首页 > 最新文献

Behavioral and Brain Functions最新文献

英文 中文
Commercial video games and cognitive functions: video game genres and modulating factors of cognitive enhancement. 商业电子游戏和认知功能:电子游戏类型和认知增强的调节因素。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2020-02-03 DOI: 10.1186/s12993-020-0165-z
Eunhye Choi, Suk-Ho Shin, Jeh-Kwang Ryu, Kyu-In Jung, Shin-Young Kim, Min-Hyeon Park

Background: Unlike the emphasis on negative results of video games such as the impulsive engagement in video games, cognitive training studies in individuals with cognitive deficits showed that characteristics of video game elements were helpful to train cognitive functions. Thus, this study aimed to have a more balanced view toward the video game playing by reviewing genres of commercial video games and the association of video games with cognitive functions and modulating factors. Literatures were searched with search terms (e.g. genres of video games, cognitive training) on database and Google scholar.

Results: video games, of which purpose is players' entertainment, were found to be positively associated with cognitive functions (e.g. attention, problem solving skills) despite some discrepancy between studies. However, the enhancement of cognitive functions through video gaming was limited to the task or performance requiring the same cognitive functions. Moreover, as several factors (e.g. age, gender) were identified to modulate cognitive enhancement, the individual difference in the association between video game playing and cognitive function was found.

Conclusion: Commercial video games are suggested to have the potential for cognitive function enhancement. As understanding the association between video gaming and cognitive function in a more balanced view is essential to evaluate the potential outcomes of commercial video games that more people reported to engage, this review contributes to provide more objective evidence for commercial video gaming.

背景:与强调电子游戏的负面结果(如电子游戏中的冲动性参与)不同,对认知缺陷个体的认知训练研究表明,电子游戏元素的特征有助于训练认知功能。因此,本研究旨在通过回顾商业电子游戏的类型以及电子游戏与认知功能和调节因素之间的联系,对电子游戏玩法有一个更平衡的看法。通过检索词(如电子游戏类型、认知训练)在数据库和Google scholar上检索文献。结果:尽管研究结果存在差异,但以玩家娱乐为目的的电子游戏与认知功能(如注意力、解决问题的能力)呈正相关。然而,通过电子游戏增强认知功能仅限于需要相同认知功能的任务或表现。此外,随着一些因素(如年龄,性别)被确定为调节认知增强,电子游戏玩和认知功能之间的关联的个体差异也被发现。结论:商业电子游戏被认为具有增强认知功能的潜力。从更平衡的角度理解电子游戏和认知功能之间的关系对于评估更多人参与的商业电子游戏的潜在结果至关重要,这篇综述有助于为商业电子游戏提供更客观的证据。
{"title":"Commercial video games and cognitive functions: video game genres and modulating factors of cognitive enhancement.","authors":"Eunhye Choi,&nbsp;Suk-Ho Shin,&nbsp;Jeh-Kwang Ryu,&nbsp;Kyu-In Jung,&nbsp;Shin-Young Kim,&nbsp;Min-Hyeon Park","doi":"10.1186/s12993-020-0165-z","DOIUrl":"https://doi.org/10.1186/s12993-020-0165-z","url":null,"abstract":"<p><strong>Background: </strong>Unlike the emphasis on negative results of video games such as the impulsive engagement in video games, cognitive training studies in individuals with cognitive deficits showed that characteristics of video game elements were helpful to train cognitive functions. Thus, this study aimed to have a more balanced view toward the video game playing by reviewing genres of commercial video games and the association of video games with cognitive functions and modulating factors. Literatures were searched with search terms (e.g. genres of video games, cognitive training) on database and Google scholar.</p><p><strong>Results: </strong>video games, of which purpose is players' entertainment, were found to be positively associated with cognitive functions (e.g. attention, problem solving skills) despite some discrepancy between studies. However, the enhancement of cognitive functions through video gaming was limited to the task or performance requiring the same cognitive functions. Moreover, as several factors (e.g. age, gender) were identified to modulate cognitive enhancement, the individual difference in the association between video game playing and cognitive function was found.</p><p><strong>Conclusion: </strong>Commercial video games are suggested to have the potential for cognitive function enhancement. As understanding the association between video gaming and cognitive function in a more balanced view is essential to evaluate the potential outcomes of commercial video games that more people reported to engage, this review contributes to provide more objective evidence for commercial video gaming.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"16 1","pages":"2"},"PeriodicalIF":5.1,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-020-0165-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37606465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Sexual dimorphism in cognitive disorders in a murine model of neuropathic pain. 神经性疼痛小鼠模型认知障碍中的两性二态性。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2020-01-04 DOI: 10.1186/s12993-019-0164-0
Soonmi Won, Keebum Park, Hyoungsub Lim, Sung Joong Lee

Background: A sex-difference in susceptibility to chronic pain is well-known. Although recent studies have begun to reveal the sex-dependent mechanisms of nerve injury-induced pain sensitization, sex differences in the affective and cognitive brain dysfunctions associated with chronic pain have not been investigated. Therefore, we tested whether chronic pain leads to affective and cognitive disorders in a mouse neuropathic pain model and whether those disorders are sexually dimorphic.

Methods: Chronic neuropathic pain was induced in male and female mice by L5 spinal nerve transection (SNT) injury. Pain sensitivity was measured with the von Frey test. Affective behaviors such as depression and anxiety were assessed by the forced swim, tail suspension, and open field tests. Cognitive brain function was assessed with the Morris water maze and the novel object location and novel object recognition tests.

Results: Mechanical allodynia was induced and maintained for up to 8 weeks after SNT in both male and female mice. Depressive- and anxiety-like behaviors were observed 8 weeks post-SNT injury regardless of sex. Chronic pain-induced cognitive deficits measured with the Morris water maze and novel object location test were seen only in male mice, not in female mice.

Conclusions: Chronic neuropathic pain is accompanied by anxiety- and depressive-like behaviors in a mouse model regardless of sex, and male mice are more vulnerable than female mice to chronic pain-associated cognitive deficits.

背景:慢性疼痛易感性的性别差异是众所周知的。尽管最近的研究已经开始揭示神经损伤诱导的疼痛敏感化的性别依赖机制,但与慢性疼痛相关的情感和认知脑功能障碍的性别差异尚未得到研究。因此,我们在小鼠神经性疼痛模型中测试了慢性疼痛是否会导致情感和认知障碍,以及这些障碍是否具有两性二态性。方法:采用L5脊髓神经横断(SNT)损伤诱导雌雄小鼠慢性神经性疼痛。用von Frey试验测量疼痛敏感性。通过强迫游泳、悬尾和野外测试来评估抑郁和焦虑等情感行为。采用Morris水迷宫、新目标定位和新目标识别测试评估脑认知功能。结果:雄性和雌性小鼠在SNT后均能诱导并维持机械异常性疼痛长达8周。不论性别,在snt损伤后8周观察到抑郁和焦虑样行为。用Morris水迷宫和新物体定位测试测量的慢性疼痛引起的认知缺陷只在雄性小鼠中发现,而在雌性小鼠中没有发现。结论:在小鼠模型中,慢性神经性疼痛伴焦虑和抑郁样行为,雄性小鼠比雌性小鼠更容易出现慢性疼痛相关的认知缺陷。
{"title":"Sexual dimorphism in cognitive disorders in a murine model of neuropathic pain.","authors":"Soonmi Won,&nbsp;Keebum Park,&nbsp;Hyoungsub Lim,&nbsp;Sung Joong Lee","doi":"10.1186/s12993-019-0164-0","DOIUrl":"https://doi.org/10.1186/s12993-019-0164-0","url":null,"abstract":"<p><strong>Background: </strong>A sex-difference in susceptibility to chronic pain is well-known. Although recent studies have begun to reveal the sex-dependent mechanisms of nerve injury-induced pain sensitization, sex differences in the affective and cognitive brain dysfunctions associated with chronic pain have not been investigated. Therefore, we tested whether chronic pain leads to affective and cognitive disorders in a mouse neuropathic pain model and whether those disorders are sexually dimorphic.</p><p><strong>Methods: </strong>Chronic neuropathic pain was induced in male and female mice by L5 spinal nerve transection (SNT) injury. Pain sensitivity was measured with the von Frey test. Affective behaviors such as depression and anxiety were assessed by the forced swim, tail suspension, and open field tests. Cognitive brain function was assessed with the Morris water maze and the novel object location and novel object recognition tests.</p><p><strong>Results: </strong>Mechanical allodynia was induced and maintained for up to 8 weeks after SNT in both male and female mice. Depressive- and anxiety-like behaviors were observed 8 weeks post-SNT injury regardless of sex. Chronic pain-induced cognitive deficits measured with the Morris water maze and novel object location test were seen only in male mice, not in female mice.</p><p><strong>Conclusions: </strong>Chronic neuropathic pain is accompanied by anxiety- and depressive-like behaviors in a mouse model regardless of sex, and male mice are more vulnerable than female mice to chronic pain-associated cognitive deficits.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"16 1","pages":"1"},"PeriodicalIF":5.1,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0164-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37511556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Traumatic injury in female Drosophila melanogaster affects the development and induces behavioral abnormalities in the offspring 雌性黑腹果蝇的创伤性损伤会影响其后代的发育并诱发其行为异常
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-10-25 DOI: 10.1186/s12993-019-0163-1
V. Chauhan, A. Chauhan
{"title":"Traumatic injury in female Drosophila melanogaster affects the development and induces behavioral abnormalities in the offspring","authors":"V. Chauhan, A. Chauhan","doi":"10.1186/s12993-019-0163-1","DOIUrl":"https://doi.org/10.1186/s12993-019-0163-1","url":null,"abstract":"","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"26 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74575218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Course | School of Brain Cells & Circuits “Camillo Golgi”: From cell physiology to integrated signals and emerging brain functions 课程|脑细胞与电路学院“卡米洛·高尔基”:从细胞生理学到综合信号和新兴脑功能
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-08-13 DOI: 10.3389/978-2-88945-584-3
{"title":"Course | School of Brain Cells & Circuits “Camillo Golgi”: From cell physiology to integrated signals and emerging brain functions","authors":"","doi":"10.3389/978-2-88945-584-3","DOIUrl":"https://doi.org/10.3389/978-2-88945-584-3","url":null,"abstract":"","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"30 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84693245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age and cognitive status dependent differences in blood steroid and thyroid hormone concentrations in intact male rats. 完整雄性大鼠血液类固醇和甲状腺激素浓度的年龄和认知状态依赖性差异。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-06-30 DOI: 10.1186/s12993-019-0161-3
Jovana Maliković, Daniel Daba Feyissa, Predrag Kalaba, Babak Saber Marouf, Harald Höger, Michaela F Hartmann, Stefan A Wudy, Gerhard Schuler, Gert Lubec, Jana Aradska, Volker Korz

Background: Age-dependent alterations of hormonal states have been considered to be involved in age related decline of cognitive abilities. Most of the studies in animal models are based on hormonal substitution in adrenal- and/or gonadectomized rodents or infusion of steroid hormones in intact rats. Moreover, the manipulations have been done timely, closely related to test procedures, thus reflecting short-term hormonal mechanisms in the regulation of learning and memory. Here we studied whether more general states of steroid and thyroid hormone profiles, independent from acute experiences, may possibly reflect long-term learning capacity. A large cohort of aged (17-18 months) intact male rats were tested in a spatial hole-board learning task and a subset of inferior and superior learners was included into the analysis. Young male adult rats (16 weeks of age) were also tested. Four to 8 weeks after testing blood plasma samples were taken and hormone concentrations of a variety of steroid hormones were measured by gas chromatography-tandem mass spectrometry or radioimmunoassay (17β-estradiol, thyroid hormones).

Results: Aged good learners were similar to young rats in the behavioral task. Aged poor learners but not good learners showed higher levels of triiodothyronine (T3) as compared to young rats. Aged good learners had higher levels of thyroid stimulating hormone (TSH) than aged poor learning and young rats. Both aged good and poor learners showed significantly reduced levels of testosterone (T), 4-androstenedione (4A), androstanediol-3α,17β (AD), dihydrotestosterone (DHT), 17-hydroxyprogesterone (17OHP), higher levels of progesterone (Prog) and similar levels of 17β-estradiol (E2) as compared to young rats. The learning, but not the memory indices of all rats were significantly and positively correlated with levels of dihydrotestosterone, androstanediol-3α,17β and thyroxine (T4), when the impacts of age and cognitive division were eliminated by partial correlation analyses.

Conclusion: The correlation of hormone concentrations of individuals with individual behavior revealed a possible specific role of these androgen and thyroid hormones in a state of general preparedness to learn.

背景:激素状态的年龄依赖性改变被认为与年龄相关的认知能力下降有关。大多数动物模型的研究都是基于肾上腺和/或性腺去角质啮齿动物的激素替代或完整大鼠的类固醇激素输注。此外,这些操作都是及时的,与测试程序密切相关,从而反映了学习和记忆调节中的短期激素机制。在这里,我们研究了类固醇和甲状腺激素谱的一般状态是否独立于急性经验,可能反映长期学习能力。我们对17-18个月的成年雄性大鼠进行了空间孔板学习任务测试,并将学习能力较差和较强的大鼠分别纳入分析。年轻雄性成年大鼠(16周龄)也进行了测试。检测后4 ~ 8周,取血浆标本,采用气相色谱-串联质谱法或放射免疫分析法(17β-雌二醇、甲状腺激素)测定多种类固醇激素的激素浓度。结果:老年良好学习者在行为任务上与青年大鼠相似。与年轻大鼠相比,学习能力差但学习能力不佳的老年大鼠的三碘甲状腺原氨酸(T3)水平更高。老年学习能力强的大鼠的促甲状腺激素(TSH)水平高于老年学习能力差的大鼠和年轻大鼠。与年轻大鼠相比,老年学习成绩好的和学习成绩差的大鼠睾酮(T)、4-雄烯二酮(4A)、雄烯二醇-3α、17β (AD)、二氢睾酮(DHT)、17-羟基孕酮(17OHP)水平均显著降低,孕酮(Prog)水平较高,17β -雌二醇(E2)水平相似。在部分相关分析中消除年龄和认知划分的影响后,所有大鼠的学习指标与双氢睾酮、雄甾二醇-3α、17β和甲状腺素(T4)水平呈显著正相关,而记忆指标与之呈显著正相关。结论:个体激素浓度与个体行为的相关性揭示了这些雄激素和甲状腺激素在一般学习准备状态中的特定作用。
{"title":"Age and cognitive status dependent differences in blood steroid and thyroid hormone concentrations in intact male rats.","authors":"Jovana Maliković,&nbsp;Daniel Daba Feyissa,&nbsp;Predrag Kalaba,&nbsp;Babak Saber Marouf,&nbsp;Harald Höger,&nbsp;Michaela F Hartmann,&nbsp;Stefan A Wudy,&nbsp;Gerhard Schuler,&nbsp;Gert Lubec,&nbsp;Jana Aradska,&nbsp;Volker Korz","doi":"10.1186/s12993-019-0161-3","DOIUrl":"https://doi.org/10.1186/s12993-019-0161-3","url":null,"abstract":"<p><strong>Background: </strong>Age-dependent alterations of hormonal states have been considered to be involved in age related decline of cognitive abilities. Most of the studies in animal models are based on hormonal substitution in adrenal- and/or gonadectomized rodents or infusion of steroid hormones in intact rats. Moreover, the manipulations have been done timely, closely related to test procedures, thus reflecting short-term hormonal mechanisms in the regulation of learning and memory. Here we studied whether more general states of steroid and thyroid hormone profiles, independent from acute experiences, may possibly reflect long-term learning capacity. A large cohort of aged (17-18 months) intact male rats were tested in a spatial hole-board learning task and a subset of inferior and superior learners was included into the analysis. Young male adult rats (16 weeks of age) were also tested. Four to 8 weeks after testing blood plasma samples were taken and hormone concentrations of a variety of steroid hormones were measured by gas chromatography-tandem mass spectrometry or radioimmunoassay (17β-estradiol, thyroid hormones).</p><p><strong>Results: </strong>Aged good learners were similar to young rats in the behavioral task. Aged poor learners but not good learners showed higher levels of triiodothyronine (T3) as compared to young rats. Aged good learners had higher levels of thyroid stimulating hormone (TSH) than aged poor learning and young rats. Both aged good and poor learners showed significantly reduced levels of testosterone (T), 4-androstenedione (4A), androstanediol-3α,17β (AD), dihydrotestosterone (DHT), 17-hydroxyprogesterone (17OHP), higher levels of progesterone (Prog) and similar levels of 17β-estradiol (E2) as compared to young rats. The learning, but not the memory indices of all rats were significantly and positively correlated with levels of dihydrotestosterone, androstanediol-3α,17β and thyroxine (T4), when the impacts of age and cognitive division were eliminated by partial correlation analyses.</p><p><strong>Conclusion: </strong>The correlation of hormone concentrations of individuals with individual behavior revealed a possible specific role of these androgen and thyroid hormones in a state of general preparedness to learn.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"10"},"PeriodicalIF":5.1,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0161-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37375864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. 睡茄对双酚 A 诱导的小鼠认知功能障碍和氧化应激的神经保护作用
IF 4.7 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-05-07 DOI: 10.1186/s12993-019-0160-4
Hareram Birla, Chetan Keswani, Sachchida Nand Rai, Saumitra Sen Singh, Walia Zahra, Hagera Dilnashin, Aaina Singh Rathore, Surya Pratap Singh

Background: Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase.

Results: The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain.

Conclusion: These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.

背景:双酚 A(BPA)是一种主要的内分泌干扰物和异生物化合物,被大量用于聚碳酸酯塑料和环氧树脂的生产。人类接触这种化合物的主要途径是从容器内部环氧树脂保护涂层中渗入食品和饮料中。此外,义齿和密封剂中使用的塑料也含有大量双酚 A,人体接触的风险很高。由于双酚 A 是一种众所周知的内分泌干扰物,与人体雌激素的分子结构相似,因此会影响学习和记忆。Withania somnifera(Ws),俗称 Ashwagandha,因其在阿育吠陀医学体系中的多种治疗用途而闻名。本研究旨在证明双酚 A 对瑞士白化小鼠空间学习和工作记忆的影响,以及 Ws 对这种影响的缓解作用。研究对象是 30 只瑞士白化小鼠,随机分为三组:对照组、双酚 A 组和双酚 A + Ws 组。使用 Ws 治疗后,小鼠的行为恢复情况通过 Y-玉米试验和莫里斯水玉米试验进行了调查。此外,还通过 Western 印迹和免疫组化技术评估了海马区与学习和记忆有关的 NMDA 受体的恢复情况。此外,还通过 MDA、SOD 和过氧化氢酶等生化测试评估了氧化应激和抗氧化水平:研究结果表明,服用 Ws 可减轻双酚 A 引起的行为缺陷。此外,Ws 还能恢复海马区 NMDA 受体的数量,并显示出抗氧化特性,同时改善大脑中的内源性抗氧化剂水平:这些研究结果表明,Ws 能明显改善双酚 A 中毒的氧化应激水平,从而有可能治疗作为多种神经退行性疾病主要症状的认知功能障碍。
{"title":"Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice.","authors":"Hareram Birla, Chetan Keswani, Sachchida Nand Rai, Saumitra Sen Singh, Walia Zahra, Hagera Dilnashin, Aaina Singh Rathore, Surya Pratap Singh","doi":"10.1186/s12993-019-0160-4","DOIUrl":"10.1186/s12993-019-0160-4","url":null,"abstract":"<p><strong>Background: </strong>Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase.</p><p><strong>Results: </strong>The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain.</p><p><strong>Conclusion: </strong>These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"9"},"PeriodicalIF":4.7,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37217971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebellar activation associated with model-based estimation of tool-use consequences. 与基于模型的工具使用后果估计相关的小脑激活。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-04-16 DOI: 10.1186/s12993-019-0158-y
Sayako Ueda, Hiroyuki Sakai, Kenichi Ueno, Kang Cheng, Takatsune Kumada

Background: Dexterous tool use is considered to be underpinned by model-based control relying on acquired internal models of tools. In particular, this is the case in situations where available sensory feedback regarding the consequences of tool use is restricted. In the present study, we conducted an fMRI study to identify cerebellar involvement in model-based estimation of tool-use consequences using tracking tasks with different levels of visual feedback.

Methods: Twenty healthy right-handed adults participated in this study. These participants tracked a moving target on a screen with a cursor controlled by a joystick using their right hand during fMRI scanning. For each trial, the level of visual feedback for cursor position was randomly selected from three task conditions, namely, Precise, Obscure, and No conditions.

Results: A conjunction analysis across all task conditions found extensive activation of the right cerebellum, covering the anterior lobe (lobule V) and inferior posterior lobe (lobule VIII). Also, contrasts among the three task conditions revealed additional significant activation of the left superior posterior lobe (Crus I) in the No compared to the Precise condition. Furthermore, a post hoc psychophysiological interaction analysis revealed conditional modulation of functional coupling between the right, but not the left, cerebellar region and right frontoparietal regions that are involved in self-body perception.

Conclusions: Our data show that the left Crus I is the only region that was more active in a condition where no visual feedback for cursor position was available. This suggests that the left Crus I region plays a role in model-based estimation of tool-use consequences based on an acquired internal model of tools.

背景:灵巧的工具使用被认为是基于模型的控制的基础,依赖于获得的工具内部模型。特别是,在关于工具使用后果的可用感官反馈受到限制的情况下,情况就是如此。在本研究中,我们进行了一项功能磁共振成像研究,以确定小脑参与基于模型的工具使用后果估计,使用跟踪任务具有不同水平的视觉反馈。方法:20名健康的右撇子成人参与本研究。在fMRI扫描过程中,这些参与者用右手操纵杆控制光标,追踪屏幕上移动的目标。在每个试验中,光标位置的视觉反馈水平随机从三个任务条件中选择,即精确、模糊和无条件。结果:对所有任务条件的联合分析发现,右小脑广泛激活,覆盖前叶(小叶V)和下后叶(小叶VIII)。此外,三种任务条件之间的对比显示,与精确条件相比,No条件下左上后叶(小腿I)的激活更为显著。此外,一项事后心理生理相互作用分析揭示了参与自我身体感知的右脑和右额顶区域之间的功能耦合的条件调节,而不是左脑和右额顶区域。结论:我们的数据显示,在没有光标位置的视觉反馈的情况下,左小腿是唯一一个更活跃的区域。这表明左小腿I区域在基于获得的工具内部模型的基于模型的工具使用后果估计中起作用。
{"title":"Cerebellar activation associated with model-based estimation of tool-use consequences.","authors":"Sayako Ueda,&nbsp;Hiroyuki Sakai,&nbsp;Kenichi Ueno,&nbsp;Kang Cheng,&nbsp;Takatsune Kumada","doi":"10.1186/s12993-019-0158-y","DOIUrl":"https://doi.org/10.1186/s12993-019-0158-y","url":null,"abstract":"<p><strong>Background: </strong>Dexterous tool use is considered to be underpinned by model-based control relying on acquired internal models of tools. In particular, this is the case in situations where available sensory feedback regarding the consequences of tool use is restricted. In the present study, we conducted an fMRI study to identify cerebellar involvement in model-based estimation of tool-use consequences using tracking tasks with different levels of visual feedback.</p><p><strong>Methods: </strong>Twenty healthy right-handed adults participated in this study. These participants tracked a moving target on a screen with a cursor controlled by a joystick using their right hand during fMRI scanning. For each trial, the level of visual feedback for cursor position was randomly selected from three task conditions, namely, Precise, Obscure, and No conditions.</p><p><strong>Results: </strong>A conjunction analysis across all task conditions found extensive activation of the right cerebellum, covering the anterior lobe (lobule V) and inferior posterior lobe (lobule VIII). Also, contrasts among the three task conditions revealed additional significant activation of the left superior posterior lobe (Crus I) in the No compared to the Precise condition. Furthermore, a post hoc psychophysiological interaction analysis revealed conditional modulation of functional coupling between the right, but not the left, cerebellar region and right frontoparietal regions that are involved in self-body perception.</p><p><strong>Conclusions: </strong>Our data show that the left Crus I is the only region that was more active in a condition where no visual feedback for cursor position was available. This suggests that the left Crus I region plays a role in model-based estimation of tool-use consequences based on an acquired internal model of tools.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"8"},"PeriodicalIF":5.1,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0158-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37160627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. 在“大数据”时代,利用黑腹果蝇研究酒精使用障碍。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-04-16 DOI: 10.1186/s12993-019-0159-x
Gregory L Engel, Kreager Taber, Elizabeth Vinton, Amanda J Crocker

Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.

我们对酒精使用障碍(AUD)相关基因和蛋白质功能网络的理解仍然不完整,这些网络导致AUD表型的机制也是如此。果蝇(Drosophila melanogaster)是一种有效的酒精行为相关基因功能和机制表征模型。苍蝇作为一种模式生物,在研究酒精相关行为的分子和细胞机制,以及理解潜在的神经回路驱动行为方面,如运动刺激、镇静、耐受以及食欲(奖励)学习和记忆方面,具有许多优势。苍蝇研究人员能够使用各种各样的工具对基因产物进行功能表征。为了了解在大数据时代,苍蝇如何引导我们理解AUD,我们将探索这些工具,并回顾通过使用它们在苍蝇中鉴定的一些基因网络,包括染色质重塑、神经胶质、细胞应激和先天免疫基因。这些网络作为转化药物靶点具有巨大的潜力,因此对这些基因机制如何参与酒精行为进行进一步研究是谨慎的。
{"title":"Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'.","authors":"Gregory L Engel,&nbsp;Kreager Taber,&nbsp;Elizabeth Vinton,&nbsp;Amanda J Crocker","doi":"10.1186/s12993-019-0159-x","DOIUrl":"10.1186/s12993-019-0159-x","url":null,"abstract":"<p><p>Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"7"},"PeriodicalIF":5.1,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0159-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37321896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Consequences of multilingualism for neural architecture. 多语言对神经结构的影响。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-03-25 DOI: 10.1186/s12993-019-0157-z
Sayuri Hayakawa, Viorica Marian

Language has the power to shape cognition, behavior, and even the form and function of the brain. Technological and scientific developments have recently yielded an increasingly diverse set of tools with which to study the way language changes neural structures and processes. Here, we review research investigating the consequences of multilingualism as revealed by brain imaging. A key feature of multilingual cognition is that two or more languages can become activated at the same time, requiring mechanisms to control interference. Consequently, extensive experience managing multiple languages can influence cognitive processes as well as their neural correlates. We begin with a brief discussion of how bilinguals activate language, and of the brain regions implicated in resolving language conflict. We then review evidence for the pervasive impact of bilingual experience on the function and structure of neural networks that support linguistic and non-linguistic cognitive control, speech processing and production, and language learning. We conclude that even seemingly distinct effects of language on cognitive operations likely arise from interdependent functions, and that future work directly exploring the interactions between multiple levels of processing could offer a more comprehensive view of how language molds the mind.

语言有能力塑造认知、行为,甚至大脑的形式和功能。技术和科学的发展最近产生了一套越来越多样化的工具来研究语言改变神经结构和过程的方式。在此,我们回顾了由脑成像揭示的关于多语言使用后果的研究。多语言认知的一个关键特征是两种或两种以上的语言可以同时被激活,这需要控制干扰的机制。因此,管理多种语言的丰富经验会影响认知过程及其神经关联。我们首先简要讨论双语者如何激活语言,以及涉及解决语言冲突的大脑区域。然后,我们回顾了双语经验对支持语言和非语言认知控制、语音处理和产生以及语言学习的神经网络功能和结构的普遍影响的证据。我们得出的结论是,即使是看似不同的语言对认知操作的影响,也可能来自于相互依存的功能,未来的工作直接探索多层处理之间的相互作用,可以为语言如何塑造思维提供更全面的视角。
{"title":"Consequences of multilingualism for neural architecture.","authors":"Sayuri Hayakawa,&nbsp;Viorica Marian","doi":"10.1186/s12993-019-0157-z","DOIUrl":"https://doi.org/10.1186/s12993-019-0157-z","url":null,"abstract":"<p><p>Language has the power to shape cognition, behavior, and even the form and function of the brain. Technological and scientific developments have recently yielded an increasingly diverse set of tools with which to study the way language changes neural structures and processes. Here, we review research investigating the consequences of multilingualism as revealed by brain imaging. A key feature of multilingual cognition is that two or more languages can become activated at the same time, requiring mechanisms to control interference. Consequently, extensive experience managing multiple languages can influence cognitive processes as well as their neural correlates. We begin with a brief discussion of how bilinguals activate language, and of the brain regions implicated in resolving language conflict. We then review evidence for the pervasive impact of bilingual experience on the function and structure of neural networks that support linguistic and non-linguistic cognitive control, speech processing and production, and language learning. We conclude that even seemingly distinct effects of language on cognitive operations likely arise from interdependent functions, and that future work directly exploring the interactions between multiple levels of processing could offer a more comprehensive view of how language molds the mind.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"6"},"PeriodicalIF":5.1,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0157-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37264799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats. 运动皮质与疼痛控制:健康意识大鼠下行中继镇痛通路和脊髓痛觉神经元的探索。
IF 5.1 2区 心理学 Q1 BEHAVIORAL SCIENCES Pub Date : 2019-03-25 DOI: 10.1186/s12993-019-0156-0
Patrícia Sanae Souza Lopes, Ana Carolina Pinheiro Campos, Erich Talamoni Fonoff, Luiz Roberto Giorgetti Britto, Rosana Lima Pagano

Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.

运动皮质刺激(MCS)是治疗难治性神经性疼痛的有效方法。MCS通过内源性阿片样物质提高健康大鼠的伤害阈值,抑制丘脑核并激活导水管周围灰质。在没有持续性疼痛的情况下,运动皮层如何诱导自上而下的疼痛调节仍不清楚。在此,我们研究了参与下行镇痛通路的主要核和脊髓伤害性神经元,并通过爪压伤害性试验对大鼠进行了评估。采用免疫反应性(IR)对Egr-1(神经元核激活标志物)进行评价,观察中缝背核(DRN)、中缝大核(NRM)、蓝斑(LC)和脊髓背角(DHSC)神经元的激活模式。对DRN和NRM血清素(5HT)、LC中酪氨酸羟化酶(TH)、DHSC中P物质(SP)和脑啡肽(ENK)的IR也进行了评估。MCS增加了动物的伤害知觉阈值;这种增加伴随着NRM的激活,而DRN的激活不变。然而,皮质刺激诱导两个血清素能核的5HT-IR增加。MCS不改变LC中的激活模式和TH-IR,抑制DHSC中的神经元激活,而不改变SP和ENK-IR。综上所述,我们的研究结果表明,MCS诱导了血清素能核的激活以及脊髓神经元的抑制,这种影响可能有助于提高健康大鼠的伤害阈值。这些结果使我们能够更好地理解在基础条件下MCS诱导的自上而下的抗痛觉效应所涉及的电路,加强初级运动皮层在疼痛控制中的作用。
{"title":"Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats.","authors":"Patrícia Sanae Souza Lopes,&nbsp;Ana Carolina Pinheiro Campos,&nbsp;Erich Talamoni Fonoff,&nbsp;Luiz Roberto Giorgetti Britto,&nbsp;Rosana Lima Pagano","doi":"10.1186/s12993-019-0156-0","DOIUrl":"https://doi.org/10.1186/s12993-019-0156-0","url":null,"abstract":"<p><p>Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"5"},"PeriodicalIF":5.1,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0156-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37264794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
期刊
Behavioral and Brain Functions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1