抑郁测量量表的问题。此外,应用10个机器学习模型和2个深度学习模型来预测三种类型的抑郁症(正常、中度和极端)。采用了5种超参数优化器和9种特征选择方法来提高预测能力。使用随机森林、梯度增强和CNN模型分别获得98.08%、94.23%和92.31%的准确率。随机森林以其优化的超参数实现了最低的假阴性和最高的F测度。最后,应用可解释的AI框架LIME来解释和追溯机器学习模型的预测输出。
{"title":"AIDA: Artificial intelligence based depression assessment applied to Bangladeshi students","authors":"Rokeya Siddiqua,&nbsp;Nusrat Islam,&nbsp;Jarba Farnaz Bolaka,&nbsp;Riasat Khan,&nbsp;Sifat Momen","doi":"10.1016/j.array.2023.100291","DOIUrl":"10.1016/j.array.2023.100291","url":null,"abstract":"<div><p>Depression is a common psychiatric disorder that is becoming more prevalent in developing countries like Bangladesh. Depression has been found to be prevalent among youths and influences a person’s lifestyle and thought process. Unfortunately, due to the public and social stigma attached to this disease, the mental health issue of individuals are often overlooked. Early diagnosis of patients who may have depression often helps to provide effective treatment. This research aims to develop mechanisms to detect and predict depression levels and was applied to university students in Bangladesh. In this work, a questionnaire containing 106 questions has been constructed. The questions in the questionnaire are primarily of two kinds – (i) personal, and (ii) clinical. The questionnaire was distributed amongst Bangladeshi students and a total of 684 responses (aged between 19 and 35) were obtained. After appropriate consents from the participants, they were allowed to take the survey. After carefully scrutinizing the responses, 520 samples were taken into final consideration. A hybrid depression assessment scale was developed using a voting algorithm that employs eight well-known existing scales to assess the depression level of an individual. This hybrid scale was then applied to the collected samples that comprise personal information and questions from various familiar depression measuring scales. In addition, ten machine learning and two deep learning models were applied to predict the three classes of depression (normal, moderate and extreme). Five hyperparameter optimizers and nine feature selection methods were employed to improve the predictability. Accuracies of 98.08%, 94.23%, and 92.31% were obtained using Random Forest, Gradient Boosting, and CNN models, respectively. Random Forest accomplished the lowest false negatives and highest F Measure with its optimized hyperparameters. Finally, LIME, an explainable AI framework, was applied to interpret and retrace the prediction output of the machine learning models.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100291"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44005236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiclass blood cancer classification using deep CNN with optimized features 使用具有优化特征的深度CNN对多类别血液癌症进行分类
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100292
Wahidur Rahman , Mohammad Gazi Golam Faruque , Kaniz Roksana , A H M Saifullah Sadi , Mohammad Motiur Rahman , Mir Mohammad Azad

Breast cancer, lung cancer, skin cancer, and blood malignancies such as leukemia and lymphoma are just a few instances of cancer, which is a collection of cells that proliferate uncontrollably within the body. Acute lymphoblastic leukemia is of one the significant form of malignancy. The hematologists frequently makes an oversight while determining a blood cancer diagnosis, which requires an excessive amount of time. Thus, this research reflects on a novel method for the grouping of the leukemia with the aid of the modern technologies like Machine Learning and Deep Learning. The proposed research pipeline is occupied into some interconnected parts like dataset building, feature extraction with pre-trained Convolutional Neural Network (CNN) architectures from each individual images of blood cells, and classification with the conventional classifiers. The dataset for this study is divided into two identical categories, Benign and Malignant, and then reshaped into four significant classes, each with three subtypes of malignant, namely, Benign, Early Pre-B, Pre-B, and Pro-B. The research first extracts the features from the individual images with CNN models and then transfers the extracted features to the features selections such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVC Feature Selectors along with two nature inspired algorithms like Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO). After that, research has applied the seven Machine Learning classifiers to accomplish the multi-class malignant classification. To assess the efficacy of the proposed architecture a set of experimental data have been enumerated and interpreted accordingly. The study discovered a maximum accuracy of 98.43% when solely using pre-trained CNN and classifiers. Nevertheless, after incorporating PSO and CSO, the proposed model achieved the highest accuracy of 99.84% by integrating the ResNet50 CNN architecture, SVC feature selector, and LR classifiers. Although the model has a higher accuracy rate, it does have some drawbacks. However, the proposed model may also be helpful for real-world blood cancer classification.

乳腺癌、肺癌、皮肤癌和血液恶性肿瘤如白血病和淋巴瘤只是癌症的几个例子,癌症是一种在体内不受控制地增殖的细胞的集合。急性淋巴细胞白血病是恶性肿瘤的重要形式之一。血液学家在诊断血癌时经常会出现疏忽,这需要大量的时间。因此,本研究反思了一种借助机器学习和深度学习等现代技术对白血病进行分组的新方法。所提出的研究管道分为几个相互关联的部分,如数据集构建,使用预训练的卷积神经网络(CNN)架构从每个单独的血细胞图像中提取特征,以及使用常规分类器进行分类。本研究的数据集被分为两个相同的类别,Benign和Malignant,然后重塑为四个重要的类别,每个类别有三个恶性亚型,即Benign, Early Pre-B, Pre-B和Pro-B。该研究首先利用CNN模型对单个图像进行特征提取,然后结合粒子群优化(PSO)和Cat群优化(CSO)两种自然启发算法,将提取的特征转移到主成分分析(PCA)、线性判别分析(LDA)和SVC特征选择器等特征选择中。之后,研究应用了7种机器学习分类器完成了多类恶性分类。为了评估所提出的体系结构的有效性,我们列举了一组实验数据并对其进行了相应的解释。研究发现,单独使用预训练的CNN和分类器时,准确率最高可达98.43%。然而,在结合PSO和CSO之后,通过集成ResNet50 CNN架构、SVC特征选择器和LR分类器,所提出的模型达到了99.84%的最高准确率。尽管该模型具有较高的准确率,但它也存在一些缺点。然而,所提出的模型也可能有助于现实世界的血癌分类。
{"title":"Multiclass blood cancer classification using deep CNN with optimized features","authors":"Wahidur Rahman ,&nbsp;Mohammad Gazi Golam Faruque ,&nbsp;Kaniz Roksana ,&nbsp;A H M Saifullah Sadi ,&nbsp;Mohammad Motiur Rahman ,&nbsp;Mir Mohammad Azad","doi":"10.1016/j.array.2023.100292","DOIUrl":"10.1016/j.array.2023.100292","url":null,"abstract":"<div><p>Breast cancer, lung cancer, skin cancer, and blood malignancies such as leukemia and lymphoma are just a few instances of cancer, which is a collection of cells that proliferate uncontrollably within the body. Acute lymphoblastic leukemia is of one the significant form of malignancy. The hematologists frequently makes an oversight while determining a blood cancer diagnosis, which requires an excessive amount of time. Thus, this research reflects on a novel method for the grouping of the leukemia with the aid of the modern technologies like Machine Learning and Deep Learning. The proposed research pipeline is occupied into some interconnected parts like dataset building, feature extraction with pre-trained Convolutional Neural Network (CNN) architectures from each individual images of blood cells, and classification with the conventional classifiers. The dataset for this study is divided into two identical categories, Benign and Malignant, and then reshaped into four significant classes, each with three subtypes of malignant, namely, Benign, Early Pre-B, Pre-B, and Pro-B. The research first extracts the features from the individual images with CNN models and then transfers the extracted features to the features selections such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVC Feature Selectors along with two nature inspired algorithms like Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO). After that, research has applied the seven Machine Learning classifiers to accomplish the multi-class malignant classification. To assess the efficacy of the proposed architecture a set of experimental data have been enumerated and interpreted accordingly. The study discovered a maximum accuracy of 98.43% when solely using pre-trained CNN and classifiers. Nevertheless, after incorporating PSO and CSO, the proposed model achieved the highest accuracy of 99.84% by integrating the ResNet50 CNN architecture, SVC feature selector, and LR classifiers. Although the model has a higher accuracy rate, it does have some drawbacks. However, the proposed model may also be helpful for real-world blood cancer classification.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100292"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46573406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
IMGCAT: An approach to dismantle the anonymity of a source camera using correlative features and an integrated 1D convolutional neural network IMGCAT:一种利用相关特征和集成一维卷积神经网络解除源相机匿名性的方法
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100279
Muhammad Irshad , Ngai-Fong Law , K.H. Loo , Sami Haider

With the proliferation of smartphones, digital data collection has become trivial. The ability to analyze images has increased, but source authentication has stagnated. Editing and tampering of images has become more common with advancements in signal processing technology. Recent developments have introduced the use of seam carving (insertion and deletion) techniques to disguise the identity of the camera, specifically in the child pornography market. In this article, we focus on the available features in the image based on PRNU (photo response nonuniformity). The forced-seam sculpting technique is a well-known method to create occlusion for camera attribution by injecting seams into each 50 × 50 pixel block. To counter this, we perform camera identification using a 1D CNN integrated with feature extractions on 20 × 20 pixel blocks. We achieve state-of-the-art performance for our proposed IMGCAT (image categorization) in three-class classification over the baselines (original, seam removed, seam inserted). Based on our experimental findings, our model is robust when dealing with blind facts related to the questionable camera.

随着智能手机的普及,数字数据收集变得微不足道。分析图像的能力有所提高,但源身份验证却停滞不前。随着信号处理技术的进步,对图像进行编辑和篡改变得越来越普遍。最近的发展介绍了接缝雕刻(插入和删除)技术的使用来掩饰相机的身份,特别是在儿童色情市场。在本文中,我们主要研究基于PRNU(照片响应不均匀性)的图像中的可用特征。强制接缝雕刻技术是一种众所周知的方法,通过向每个50 × 50像素块注入接缝来创建相机归属的遮挡。为了解决这个问题,我们使用集成了20 × 20像素块特征提取的1D CNN进行相机识别。我们提出的IMGCAT(图像分类)在基线上的三类分类(原始,接缝移除,接缝插入)中实现了最先进的性能。根据我们的实验结果,我们的模型在处理与可疑相机相关的盲事实时是稳健的。
{"title":"IMGCAT: An approach to dismantle the anonymity of a source camera using correlative features and an integrated 1D convolutional neural network","authors":"Muhammad Irshad ,&nbsp;Ngai-Fong Law ,&nbsp;K.H. Loo ,&nbsp;Sami Haider","doi":"10.1016/j.array.2023.100279","DOIUrl":"10.1016/j.array.2023.100279","url":null,"abstract":"<div><p>With the proliferation of smartphones, digital data collection has become trivial. The ability to analyze images has increased, but source authentication has stagnated. Editing and tampering of images has become more common with advancements in signal processing technology. Recent developments have introduced the use of seam carving (insertion and deletion) techniques to disguise the identity of the camera, specifically in the child pornography market. In this article, we focus on the available features in the image based on PRNU (photo response nonuniformity). The forced-seam sculpting technique is a well-known method to create occlusion for camera attribution by injecting seams into each 50 × 50 pixel block. To counter this, we perform camera identification using a 1D CNN integrated with feature extractions on 20 × 20 pixel blocks. We achieve state-of-the-art performance for our proposed IMG<sub>CAT</sub> (image categorization) in three-class classification over the baselines (original, seam removed, seam inserted). Based on our experimental findings, our model is robust when dealing with blind facts related to the questionable camera.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100279"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48262634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
General implementation of quantum physics-informed neural networks 量子物理知情神经网络的一般实现
Q2 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-07-01 DOI: 10.1016/j.array.2023.100287
Shashank Reddy Vadyala , Sai Nethra Betgeri

Recently, a novel type of Neural Network (NNs): the Physics-Informed Neural Networks (PINNs), was discovered to have many applications in computational physics. By integrating knowledge of physical laws and processes in Partial Differential Equations (PDEs), fast convergence and effective solutions are obtained. Since training modern Machine Learning (ML) systems is a computationally intensive endeavour, using Quantum Computing (QC) in the ML pipeline attracts increasing interest. Indeed, since several Quantum Machine Learning (QML) algorithms have already been implemented on present-day noisy intermediate-scale quantum devices, experts expect that ML on reliable, large-scale quantum computers will soon become a reality. However, after potential benefits from quantum speedup, QML may also entail reliability, trustworthiness, safety, and security risks. To solve the challenges of QML, we combine classical information processing, quantum manipulation, and processing with PINNs to accomplish a hybrid QML model named quantum based PINNs.

最近,一种新型的神经网络(NNs)——物理信息神经网络(PINNs)被发现在计算物理中有许多应用。通过对偏微分方程物理规律和过程知识的整合,得到了快速收敛和有效的解。由于训练现代机器学习(ML)系统是一项计算密集型的工作,因此在ML管道中使用量子计算(QC)吸引了越来越多的兴趣。事实上,由于几种量子机器学习(QML)算法已经在当今嘈杂的中等规模量子设备上实现,专家们预计,在可靠的大规模量子计算机上实现量子机器学习将很快成为现实。然而,在量子加速的潜在好处之后,QML也可能带来可靠性、可信度、安全性和安全风险。为了解决QML面临的挑战,我们将经典的信息处理、量子操作和处理与pin n结合起来,实现了一种混合QML模型,称为基于量子的pin n。
{"title":"General implementation of quantum physics-informed neural networks","authors":"Shashank Reddy Vadyala ,&nbsp;Sai Nethra Betgeri","doi":"10.1016/j.array.2023.100287","DOIUrl":"10.1016/j.array.2023.100287","url":null,"abstract":"<div><p>Recently, a novel type of Neural Network (NNs): the Physics-Informed Neural Networks (PINNs), was discovered to have many applications in computational physics. By integrating knowledge of physical laws and processes in Partial Differential Equations (PDEs), fast convergence and effective solutions are obtained. Since training modern Machine Learning (ML) systems is a computationally intensive endeavour, using Quantum Computing (QC) in the ML pipeline attracts increasing interest. Indeed, since several Quantum Machine Learning (QML) algorithms have already been implemented on present-day noisy intermediate-scale quantum devices, experts expect that ML on reliable, large-scale quantum computers will soon become a reality. However, after potential benefits from quantum speedup, QML may also entail reliability, trustworthiness, safety, and security risks. To solve the challenges of QML, we combine classical information processing, quantum manipulation, and processing with PINNs to accomplish a hybrid QML model named quantum based PINNs.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"18 ","pages":"Article 100287"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41613601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Array
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1