Robert Salomon, Sajad Razavi Bazaz, Kirk Mutafopulos, David Gallego-Ortega, Majid Warkiani, David Weitz, Dayong Jin
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
{"title":"Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist?","authors":"Robert Salomon, Sajad Razavi Bazaz, Kirk Mutafopulos, David Gallego-Ortega, Majid Warkiani, David Weitz, Dayong Jin","doi":"10.1039/d4lc00563e","DOIUrl":"https://doi.org/10.1039/d4lc00563e","url":null,"abstract":"<p><p>Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, <i>i.e.</i>, individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maha Shalaby, Valentina Busin, Xiaoxiang Yan, Seyda Cengiz, Mehmet Cemal Adiguzel, Jonathan M. Cooper, Taya Forde and Julien Reboud
Milk is commonly screened both for indicators of animal disease and health, but also for foodborne hazards. Included in these analyses is the detection of Staphylococcus aureus, that can produce an enterotoxin, causing staphylococcal food poisoning (SFP), which often leads to sudden onset of significant gastrointestinal symptoms in humans. Epidemiological data on SFP are limited, particularly in low- and middle-income countries. Many conventional assays for the detection of staphylococcal enterotoxins rely on the detection of the genes coding for them, either directly in food samples or after bacterial culture. Currently, many of the nucleic acid-based methods used require specific expertise and equipment, whilst bacterial culture takes 24–48 hours; both are contributory factors that limit efforts either during food safety emergencies or routine screening. Here we present the development of a “sample-to-answer” isothermal nucleic acid loop-mediated amplification (LAMP) assay in a microfluidic device for the detection of Staphylococcus aureus enterotoxin genes in ruminant milk. A multiplex LAMP assay targeting two of the most prevalent S. aureus enterotoxin-encoding genes (A and B) was integrated into a microfluidic device combining simple 1 : 10 dilution for sample preparation and a lateral flow assay for easy readout. We achieved a limit of detection of 104 colony forming units per ml in spiked cow and goat milk samples, an order of magnitude more sensitive than the European recommendation for the maximum allowable presence of coagulase-positive staphylococci in raw milk. The assay showed no cross-reactivity in detecting other tested non-enterotoxigenic S. aureus strains or associated foodborne pathogens. The test integrated the simplicity of use of microfluidic devices with the sensitivity, specificity and rapidity of a nucleic acid-based assay, and a simple lateral flow readout to provide an appropriate device to ensure the safety of milk for human consumption. To illustrate its potential for point-of-need practical applications, the test was performed in agricultural settings in rural Turkey in a limited feasibility exercise.
{"title":"Sample-to-answer microfluidic device towards the point-of-need detection of Staphylococcus aureus enterotoxin genes in ruminant milk†","authors":"Maha Shalaby, Valentina Busin, Xiaoxiang Yan, Seyda Cengiz, Mehmet Cemal Adiguzel, Jonathan M. Cooper, Taya Forde and Julien Reboud","doi":"10.1039/D4LC00907J","DOIUrl":"10.1039/D4LC00907J","url":null,"abstract":"<p >Milk is commonly screened both for indicators of animal disease and health, but also for foodborne hazards. Included in these analyses is the detection of <em>Staphylococcus aureus</em>, that can produce an enterotoxin, causing staphylococcal food poisoning (SFP), which often leads to sudden onset of significant gastrointestinal symptoms in humans. Epidemiological data on SFP are limited, particularly in low- and middle-income countries. Many conventional assays for the detection of staphylococcal enterotoxins rely on the detection of the genes coding for them, either directly in food samples or after bacterial culture. Currently, many of the nucleic acid-based methods used require specific expertise and equipment, whilst bacterial culture takes 24–48 hours; both are contributory factors that limit efforts either during food safety emergencies or routine screening. Here we present the development of a “sample-to-answer” isothermal nucleic acid loop-mediated amplification (LAMP) assay in a microfluidic device for the detection of <em>Staphylococcus aureus</em> enterotoxin genes in ruminant milk. A multiplex LAMP assay targeting two of the most prevalent <em>S. aureus</em> enterotoxin-encoding genes (A and B) was integrated into a microfluidic device combining simple 1 : 10 dilution for sample preparation and a lateral flow assay for easy readout. We achieved a limit of detection of 10<small><sup>4</sup></small> colony forming units per ml in spiked cow and goat milk samples, an order of magnitude more sensitive than the European recommendation for the maximum allowable presence of coagulase-positive staphylococci in raw milk. The assay showed no cross-reactivity in detecting other tested non-enterotoxigenic <em>S. aureus</em> strains or associated foodborne pathogens. The test integrated the simplicity of use of microfluidic devices with the sensitivity, specificity and rapidity of a nucleic acid-based assay, and a simple lateral flow readout to provide an appropriate device to ensure the safety of milk for human consumption. To illustrate its potential for point-of-need practical applications, the test was performed in agricultural settings in rural Turkey in a limited feasibility exercise.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 4","pages":" 524-535"},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00907j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi-Da Chung, Yi-Cheng Tsai, Chi-Hung Wang, Gwo-Bin Lee
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
{"title":"Aptamer selection <i>via</i> versatile microfluidic platforms and their diverse applications.","authors":"Yi-Da Chung, Yi-Cheng Tsai, Chi-Hung Wang, Gwo-Bin Lee","doi":"10.1039/d4lc00859f","DOIUrl":"https://doi.org/10.1039/d4lc00859f","url":null,"abstract":"<p><p>Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, <i>in vivo</i>-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and <i>in vivo</i>-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open droplet microfluidics is an emerging technology that generates, manipulates, and analyzes droplets in open configuration systems. Droplets function as miniaturized reactors for high-throughput analysis due to their compartmentalization and parallelization, while openness enables addressing and accessing the targeted contents. The convergence of two technologies facilitates the localization and intricate manipulation of droplets using external tools, showing great potential in large-scale chemical and biological applications, particularly in cell analysis. In this review, we first introduce various methods of droplet generation and manipulation in open environments. Next, we summarize the typical applications of open droplet systems in cell culture. Then, a comprehensive overview of cell analysis is provided, including nucleic acids, proteins, metabolites, and behaviors. Finally, we present a discussion of current challenges and perspectives in this field.
{"title":"Droplets in open microfluidics: generation, manipulation, and application in cell analysis.","authors":"Jiaxu Lin, Ying Hou, Qiang Zhang, Jin-Ming Lin","doi":"10.1039/d4lc00646a","DOIUrl":"https://doi.org/10.1039/d4lc00646a","url":null,"abstract":"<p><p>Open droplet microfluidics is an emerging technology that generates, manipulates, and analyzes droplets in open configuration systems. Droplets function as miniaturized reactors for high-throughput analysis due to their compartmentalization and parallelization, while openness enables addressing and accessing the targeted contents. The convergence of two technologies facilitates the localization and intricate manipulation of droplets using external tools, showing great potential in large-scale chemical and biological applications, particularly in cell analysis. In this review, we first introduce various methods of droplet generation and manipulation in open environments. Next, we summarize the typical applications of open droplet systems in cell culture. Then, a comprehensive overview of cell analysis is provided, including nucleic acids, proteins, metabolites, and behaviors. Finally, we present a discussion of current challenges and perspectives in this field.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chundong Xue, Yifan Yin, Xiaoyu Xu, Kai Tian, Jinghong Su, Guoqing Hu
Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications. In particular, our discourse extends to advanced multi-modal manipulation strategies that harness the combined power of these forces, revealing their enhanced efficiency and precision in complex assays and diagnostic frameworks. The integration of cutting-edge technologies such as artificial intelligence and autonomous systems further enhances the capabilities of these microfluidic platforms, leading to transformative innovations in personalized medicine and point-of-care diagnostics. This review not only highlights current technological advances, but also forecasts the trajectory of future developments, emphasizing the escalating precision and scalability essential for advancing lab-on-a-chip applications.
{"title":"Particle manipulation under X-force fields.","authors":"Chundong Xue, Yifan Yin, Xiaoyu Xu, Kai Tian, Jinghong Su, Guoqing Hu","doi":"10.1039/d4lc00794h","DOIUrl":"https://doi.org/10.1039/d4lc00794h","url":null,"abstract":"<p><p>Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications. In particular, our discourse extends to advanced multi-modal manipulation strategies that harness the combined power of these forces, revealing their enhanced efficiency and precision in complex assays and diagnostic frameworks. The integration of cutting-edge technologies such as artificial intelligence and autonomous systems further enhances the capabilities of these microfluidic platforms, leading to transformative innovations in personalized medicine and point-of-care diagnostics. This review not only highlights current technological advances, but also forecasts the trajectory of future developments, emphasizing the escalating precision and scalability essential for advancing lab-on-a-chip applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibin Xu, Zhiyi Wang, Caiming Li, Shuiquan Tian, Wenbin Du
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
{"title":"Droplet microfluidics: unveiling the hidden complexity of the human microbiome.","authors":"Yibin Xu, Zhiyi Wang, Caiming Li, Shuiquan Tian, Wenbin Du","doi":"10.1039/d4lc00877d","DOIUrl":"10.1039/d4lc00877d","url":null,"abstract":"<p><p>The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuan Mei, Ziyi Yang, Xiran Wang, Alan Shi, Joel Blanchard, Fanny Elahi, Heemin Kang, Gorka Orive, Yu Shrike Zhang
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
{"title":"Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization.","authors":"Xuan Mei, Ziyi Yang, Xiran Wang, Alan Shi, Joel Blanchard, Fanny Elahi, Heemin Kang, Gorka Orive, Yu Shrike Zhang","doi":"10.1039/d4lc00280f","DOIUrl":"https://doi.org/10.1039/d4lc00280f","url":null,"abstract":"<p><p>Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaobo Li, Yanqing Song, Andrew Glidle, Cindy Smith, William Sloan, Maggie Cusack and Huabing Yin
Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes. Using this platform, we revealed the swimming features of individual E. coli cells in response to chemoattractant and observed rapid bacterial adaptation to the gradients. Furthermore, the robust performance of the platform allowed us to investigate complex natural microbial communities. Exemplified by sorting bacteria towards soluble cellulose and lignin compounds, we found only a small percentage (<20%) of chemotactic bacteria from a leaf mould microbiota exhibited cellulolytic or lignin-degradation abilities. These findings highlight that chemotaxis does not always align with degradation abilities. Interestingly, a new Erwinia aphidicola strain was discovered with substantial cellulose degradation capabilities. These results illustrate the strong potential of this microfluidic platform for investigating broad processes involving bacterial chemotaxis and for discovering functional microbes.
{"title":"A simple three-dimensional microfluidic platform for studying chemotaxis and cell sorting†","authors":"Xiaobo Li, Yanqing Song, Andrew Glidle, Cindy Smith, William Sloan, Maggie Cusack and Huabing Yin","doi":"10.1039/D4LC00892H","DOIUrl":"10.1039/D4LC00892H","url":null,"abstract":"<p >Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes. Using this platform, we revealed the swimming features of individual <em>E. coli</em> cells in response to chemoattractant and observed rapid bacterial adaptation to the gradients. Furthermore, the robust performance of the platform allowed us to investigate complex natural microbial communities. Exemplified by sorting bacteria towards soluble cellulose and lignin compounds, we found only a small percentage (<20%) of chemotactic bacteria from a leaf mould microbiota exhibited cellulolytic or lignin-degradation abilities. These findings highlight that chemotaxis does not always align with degradation abilities. Interestingly, a new <em>Erwinia aphidicola</em> strain was discovered with substantial cellulose degradation capabilities. These results illustrate the strong potential of this microfluidic platform for investigating broad processes involving bacterial chemotaxis and for discovering functional microbes.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 3","pages":" 343-353"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00892h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marti Z. Hua, Jinxin Liu, Tianqi Li, David R. McMullin, Yaxi Hu and Xiaonan Lu
Mycotoxins are detectable in 60–80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput. This study reports the development of a repackable microfluidic molecularly imprinted solid-phase extraction coupled with mass spectrometry (μMISPE-MS) method for rapid detection of zearalenone in agri-food samples. Silica microspheres coated with molecularly imprinted polymers were synthesized as the sorbent for analyte enrichment and sample clean-up. A cost-effective microfluidic chip was designed and fabricated as the μMISPE platform with fully automated operation, including on-line microcolumn packing and unpacking. With optimized solvent conditions and on-chip μMISPE protocol, the entire analytical process from sample to answer was completed within 15 min and achieved high recoveries (71–94%) for corn and rice samples at residue levels of 0.05–0.5 ppm (within Canadian regulatory limits of 0.2–10 ppm). This μMISPE-MS method provides a promising tool for improving mycotoxin monitoring in agri-food systems and is generalizable to other rapid analyses of targeted chemicals in complex matrices.
{"title":"Repackable microfluidic molecularly imprinted solid-phase extraction coupled with mass spectrometry (μMISPE-MS) for rapid analysis of mycotoxin in agri-foods: an example of zearalenone","authors":"Marti Z. Hua, Jinxin Liu, Tianqi Li, David R. McMullin, Yaxi Hu and Xiaonan Lu","doi":"10.1039/D4LC00760C","DOIUrl":"10.1039/D4LC00760C","url":null,"abstract":"<p >Mycotoxins are detectable in 60–80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput. This study reports the development of a repackable microfluidic molecularly imprinted solid-phase extraction coupled with mass spectrometry (μMISPE-MS) method for rapid detection of zearalenone in agri-food samples. Silica microspheres coated with molecularly imprinted polymers were synthesized as the sorbent for analyte enrichment and sample clean-up. A cost-effective microfluidic chip was designed and fabricated as the μMISPE platform with fully automated operation, including on-line microcolumn packing and unpacking. With optimized solvent conditions and on-chip μMISPE protocol, the entire analytical process from sample to answer was completed within 15 min and achieved high recoveries (71–94%) for corn and rice samples at residue levels of 0.05–0.5 ppm (within Canadian regulatory limits of 0.2–10 ppm). This μMISPE-MS method provides a promising tool for improving mycotoxin monitoring in agri-food systems and is generalizable to other rapid analyses of targeted chemicals in complex matrices.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 4","pages":" 546-556"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Martinelli, Alberto Bocconi, Sofia Milone, Teresa Baldissera, Leonardo Cherubin, Giovanni Buccioli, Simone Perottoni, Claudio Conci, Giulio Cerullo, Roberto Osellame, Giuseppe Chirico, Emanuela Jacchetti and Manuela Teresa Raimondi
The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, in vitro tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies. In this work, we designed and validated a tridimensional microstructured dynamic model of the dermal perivascular microenvironment on a chip. We carried out the fabrication of an array of microstructures by two-photon laser polymerization, then used as a 3D substrate for co-culture of human dermal fibroblasts and endothelial cells. We included the substrate in a miniaturized optically accessible bioreactor (MOAB) which provides the physiological interstitial flow, upon perfusion in the presence or absence of the pro-angiogenic stimuli VEGF and TGF-β1. We determined the parameters to be applied under dynamic conditions by an in silico model simulating individual 3D microenvironments within the bioreactor's chambers. We computed the fluid velocity and wall shear stress acting on endothelial cells along with the oxygen concentration profile, and we chose the most suitable flow rate for maintaining dermal physiological conditions. Experimental results showed the effectiveness of the developed platform as a 3D dynamic model of angiogenesis. This is the first combined experimental and computational study involving chemically stimulated 3D co-cultures for successfully simulating the physiological dermal perivascular microenvironment.
{"title":"A 3D millifluidic model of a dermal perivascular microenvironment on a chip†","authors":"Chiara Martinelli, Alberto Bocconi, Sofia Milone, Teresa Baldissera, Leonardo Cherubin, Giovanni Buccioli, Simone Perottoni, Claudio Conci, Giulio Cerullo, Roberto Osellame, Giuseppe Chirico, Emanuela Jacchetti and Manuela Teresa Raimondi","doi":"10.1039/D4LC00898G","DOIUrl":"10.1039/D4LC00898G","url":null,"abstract":"<p >The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, <em>in vitro</em> tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies. In this work, we designed and validated a tridimensional microstructured dynamic model of the dermal perivascular microenvironment on a chip. We carried out the fabrication of an array of microstructures by two-photon laser polymerization, then used as a 3D substrate for co-culture of human dermal fibroblasts and endothelial cells. We included the substrate in a miniaturized optically accessible bioreactor (MOAB) which provides the physiological interstitial flow, upon perfusion in the presence or absence of the pro-angiogenic stimuli VEGF and TGF-β1. We determined the parameters to be applied under dynamic conditions by an <em>in silico</em> model simulating individual 3D microenvironments within the bioreactor's chambers. We computed the fluid velocity and wall shear stress acting on endothelial cells along with the oxygen concentration profile, and we chose the most suitable flow rate for maintaining dermal physiological conditions. Experimental results showed the effectiveness of the developed platform as a 3D dynamic model of angiogenesis. This is the first combined experimental and computational study involving chemically stimulated 3D co-cultures for successfully simulating the physiological dermal perivascular microenvironment.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 3","pages":" 423-439"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}