Despite considerable animal sacrifices and investments, drug development often falters in clinical trials due to species differences. To address this issue, specific in vitro models, such as organ-on-a-chip technology using human cells in microfluidic devices, are recognized as promising alternatives. Among the various organs, the human small intestine plays a pivotal role in drug development, particularly in the assessment of digestion and nutrient absorption. However, current intestine-on-a-chip devices struggle to accurately replicate the complex 3D tubular structures of the human small intestine, particularly when it comes to integrating a variety of cell types effectively. This limitation is primarily due to conventional fabrication methods, such as soft lithography and replica molding. In this research, we introduce a novel coaxial bioprinting method to construct 3D tubular structures that closely emulate the organization and functionality of the small intestine with multiple cell types. To ensure stable production of these small intestine-like tubular structures, we analyzed the rheological properties of bioinks to select the most suitable materials for coaxial bioprinting technology. Additionally, we conducted biological assessments to validate the gene expression patterns and functional attributes of the 3D intestine-on-a-chip. Our 3D intestine-on-a-chip, which faithfully replicates intestinal functions and organization, demonstrates clear superiority in both structure and biological function compared to the conventional 2D model. This innovative approach holds significant promise for a wide range of future applications.
{"title":"Rapid automated production of tubular 3D intestine-on-a-chip with diverse cell types using coaxial bioprinting†","authors":"Heeju Song, Yeonjin Hong and Hyungseok Lee","doi":"10.1039/D4LC00731J","DOIUrl":"10.1039/D4LC00731J","url":null,"abstract":"<p >Despite considerable animal sacrifices and investments, drug development often falters in clinical trials due to species differences. To address this issue, specific <em>in vitro</em> models, such as organ-on-a-chip technology using human cells in microfluidic devices, are recognized as promising alternatives. Among the various organs, the human small intestine plays a pivotal role in drug development, particularly in the assessment of digestion and nutrient absorption. However, current intestine-on-a-chip devices struggle to accurately replicate the complex 3D tubular structures of the human small intestine, particularly when it comes to integrating a variety of cell types effectively. This limitation is primarily due to conventional fabrication methods, such as soft lithography and replica molding. In this research, we introduce a novel coaxial bioprinting method to construct 3D tubular structures that closely emulate the organization and functionality of the small intestine with multiple cell types. To ensure stable production of these small intestine-like tubular structures, we analyzed the rheological properties of bioinks to select the most suitable materials for coaxial bioprinting technology. Additionally, we conducted biological assessments to validate the gene expression patterns and functional attributes of the 3D intestine-on-a-chip. Our 3D intestine-on-a-chip, which faithfully replicates intestinal functions and organization, demonstrates clear superiority in both structure and biological function compared to the conventional 2D model. This innovative approach holds significant promise for a wide range of future applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 1","pages":" 90-101"},"PeriodicalIF":6.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roksan Franko and Marcia de Almeida Monteiro Melo Ferraz
Assisted reproductive technologies (ART) are pivotal for contemporary reproductive medicine and species conservation. However, the manual handling required in these processes introduces stress that can compromise oocyte and embryo quality. This study introduces OoTrap, a novel fluidic device designed to streamline ART workflows by facilitating the capture and maturation of oocytes in a compact unit. The device also reintroduces mechanical forces similar to those in the in vivo environment, which are often missing in conventional systems. OoTrap operates in both static and perfusion-based modes, offering flexibility and optimal conditions for oocyte maturation. Notably, OoTrap achieved higher in vitro maturation (IVM) rates under perfusion, produced oocytes with fewer chromosomal abnormalities, and maintained spindle morphology integrity. The incorporation of a heating system and a 3D-printed syringe pump enabled IVM outside the incubator, making OoTrap suitable for field applications. The results highlight the potential of OoTrap to enhance ART outcomes by reducing manual handling, providing a controlled microenvironment, and offering a practical solution for field-based ART applications.
{"title":"OoTrap: enhancing oocyte collection and maturation with a field-deployable fluidic device†","authors":"Roksan Franko and Marcia de Almeida Monteiro Melo Ferraz","doi":"10.1039/D4LC00660G","DOIUrl":"10.1039/D4LC00660G","url":null,"abstract":"<p >Assisted reproductive technologies (ART) are pivotal for contemporary reproductive medicine and species conservation. However, the manual handling required in these processes introduces stress that can compromise oocyte and embryo quality. This study introduces OoTrap, a novel fluidic device designed to streamline ART workflows by facilitating the capture and maturation of oocytes in a compact unit. The device also reintroduces mechanical forces similar to those in the <em>in vivo</em> environment, which are often missing in conventional systems. OoTrap operates in both static and perfusion-based modes, offering flexibility and optimal conditions for oocyte maturation. Notably, OoTrap achieved higher <em>in vitro</em> maturation (IVM) rates under perfusion, produced oocytes with fewer chromosomal abnormalities, and maintained spindle morphology integrity. The incorporation of a heating system and a 3D-printed syringe pump enabled IVM outside the incubator, making OoTrap suitable for field applications. The results highlight the potential of OoTrap to enhance ART outcomes by reducing manual handling, providing a controlled microenvironment, and offering a practical solution for field-based ART applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 2","pages":" 187-200"},"PeriodicalIF":6.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00660g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie R. Cook, Alexander G. Ball, Anwaruddin Mohammad and Rebecca R. Pompano
Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue ex vivo in 3D-printed mesh supports for at least 24 h. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to in vivo vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.
{"title":"A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node†","authors":"Sophie R. Cook, Alexander G. Ball, Anwaruddin Mohammad and Rebecca R. Pompano","doi":"10.1039/D4LC00489B","DOIUrl":"10.1039/D4LC00489B","url":null,"abstract":"<p >Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue <em>ex vivo</em> in 3D-printed mesh supports for at least 24 h. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to <em>in vivo</em> vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 2","pages":" 155-174"},"PeriodicalIF":6.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filippo Zorzi, Emil Alstrup Jensen, Murat Serhatlioglu, Silvio Bonfadini, Morten Hanefeld Dziegiel, Luigino Criante and Anders Kristensen
This work introduces a high-throughput setup for Raman analysis of various flowing fluids, both transparent and non-transparent. The setup employs a microfluidic cell, used with an external optical setup, to control the sample flow's position and dimensions via 3-dimensional hydrodynamic focusing. This approach, in contrast to the prevalent use of fused silica capillaries, reduces the risk of sample photodegradation and boosts measurement efficiency, enhancing overall system throughput. The microfluidic cell has been further evolved to laminate two distinct flows from different samples in parallel. Using line excitation, both samples can be simultaneously excited without moving parts, further increasing throughput. This setup also enables real-time monitoring of phenomena like mixing or potential reactions between the two fluids. This development could significantly advance the creation of highly sensitive, high-throughput sensors for fluid composition analysis.
{"title":"Flow cell for high throughput Raman spectroscopy of non-transparent solutions†","authors":"Filippo Zorzi, Emil Alstrup Jensen, Murat Serhatlioglu, Silvio Bonfadini, Morten Hanefeld Dziegiel, Luigino Criante and Anders Kristensen","doi":"10.1039/D4LC00586D","DOIUrl":"10.1039/D4LC00586D","url":null,"abstract":"<p >This work introduces a high-throughput setup for Raman analysis of various flowing fluids, both transparent and non-transparent. The setup employs a microfluidic cell, used with an external optical setup, to control the sample flow's position and dimensions <em>via</em> 3-dimensional hydrodynamic focusing. This approach, in contrast to the prevalent use of fused silica capillaries, reduces the risk of sample photodegradation and boosts measurement efficiency, enhancing overall system throughput. The microfluidic cell has been further evolved to laminate two distinct flows from different samples in parallel. Using line excitation, both samples can be simultaneously excited without moving parts, further increasing throughput. This setup also enables real-time monitoring of phenomena like mixing or potential reactions between the two fluids. This development could significantly advance the creation of highly sensitive, high-throughput sensors for fluid composition analysis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 1","pages":" 69-78"},"PeriodicalIF":6.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00586d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyu Huang, Yinning Zhou, Yu Liu, Yue Quan, Qiu Yin, Yucheng Luo, Yimeng Su, Bingpu Zhou, Wenming Zhang, Benpeng Zhu and Zhichao Ma
Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.
{"title":"Advancing cellular transfer printing: achieving bioadhesion-free deposition via vibration microstreaming†","authors":"Ziyu Huang, Yinning Zhou, Yu Liu, Yue Quan, Qiu Yin, Yucheng Luo, Yimeng Su, Bingpu Zhou, Wenming Zhang, Benpeng Zhu and Zhichao Ma","doi":"10.1039/D4LC00601A","DOIUrl":"10.1039/D4LC00601A","url":null,"abstract":"<p >Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 3","pages":" 296-307"},"PeriodicalIF":6.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture. The application of gold coating generated an electric field within designed microwells, facilitating stable DNA detection. These microwells exhibited effective DNA sensing capabilities, validated using fluorescently stained lambda DNA at various concentrations (86, 8.6, and 0.86 ng μL−1). In particular, the 2.8 mm microwell showed a greater change in fluorescence intensity depending on DNA concentration than other microwells. At a concentration of 0.86 ng μL−1, to assess producibility using relative standard deviation (RSD) values as a DNA sensor, they were measured as 5.29, 2.76, and 1.85% for 1, 1.7, and 2.8 mm microwells, respectively. These results indicated that our proposed microwell exhibited efficient performance and good reproducibility. We believe that the developed method could be potentially used for high-throughput analysis as a biosensor for DNA applications.
微孔技术在生物应用中至关重要,因为它能够处理小样本量并有效地进行大量分析。本研究旨在开发一种利用压力辅助蒸汽技术制造微井的新技术,该技术成本更低,操作简单,重现性高。成功地控制和表征了微孔表面的机械性能,使其适合DNA捕获。应用金涂层在设计的微孔内产生电场,促进稳定的DNA检测。这些微孔显示出有效的DNA传感能力,用不同浓度(86、8.6和0.86 ng μL-1)的荧光染色lambda DNA进行验证。特别是,2.8 mm微孔的荧光强度随DNA浓度的变化比其他微孔更大。在浓度为0.86 ng μL-1时,以相对标准偏差(RSD)值作为DNA传感器评估生产效率,在1,1.7和2.8 mm微孔中分别测定了5.29,2.76和1.85%。结果表明,该微孔性能良好,重现性好。我们相信所开发的方法可以作为DNA应用的生物传感器用于高通量分析。
{"title":"Controlled Au-coated PDMS microwell array for surface-enhanced DNA biochips†","authors":"Yeongseok Jang and Jonghyun Oh","doi":"10.1039/D4LC00654B","DOIUrl":"10.1039/D4LC00654B","url":null,"abstract":"<p >Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture. The application of gold coating generated an electric field within designed microwells, facilitating stable DNA detection. These microwells exhibited effective DNA sensing capabilities, validated using fluorescently stained lambda DNA at various concentrations (86, 8.6, and 0.86 ng μL<small><sup>−1</sup></small>). In particular, the 2.8 mm microwell showed a greater change in fluorescence intensity depending on DNA concentration than other microwells. At a concentration of 0.86 ng μL<small><sup>−1</sup></small>, to assess producibility using relative standard deviation (RSD) values as a DNA sensor, they were measured as 5.29, 2.76, and 1.85% for 1, 1.7, and 2.8 mm microwells, respectively. These results indicated that our proposed microwell exhibited efficient performance and good reproducibility. We believe that the developed method could be potentially used for high-throughput analysis as a biosensor for DNA applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 1","pages":" 79-89"},"PeriodicalIF":6.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phebe De Keyser, Mitch de Waard, Ignaas S. M. Jimidar, Sandrien Verloy, Steven Janvier, Valentina Kalichuk, Thomas Zögg, Alexandre Wohlkönig, Els Pardon, Jan Steyaert and Gert Desmet
Many proteins, especially eukaryotic proteins, membrane proteins and protein complexes, are challenging to study because they are difficult to purify in their native state without disrupting the interactions with their partners. Hence, our lab developed a novel purification technique employing Nanobodies® (Nbs). This technique, called nanobody exchange chromatography (NANEX), utilises an immobilised low-affinity Nb to capture the target protein, which is subsequently eluted – along with its interaction partners – by introducing a high-affinity Nb. In line with the growing trend towards studying proteins in smaller sample sizes, the present study validates miniaturisation of NANEX in a packed bed microfluidic (μNANEX) chip. This μNANEX setup integrates up to five submicroliter silicon chips, enabling fully automated and reproducible purifications within minutes. Additionally, a digital twin model of the μNANEX column, which accurately predicts the effect of the reaction kinetics and mass transfer on the elution peaks, has been validated over a broad range of experimental conditions. The effectiveness of the method is demonstrated with Nbs binding to the green fluorescent protein (GFP), allowing streamlined purification of any GFP fusion protein from biological samples. Specifically, we used μNANEX to purify 0.1–1 μg of GFP-fused yeast proteins from 20 μL crude lysate and identified their interaction partners via mass spectrometry, showing that μNANEX purification preserves protein complexes.
{"title":"A nanobody-based microfluidic chip for fast and automated purification of protein complexes†","authors":"Phebe De Keyser, Mitch de Waard, Ignaas S. M. Jimidar, Sandrien Verloy, Steven Janvier, Valentina Kalichuk, Thomas Zögg, Alexandre Wohlkönig, Els Pardon, Jan Steyaert and Gert Desmet","doi":"10.1039/D4LC00728J","DOIUrl":"10.1039/D4LC00728J","url":null,"abstract":"<p >Many proteins, especially eukaryotic proteins, membrane proteins and protein complexes, are challenging to study because they are difficult to purify in their native state without disrupting the interactions with their partners. Hence, our lab developed a novel purification technique employing Nanobodies® (Nbs). This technique, called nanobody exchange chromatography (NANEX), utilises an immobilised low-affinity Nb to capture the target protein, which is subsequently eluted – along with its interaction partners – by introducing a high-affinity Nb. In line with the growing trend towards studying proteins in smaller sample sizes, the present study validates miniaturisation of NANEX in a packed bed microfluidic (μNANEX) chip. This μNANEX setup integrates up to five submicroliter silicon chips, enabling fully automated and reproducible purifications within minutes. Additionally, a digital twin model of the μNANEX column, which accurately predicts the effect of the reaction kinetics and mass transfer on the elution peaks, has been validated over a broad range of experimental conditions. The effectiveness of the method is demonstrated with Nbs binding to the green fluorescent protein (GFP), allowing streamlined purification of any GFP fusion protein from biological samples. Specifically, we used μNANEX to purify 0.1–1 μg of GFP-fused yeast proteins from 20 μL crude lysate and identified their interaction partners <em>via</em> mass spectrometry, showing that μNANEX purification preserves protein complexes.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 24","pages":" 5421-5432"},"PeriodicalIF":6.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Materials with high light-to-heat conversion efficiencies offer valuable strategies for remote heating. These materials find wide applications in photothermal therapy, water distillation, and gene delivery. In this study, we investigated a universal coating method to impart photothermal features to various surfaces. Polydopamine, a well-known adhesive material inspired by mussels, served as an intermediate layer to anchor polyethyleneimine and capture gold nanoparticles. Subsequently, the coated surface underwent electroless gold deposition to improve photothermal heating efficiency by increasing light absorption. This process was analyzed through scanning electron microscopic imaging and absorbance measurements. To demonstrate functionality, the coated surface was photothermally heated using a light-emitting diode controlled with a microprocessor, targeting the metal regulatory transcription factor 1 gene-a marker for osteoarthritis-and the S gene of the severe fever with thrombocytopenia syndrome virus. Successful amplification of the target genes was confirmed after 34 polymerase chain reaction cycles in just 12 min, verified by gel electrophoresis, demonstrating its diagnostic applicability. Overall, this simple photothermal coating method provides versatile utility, and is applicable to diverse surfaces such as membranes, tissue culture dishes, and microfluidic systems.
光热转换效率高的材料为远程加热提供了宝贵的策略。这些材料在光热治疗、水蒸馏和基因递送等领域有着广泛的应用。在这项研究中,我们研究了一种通用涂层方法,可为各种表面赋予光热特性。聚多巴胺是一种著名的粘合材料,其灵感来源于贻贝,它是固定聚乙烯亚胺和捕获金纳米粒子的中间层。随后,涂层表面进行无电解金沉积,通过增加光吸收来提高光热加热效率。我们通过扫描电子显微镜成像和吸光度测量对这一过程进行了分析。为了证明其功能,使用微处理器控制的发光二极管对涂层表面进行光热加热,目标是金属调节转录因子 1 基因(骨关节炎的标志物)和严重发热伴血小板减少综合征病毒的 S 基因。经凝胶电泳验证,在短短 12 分钟内完成 34 个聚合酶链反应循环后,目标基因被成功扩增,这证明了它在诊断方面的适用性。总之,这种简单的光热涂层方法用途广泛,适用于各种表面,如薄膜、组织培养皿和微流控系统。
{"title":"Polydopamine-mediated gold nanoparticle coating strategy and its application in photothermal polymerase chain reaction.","authors":"Woo Ri Chae, Yoon-Jae Song, Nae Yoon Lee","doi":"10.1039/d4lc00554f","DOIUrl":"10.1039/d4lc00554f","url":null,"abstract":"<p><p>Materials with high light-to-heat conversion efficiencies offer valuable strategies for remote heating. These materials find wide applications in photothermal therapy, water distillation, and gene delivery. In this study, we investigated a universal coating method to impart photothermal features to various surfaces. Polydopamine, a well-known adhesive material inspired by mussels, served as an intermediate layer to anchor polyethyleneimine and capture gold nanoparticles. Subsequently, the coated surface underwent electroless gold deposition to improve photothermal heating efficiency by increasing light absorption. This process was analyzed through scanning electron microscopic imaging and absorbance measurements. To demonstrate functionality, the coated surface was photothermally heated using a light-emitting diode controlled with a microprocessor, targeting the metal regulatory transcription factor 1 gene-a marker for osteoarthritis-and the S gene of the severe fever with thrombocytopenia syndrome virus. Successful amplification of the target genes was confirmed after 34 polymerase chain reaction cycles in just 12 min, verified by gel electrophoresis, demonstrating its diagnostic applicability. Overall, this simple photothermal coating method provides versatile utility, and is applicable to diverse surfaces such as membranes, tissue culture dishes, and microfluidic systems.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yushen Wang, Junlei Han, Wenteng Tang, Xiaolong Zhang, Jiemeng Ding, Zhipeng Xu, Wei Song, Xinyu Li, Li Wang
Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver (e.g., intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver (e.g., intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL-1). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.
{"title":"Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip.","authors":"Yushen Wang, Junlei Han, Wenteng Tang, Xiaolong Zhang, Jiemeng Ding, Zhipeng Xu, Wei Song, Xinyu Li, Li Wang","doi":"10.1039/d4lc00578c","DOIUrl":"10.1039/d4lc00578c","url":null,"abstract":"<p><p>Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver (<i>e.g.</i>, intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver (<i>e.g.</i>, intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL<sup>-1</sup>). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Vafaie, Sahar Shahali, Mohammad Reza Raveshi, Reza Nosrati and Adrian Neild
Sperm motility is a primary criterion for selecting viable and functional sperm in assisted reproduction, where the most motile sperm are used to increase the likelihood of successful conception. Traditional chemical agents to enhance motility pose embryo-toxicity risks, necessitating safer alternatives. This study investigates the use of low-intensity pulsed ultrasound exposure as a non-invasive treatment within an acoustofluidic device to maintain sperm motility. We utilized a droplet-based platform to examine the effects of repeated ultrasound pulses on single human sperm cells. Our findings demonstrate that repeated pulsed ultrasound maintains sperm motility over an hour, with significant improvements in motility parameters by at least 25% as compared to non-exposed sperm. Moreover, we show that the motility enhancements by repeated pulsed ultrasound are more significant in initially non-progressive sperm. Importantly, this method did not compromise sperm viability or DNA integrity. These results suggest a viable, sperm safe approach to enhance and maintain sperm motility, potentially improving assisted reproduction outcomes.
{"title":"Repeated pulses of ultrasound maintain sperm motility†","authors":"Ali Vafaie, Sahar Shahali, Mohammad Reza Raveshi, Reza Nosrati and Adrian Neild","doi":"10.1039/D4LC00826J","DOIUrl":"10.1039/D4LC00826J","url":null,"abstract":"<p >Sperm motility is a primary criterion for selecting viable and functional sperm in assisted reproduction, where the most motile sperm are used to increase the likelihood of successful conception. Traditional chemical agents to enhance motility pose embryo-toxicity risks, necessitating safer alternatives. This study investigates the use of low-intensity pulsed ultrasound exposure as a non-invasive treatment within an acoustofluidic device to maintain sperm motility. We utilized a droplet-based platform to examine the effects of repeated ultrasound pulses on single human sperm cells. Our findings demonstrate that repeated pulsed ultrasound maintains sperm motility over an hour, with significant improvements in motility parameters by at least 25% as compared to non-exposed sperm. Moreover, we show that the motility enhancements by repeated pulsed ultrasound are more significant in initially non-progressive sperm. Importantly, this method did not compromise sperm viability or DNA integrity. These results suggest a viable, sperm safe approach to enhance and maintain sperm motility, potentially improving assisted reproduction outcomes.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 1","pages":" 16-27"},"PeriodicalIF":6.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}