Background: With increased social pressure, individuals face a high risk of depression. Subsequently, depression affects cognitive behaviour and negatively impacts daily life. Fortunately, the Traditional Chinese Medicine Jia Wei Xiao Yao (JWXY) capsule is effective in reducing depression and improving cognitive behaviour.
Methods: The constituents of JWXY capsule were identified by ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry analyses. We analysed behaviours of depression-like zebrafish in the novel tank with an automatic 3D video-tracking system and conducted the colour preference test, as well detected physiological changes after sertraline and JWXY capsule treatments.
Results: Both sertraline and JWXY capsule rescued the decreased locomotive behaviour and depression phenotype of zebrafish caused by reserpine. JWXY capsule especially improved the inhibited exploratory behaviour caused by reserpine. In addition, with the onset of depressive behaviour, zebrafish exhibited alterations in cognitive behaviour as indicated by colour preference changes. However, compared with sertraline, JWXY capsule was more efficaciously in rescuing this change in the colour preference pattern. Moreover, an increased level of cortisol, increased expression of tyrosine hydroxylase (TH) and decreased monoamine neurotransmitters, including serotonin (5-HT) and noradrenaline, were involved in the depressive behaviours. In addition, sertraline and JWXY capsule rescued the depressive phenotype and cognitive behaviour of zebrafish by altering the levels of endogenous cortisol and monoamine neurotransmitters.
Conclusions: JWXY capsule was more effectively than sertraline in rescuing reserpine-induced depression and cognitive disorder in zebrafish. Potentially, our study can provide new insights into the clinical treatment of depression and the mechanism of action of JWXY capsule.
{"title":"Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM).","authors":"Shuhui Zhang, Xiaodong Liu, Mingzhu Sun, Qiuping Zhang, Teng Li, Xiang Li, Jia Xu, Xin Zhao, Dongyan Chen, Xizeng Feng","doi":"10.1186/s12993-018-0145-8","DOIUrl":"https://doi.org/10.1186/s12993-018-0145-8","url":null,"abstract":"<p><strong>Background: </strong>With increased social pressure, individuals face a high risk of depression. Subsequently, depression affects cognitive behaviour and negatively impacts daily life. Fortunately, the Traditional Chinese Medicine Jia Wei Xiao Yao (JWXY) capsule is effective in reducing depression and improving cognitive behaviour.</p><p><strong>Methods: </strong>The constituents of JWXY capsule were identified by ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry analyses. We analysed behaviours of depression-like zebrafish in the novel tank with an automatic 3D video-tracking system and conducted the colour preference test, as well detected physiological changes after sertraline and JWXY capsule treatments.</p><p><strong>Results: </strong>Both sertraline and JWXY capsule rescued the decreased locomotive behaviour and depression phenotype of zebrafish caused by reserpine. JWXY capsule especially improved the inhibited exploratory behaviour caused by reserpine. In addition, with the onset of depressive behaviour, zebrafish exhibited alterations in cognitive behaviour as indicated by colour preference changes. However, compared with sertraline, JWXY capsule was more efficaciously in rescuing this change in the colour preference pattern. Moreover, an increased level of cortisol, increased expression of tyrosine hydroxylase (TH) and decreased monoamine neurotransmitters, including serotonin (5-HT) and noradrenaline, were involved in the depressive behaviours. In addition, sertraline and JWXY capsule rescued the depressive phenotype and cognitive behaviour of zebrafish by altering the levels of endogenous cortisol and monoamine neurotransmitters.</p><p><strong>Conclusions: </strong>JWXY capsule was more effectively than sertraline in rescuing reserpine-induced depression and cognitive disorder in zebrafish. Potentially, our study can provide new insights into the clinical treatment of depression and the mechanism of action of JWXY capsule.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"13"},"PeriodicalIF":5.1,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0145-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36218824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-08DOI: 10.1186/s12993-018-0144-9
Jiacai Yang, Lin Zhang, Jian-Ping Dai, Jun Zeng, Xiao-Xuan Chen, Ze-Feng Xie, Kang-Sheng Li, Yun Su
Background: Predatory stress as a psychological stressor can elicit the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is involved in the dialogue of the neuroimmunoendocrine network. The brain has been proven to regulate the activity of the HPA axis by way of lateralization. In the present study, we probed the pivotal elements of the HPA circuitry including CRH, GR and a multifunctional cytokine in behavior-lateralized mice to determine their changes when the animals were subjected to predator exposure.
Methods: Behavior-lateralized mice were classified into left-pawed and right-pawed mice through a paw-preference test. Thereafter, mice in the acute stress group received a single 60-min cat exposure, and mice in the chronic group received daily 60-min cat exposure for 14 consecutive days. The plasma CS and TNF-α were determined by ELISA, the hypothalamic CRH mRNA and hippocampal GR mRNA were detected by real-time PCR, and the hippocampal GR protein was detected by western blot analysis.
Results: The results revealed that the levels of plasma CS were significantly elevated after chronic predatory exposure in both right-pawed and left-pawed mice; the right-pawed mice exhibited a higher plasma CS level than the left-pawed mice. Similarly, the acute or chronic cat exposure could induce the release of plasma TNF-α, and the left-pawed mice tended to show a higher level after the acute stress. Chronic stress significantly upregulated the expression of hypothalamic CRH mRNA in both left-pawed and right-pawed mice. Normally, the left-pawed mice exhibited a higher GR expression in the hippocampus than the right-pawed mice. After the cat exposure, the expression of GR in both left-pawed and right-pawed mice was revealed to be greatly downregulated.
Conclusion: Our findings indicate that predatory stress can invoke a differential response of stressful elements in behavior-lateralized mice. Some of these responses shaped by behavioral lateralization might be helpful for facilitating adaption to various stimuli.
背景:掠食性应激作为一种心理应激源可引起下丘脑-垂体-肾上腺(HPA)轴的激活,该轴参与神经免疫内分泌网络的对话。大脑已被证明通过侧化的方式调节下丘脑轴的活动。在本研究中,我们研究了行为侧化小鼠HPA回路的关键元件,包括CRH、GR和多功能细胞因子,以确定它们在捕食者暴露时的变化。方法:将行为偏侧小鼠分为左爪小鼠和右爪小鼠。此后,急性应激组小鼠接受单次60分钟猫暴露,慢性应激组小鼠连续14天每天接受60分钟猫暴露。ELISA法检测血浆CS和TNF-α, real-time PCR法检测下丘脑CRH mRNA和海马GR mRNA, western blot法检测海马GR蛋白。结果:右脚和左脚小鼠慢性掠食性暴露后血浆CS水平均显著升高;右撇子小鼠的血浆CS水平高于左撇子小鼠。同样,急性或慢性猫暴露均可诱导血浆TNF-α的释放,且左爪小鼠在急性应激后往往表现出更高的水平。慢性应激显著上调左、右脚小鼠下丘脑CRH mRNA的表达。正常情况下,左爪小鼠海马GR表达高于右爪小鼠。猫暴露后,左、右爪小鼠中GR的表达均明显下调。结论:我们的研究结果表明,掠夺性应激可以引起行为侧化小鼠应激因素的差异反应。其中一些由行为侧化形成的反应可能有助于促进对各种刺激的适应。
{"title":"Differential responses of stressful elements to predatory exposure in behavior-lateralized mice.","authors":"Jiacai Yang, Lin Zhang, Jian-Ping Dai, Jun Zeng, Xiao-Xuan Chen, Ze-Feng Xie, Kang-Sheng Li, Yun Su","doi":"10.1186/s12993-018-0144-9","DOIUrl":"https://doi.org/10.1186/s12993-018-0144-9","url":null,"abstract":"<p><strong>Background: </strong>Predatory stress as a psychological stressor can elicit the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is involved in the dialogue of the neuroimmunoendocrine network. The brain has been proven to regulate the activity of the HPA axis by way of lateralization. In the present study, we probed the pivotal elements of the HPA circuitry including CRH, GR and a multifunctional cytokine in behavior-lateralized mice to determine their changes when the animals were subjected to predator exposure.</p><p><strong>Methods: </strong>Behavior-lateralized mice were classified into left-pawed and right-pawed mice through a paw-preference test. Thereafter, mice in the acute stress group received a single 60-min cat exposure, and mice in the chronic group received daily 60-min cat exposure for 14 consecutive days. The plasma CS and TNF-α were determined by ELISA, the hypothalamic CRH mRNA and hippocampal GR mRNA were detected by real-time PCR, and the hippocampal GR protein was detected by western blot analysis.</p><p><strong>Results: </strong>The results revealed that the levels of plasma CS were significantly elevated after chronic predatory exposure in both right-pawed and left-pawed mice; the right-pawed mice exhibited a higher plasma CS level than the left-pawed mice. Similarly, the acute or chronic cat exposure could induce the release of plasma TNF-α, and the left-pawed mice tended to show a higher level after the acute stress. Chronic stress significantly upregulated the expression of hypothalamic CRH mRNA in both left-pawed and right-pawed mice. Normally, the left-pawed mice exhibited a higher GR expression in the hippocampus than the right-pawed mice. After the cat exposure, the expression of GR in both left-pawed and right-pawed mice was revealed to be greatly downregulated.</p><p><strong>Conclusion: </strong>Our findings indicate that predatory stress can invoke a differential response of stressful elements in behavior-lateralized mice. Some of these responses shaped by behavioral lateralization might be helpful for facilitating adaption to various stimuli.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"12"},"PeriodicalIF":5.1,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0144-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36207335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-18DOI: 10.1186/s12993-018-0143-x
Theresa S Emser, Blair A Johnston, J Douglas Steele, Sandra Kooij, Lisa Thorell, Hanna Christiansen
Background: Diagnostic guidelines recommend using a variety of methods to assess and diagnose ADHD. Applying subjective measures always incorporates risks such as informant biases or large differences between ratings obtained from diverse sources. Furthermore, it has been demonstrated that ratings and tests seem to assess somewhat different constructs. The use of objective measures might thus yield valuable information for diagnosing ADHD. This study aims at evaluating the role of objective measures when trying to distinguish between individuals with ADHD and controls. Our sample consisted of children (n = 60) and adults (n = 76) diagnosed with ADHD and matched controls who completed self- and observer ratings as well as objective tasks. Diagnosis was primarily based on clinical interviews. A popular pattern recognition approach, support vector machines, was used to predict the diagnosis.
Results: We observed relatively high accuracy of 79% (adults) and 78% (children) applying solely objective measures. Predicting an ADHD diagnosis using both subjective and objective measures exceeded the accuracy of objective measures for both adults (89.5%) and children (86.7%), with the subjective variables proving to be the most relevant.
Conclusions: We argue that objective measures are more robust against rater bias and errors inherent in subjective measures and may be more replicable. Considering the high accuracy of objective measures only, we found in our study, we think that they should be incorporated in diagnostic procedures for assessing ADHD.
{"title":"Assessing ADHD symptoms in children and adults: evaluating the role of objective measures.","authors":"Theresa S Emser, Blair A Johnston, J Douglas Steele, Sandra Kooij, Lisa Thorell, Hanna Christiansen","doi":"10.1186/s12993-018-0143-x","DOIUrl":"https://doi.org/10.1186/s12993-018-0143-x","url":null,"abstract":"<p><strong>Background: </strong>Diagnostic guidelines recommend using a variety of methods to assess and diagnose ADHD. Applying subjective measures always incorporates risks such as informant biases or large differences between ratings obtained from diverse sources. Furthermore, it has been demonstrated that ratings and tests seem to assess somewhat different constructs. The use of objective measures might thus yield valuable information for diagnosing ADHD. This study aims at evaluating the role of objective measures when trying to distinguish between individuals with ADHD and controls. Our sample consisted of children (n = 60) and adults (n = 76) diagnosed with ADHD and matched controls who completed self- and observer ratings as well as objective tasks. Diagnosis was primarily based on clinical interviews. A popular pattern recognition approach, support vector machines, was used to predict the diagnosis.</p><p><strong>Results: </strong>We observed relatively high accuracy of 79% (adults) and 78% (children) applying solely objective measures. Predicting an ADHD diagnosis using both subjective and objective measures exceeded the accuracy of objective measures for both adults (89.5%) and children (86.7%), with the subjective variables proving to be the most relevant.</p><p><strong>Conclusions: </strong>We argue that objective measures are more robust against rater bias and errors inherent in subjective measures and may be more replicable. Considering the high accuracy of objective measures only, we found in our study, we think that they should be incorporated in diagnostic procedures for assessing ADHD.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"11"},"PeriodicalIF":5.1,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0143-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36111397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-15DOI: 10.1186/s12993-018-0142-y
Hongyu Xu, Yuqin Ye, Yelu Hao, Fei Shi, Zhiqiang Yan, Guohao Yuan, Yuefan Yang, Zhou Fei, Xiaosheng He
Background and objective: Adverse early-life experiences have been suggested as one of the key contributors to neurodevelopmental disorders, such that these experiences influence brain development, cognitive ability and mental health. Previous studies indicated that hippocampal levels of the calcium-binding proteins calretinin (CALR) and calbindin-D28k (CALB) changed in response to maternal deprivation (MD), a model for adverse early-life experiences. We investigated the effects of MD on hippocampal CALR and CALB protein levels and cognitive behaviors, and explored whether these effects were sex-related.
Methods: From postnatal day 2 (PND-2) to PND-14, rat pups in the MD group were separated from their mothers for 3 h/day for comparison with pups raised normally (control). To determine hippocampal CALR and CALB levels, fluorescent immunostaining of hippocampal sections and Western blot analysis of hippocampal tissues were employed at various timepoints (PND-21, -25, -30, -35 and -40). Behavioral and cognitive changes were determined by open field test (PND-21) and Morris water maze (PND-25).
Results: Western blot analysis showed changes in the hippocampal CALR and CALB levels in both male and female MD groups, compared with controls. The open field test showed reduced exploration only in male MD groups but not female MD groups. The Morris water maze tests indicated that MD caused spatial memory impairment both in male and female rats, but there was a sex difference in CALR and CALB levels.
Conclusions: Male rats are relatively more vulnerable to MD stress than female rats, but both male and female rats demonstrate spatial learning impairment after exposure to MD stress. Sex difference in CALR and CALB levels may reveal the different mechanisms behind the behavioral observations.
{"title":"Sex differences in associations between maternal deprivation and alterations in hippocampal calcium-binding proteins and cognitive functions in rats.","authors":"Hongyu Xu, Yuqin Ye, Yelu Hao, Fei Shi, Zhiqiang Yan, Guohao Yuan, Yuefan Yang, Zhou Fei, Xiaosheng He","doi":"10.1186/s12993-018-0142-y","DOIUrl":"https://doi.org/10.1186/s12993-018-0142-y","url":null,"abstract":"<p><strong>Background and objective: </strong>Adverse early-life experiences have been suggested as one of the key contributors to neurodevelopmental disorders, such that these experiences influence brain development, cognitive ability and mental health. Previous studies indicated that hippocampal levels of the calcium-binding proteins calretinin (CALR) and calbindin-D28k (CALB) changed in response to maternal deprivation (MD), a model for adverse early-life experiences. We investigated the effects of MD on hippocampal CALR and CALB protein levels and cognitive behaviors, and explored whether these effects were sex-related.</p><p><strong>Methods: </strong>From postnatal day 2 (PND-2) to PND-14, rat pups in the MD group were separated from their mothers for 3 h/day for comparison with pups raised normally (control). To determine hippocampal CALR and CALB levels, fluorescent immunostaining of hippocampal sections and Western blot analysis of hippocampal tissues were employed at various timepoints (PND-21, -25, -30, -35 and -40). Behavioral and cognitive changes were determined by open field test (PND-21) and Morris water maze (PND-25).</p><p><strong>Results: </strong>Western blot analysis showed changes in the hippocampal CALR and CALB levels in both male and female MD groups, compared with controls. The open field test showed reduced exploration only in male MD groups but not female MD groups. The Morris water maze tests indicated that MD caused spatial memory impairment both in male and female rats, but there was a sex difference in CALR and CALB levels.</p><p><strong>Conclusions: </strong>Male rats are relatively more vulnerable to MD stress than female rats, but both male and female rats demonstrate spatial learning impairment after exposure to MD stress. Sex difference in CALR and CALB levels may reveal the different mechanisms behind the behavioral observations.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"10"},"PeriodicalIF":5.1,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0142-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36097265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-10DOI: 10.1186/s12993-018-0141-z
Julia Mock, Stefan Huber, Johannes Bloechle, Julia F Dietrich, Julia Bahnmueller, Johannes Rennig, Elise Klein, Korbinian Moeller
Background: Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates.
Methods: We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated.
Results: A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats.
Conclusion: Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.
{"title":"Magnitude processing of symbolic and non-symbolic proportions: an fMRI study.","authors":"Julia Mock, Stefan Huber, Johannes Bloechle, Julia F Dietrich, Julia Bahnmueller, Johannes Rennig, Elise Klein, Korbinian Moeller","doi":"10.1186/s12993-018-0141-z","DOIUrl":"https://doi.org/10.1186/s12993-018-0141-z","url":null,"abstract":"<p><strong>Background: </strong>Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates.</p><p><strong>Methods: </strong>We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated.</p><p><strong>Results: </strong>A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats.</p><p><strong>Conclusion: </strong>Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"9"},"PeriodicalIF":5.1,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0141-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36089764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-10DOI: 10.1186/s12993-018-0140-0
Yuqin Deng, Xiaochun Wang, Yan Wang, Chenglin Zhou
Background: Interference resolution refers to cognitive control processes enabling one to focus on task-related information while filtering out unrelated information. But the exact neural areas, which underlie a specific cognitive task on interference resolution, are still equivocal. The multi-source interference task (MSIT), as a particular cognitive task, is a well-established experimental paradigm used to evaluate interference resolution. Studies combining the MSIT with functional magnetic resonance imaging (fMRI) have shown that the MSIT evokes the dorsal anterior cingulate cortex (dACC) and cingulate-frontal-parietal cognitive-attentional networks. However, these brain areas have not been evaluated quantitatively and these findings have not been replicated.
Methods: In the current study, we firstly report a voxel-based meta-analysis of functional brain activation associated with the MSIT so as to identify the localization of interference resolution in such a specific cognitive task. Articles on MSIT-related fMRI published between 2003 and July 2017 were eligible. The electronic databases searched included PubMed, Web of Knowledge, and Google Scholar. Differential BOLD activation patterns between the incongruent and congruent condition were meta-analyzed in anisotropic effect-size signed differential mapping software.
Results: Robustness meta-analysis indicated that two significant activation clusters were shown to have reliable functional activity in comparisons between incongruent and congruent conditions. The first reliable activation cluster, which included the dACC, medial prefrontal cortex, supplementary motor area, replicated the previous MSIT-related fMRI study results. Furthermore, we found another reliable activation cluster comprising areas of the right insula, right inferior frontal gyrus, and right lenticular nucleus-putamen, which were not typically discussed in previous MSIT-related fMRI studies.
Conclusions: The current meta-analysis study presents the reliable brain activation patterns on MSIT. These findings suggest that the cingulate-frontal-striatum network and right insula may allow control demands to resolve interference on MSIT. These results provide new insights into the neural mechanisms underlying interference resolution.
背景:干扰消解是指将注意力集中在与任务相关的信息上,过滤掉与任务无关的信息的认知控制过程。但是,在干扰解决的特定认知任务的基础上,确切的神经区域仍然是模棱两可的。多源干扰任务(MSIT)作为一种特殊的认知任务,是一种成熟的用于评估干扰解决的实验范式。将MSIT与功能磁共振成像(fMRI)相结合的研究表明,MSIT唤醒了背前扣带皮层(dACC)和扣带-额-顶叶认知-注意网络。然而,这些大脑区域还没有被定量评估,这些发现也没有被复制。方法:在本研究中,我们首次报道了一项基于体素的脑功能激活与MSIT相关的meta分析,以确定干扰解决在这一特定认知任务中的定位。2003年至2017年7月期间发表的与msit相关的fMRI文章符合条件。搜索的电子数据库包括PubMed、Web of Knowledge和Google Scholar。在各向异性效应大小符号差分映射软件中对不一致和一致条件下不同的BOLD激活模式进行meta分析。结果:稳健性荟萃分析表明,在不一致和一致条件的比较中,两个显著的激活簇显示出可靠的功能活动。第一个可靠的激活簇,包括dACC、内侧前额叶皮层、辅助运动区,复制了之前与msit相关的fMRI研究结果。此外,我们还发现了另一个可靠的激活簇,包括右脑岛、右额下回和右荚状核-壳核区域,这些区域在之前的msit相关的fMRI研究中没有被典型地讨论过。结论:目前的荟萃分析研究提供了可靠的MSIT脑激活模式。这些发现表明,扣带-额叶-纹状体网络和右脑岛可能允许控制需求来解决对MSIT的干扰。这些结果为干扰解决的神经机制提供了新的见解。
{"title":"Neural correlates of interference resolution in the multi-source interference task: a meta-analysis of functional neuroimaging studies.","authors":"Yuqin Deng, Xiaochun Wang, Yan Wang, Chenglin Zhou","doi":"10.1186/s12993-018-0140-0","DOIUrl":"https://doi.org/10.1186/s12993-018-0140-0","url":null,"abstract":"<p><strong>Background: </strong>Interference resolution refers to cognitive control processes enabling one to focus on task-related information while filtering out unrelated information. But the exact neural areas, which underlie a specific cognitive task on interference resolution, are still equivocal. The multi-source interference task (MSIT), as a particular cognitive task, is a well-established experimental paradigm used to evaluate interference resolution. Studies combining the MSIT with functional magnetic resonance imaging (fMRI) have shown that the MSIT evokes the dorsal anterior cingulate cortex (dACC) and cingulate-frontal-parietal cognitive-attentional networks. However, these brain areas have not been evaluated quantitatively and these findings have not been replicated.</p><p><strong>Methods: </strong>In the current study, we firstly report a voxel-based meta-analysis of functional brain activation associated with the MSIT so as to identify the localization of interference resolution in such a specific cognitive task. Articles on MSIT-related fMRI published between 2003 and July 2017 were eligible. The electronic databases searched included PubMed, Web of Knowledge, and Google Scholar. Differential BOLD activation patterns between the incongruent and congruent condition were meta-analyzed in anisotropic effect-size signed differential mapping software.</p><p><strong>Results: </strong>Robustness meta-analysis indicated that two significant activation clusters were shown to have reliable functional activity in comparisons between incongruent and congruent conditions. The first reliable activation cluster, which included the dACC, medial prefrontal cortex, supplementary motor area, replicated the previous MSIT-related fMRI study results. Furthermore, we found another reliable activation cluster comprising areas of the right insula, right inferior frontal gyrus, and right lenticular nucleus-putamen, which were not typically discussed in previous MSIT-related fMRI studies.</p><p><strong>Conclusions: </strong>The current meta-analysis study presents the reliable brain activation patterns on MSIT. These findings suggest that the cingulate-frontal-striatum network and right insula may allow control demands to resolve interference on MSIT. These results provide new insights into the neural mechanisms underlying interference resolution.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"8"},"PeriodicalIF":5.1,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0140-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35995472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Following a social defeat, the balanced establishment and extinction of aversive information is a beneficial strategy for individual survival. Abnormal establishment or extinction is implicated in the development of mental disorders. This study investigated the time course of the establishment and extinction of aversive information from acute social defeat and the temporal responsiveness of the basolateral amygdala (BLA), ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) in this process.
Methods: Mouse models of acute social defeat were established by using the resident-intruder paradigm. To evaluate the engram of social defeat, the intruder mice were placed into the novel context at designated time to test the social behavior. Furthermore, responses of BLA, vHIP and mPFC were investigated by analyzing the expression of immediate early genes, such as zif268, arc, and c-fos.
Results: The results showed after an aggressive attack, aversive memory was maintained for approximately 7 days before gradually diminishing. The establishment and maintenance of aversive stimulation were consistently accompanied by BLA activity. By contrast, vHIP and mPFC response was inhibited from this process. Additionally, injecting muscimol (Mus), a GABA receptor agonist, into the BLA alleviated the freezing behavior and social fear and avoidance. Simultaneously, Mus treatment decreased the zif268 and arc expression in BLA, but it increased their expression in vHIP.
Conclusion: Our data support and extend earlier findings that implicate BLA, vHIP and mPFC in social defeat. The time courses of the establishment and extinction of social defeat are particularly consistent with the contrasting BLA and vHIP responses involved in this process.
{"title":"Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear.","authors":"Chu-Chu Qi, Qing-Jun Wang, Xue-Zhu Ma, Hai-Chao Chen, Li-Ping Gao, Jie Yin, Yu-Hong Jing","doi":"10.1186/s12993-018-0139-6","DOIUrl":"https://doi.org/10.1186/s12993-018-0139-6","url":null,"abstract":"<p><strong>Background: </strong>Following a social defeat, the balanced establishment and extinction of aversive information is a beneficial strategy for individual survival. Abnormal establishment or extinction is implicated in the development of mental disorders. This study investigated the time course of the establishment and extinction of aversive information from acute social defeat and the temporal responsiveness of the basolateral amygdala (BLA), ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) in this process.</p><p><strong>Methods: </strong>Mouse models of acute social defeat were established by using the resident-intruder paradigm. To evaluate the engram of social defeat, the intruder mice were placed into the novel context at designated time to test the social behavior. Furthermore, responses of BLA, vHIP and mPFC were investigated by analyzing the expression of immediate early genes, such as zif268, arc, and c-fos.</p><p><strong>Results: </strong>The results showed after an aggressive attack, aversive memory was maintained for approximately 7 days before gradually diminishing. The establishment and maintenance of aversive stimulation were consistently accompanied by BLA activity. By contrast, vHIP and mPFC response was inhibited from this process. Additionally, injecting muscimol (Mus), a GABA receptor agonist, into the BLA alleviated the freezing behavior and social fear and avoidance. Simultaneously, Mus treatment decreased the zif268 and arc expression in BLA, but it increased their expression in vHIP.</p><p><strong>Conclusion: </strong>Our data support and extend earlier findings that implicate BLA, vHIP and mPFC in social defeat. The time courses of the establishment and extinction of social defeat are particularly consistent with the contrasting BLA and vHIP responses involved in this process.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"7"},"PeriodicalIF":5.1,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0139-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35928751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Action semantics have been investigated in relation to context violation but remain less examined in relation to the meaning of gestures. In the present study, we examined tool-gesture incongruity by event-related potentials (ERPs) and hypothesized that the component N400, a neural index which has been widely used in both linguistic and action semantic congruence, is significant for conditions of incongruence.
Methods: Twenty participants performed a tool-gesture judgment task, in which they were asked to judge whether the tool-gesture pairs were correct or incorrect, for the purpose of conveying functional expression of the tools. Online electroencephalograms and behavioral performances (the accuracy rate and reaction time) were recorded.
Results: The ERP analysis showed a left centro-parieto-temporal N300 effect (220-360 ms) for the correct condition. However, the expected N400 (400-550 ms) could not be differentiated between correct/incorrect conditions. After 700 ms, a prominent late negative complex for the correct condition was also found in the left centro-parieto-temporal area.
Conclusions: The neurophysiological findings indicated that the left centro-parieto-temporal area is the predominant region contributing to neural processing for tool-gesture incongruity in right-handers. The temporal dynamics of tool-gesture incongruity are: (1) firstly enhanced for recognizable tool-gesture using patterns, (2) and require a secondary reanalysis for further examination of the highly complicated visual structures of gestures and tools. The evidence from the tool-gesture incongruity indicated altered brain activities attributable to the N400 in relation to lexical and action semantics. The online interaction between gesture and tool processing provided minimal context violation or anticipation effect, which may explain the missing N400.
{"title":"Left centro-parieto-temporal response to tool-gesture incongruity: an ERP study.","authors":"Yi-Tzu Chang, Hsiang-Yu Chen, Yuan-Chieh Huang, Wan-Yu Shih, Hsiao-Lung Chan, Ping-Yi Wu, Ling-Fu Meng, Chen-Chi Chen, Ching-I Wang","doi":"10.1186/s12993-018-0138-7","DOIUrl":"https://doi.org/10.1186/s12993-018-0138-7","url":null,"abstract":"<p><strong>Background: </strong>Action semantics have been investigated in relation to context violation but remain less examined in relation to the meaning of gestures. In the present study, we examined tool-gesture incongruity by event-related potentials (ERPs) and hypothesized that the component N400, a neural index which has been widely used in both linguistic and action semantic congruence, is significant for conditions of incongruence.</p><p><strong>Methods: </strong>Twenty participants performed a tool-gesture judgment task, in which they were asked to judge whether the tool-gesture pairs were correct or incorrect, for the purpose of conveying functional expression of the tools. Online electroencephalograms and behavioral performances (the accuracy rate and reaction time) were recorded.</p><p><strong>Results: </strong>The ERP analysis showed a left centro-parieto-temporal N300 effect (220-360 ms) for the correct condition. However, the expected N400 (400-550 ms) could not be differentiated between correct/incorrect conditions. After 700 ms, a prominent late negative complex for the correct condition was also found in the left centro-parieto-temporal area.</p><p><strong>Conclusions: </strong>The neurophysiological findings indicated that the left centro-parieto-temporal area is the predominant region contributing to neural processing for tool-gesture incongruity in right-handers. The temporal dynamics of tool-gesture incongruity are: (1) firstly enhanced for recognizable tool-gesture using patterns, (2) and require a secondary reanalysis for further examination of the highly complicated visual structures of gestures and tools. The evidence from the tool-gesture incongruity indicated altered brain activities attributable to the N400 in relation to lexical and action semantics. The online interaction between gesture and tool processing provided minimal context violation or anticipation effect, which may explain the missing N400.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"6"},"PeriodicalIF":5.1,"publicationDate":"2018-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0138-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35909472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-10DOI: 10.1186/s12993-018-0137-8
Christina Artemenko, Mojtaba Soltanlou, Ann-Christine Ehlis, Hans-Christoph Nuerk, Thomas Dresler
Background: Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm.
Results: A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity.
Conclusions: In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
{"title":"The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.","authors":"Christina Artemenko, Mojtaba Soltanlou, Ann-Christine Ehlis, Hans-Christoph Nuerk, Thomas Dresler","doi":"10.1186/s12993-018-0137-8","DOIUrl":"10.1186/s12993-018-0137-8","url":null,"abstract":"<p><strong>Background: </strong>Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm.</p><p><strong>Results: </strong>A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity.</p><p><strong>Conclusions: </strong>In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"5"},"PeriodicalIF":5.1,"publicationDate":"2018-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0137-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35901257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-20DOI: 10.1186/s12993-018-0135-x
Noémi Ágnes Varga, Klára Pentelényi, Péter Balicza, András Gézsi, Viktória Reményi, Vivien Hársfalvi, Renáta Bencsik, Anett Illés, Csilla Prekop, Mária Judit Molnár
Background: The etiology of autism spectrum disorders (ASD) is very heterogeneous. Mitochondrial dysfunction has been described in ASD; however, primary mitochondrial disease has been genetically proven in a small subset of patients. The main goal of the present study was to investigate correlations between mitochondrial DNA (mtDNA) changes and alterations of genes associated with mtDNA maintenance or ASD.
Methods: Sixty patients with ASD and sixty healthy individuals were screened for common mtDNA mutations. Next generation sequencing was performed on patients with major mtDNA deletions (mtdel-ASD) using two gene panels to investigate nuclear genes that are associated with ASD or are responsible for mtDNA maintenance. Cohorts of healthy controls, ASD patients without mtDNA alterations, and patients with mitochondrial disorders (non-ASD) harbouring mtDNA deletions served as comparison groups.
Results: MtDNA deletions were confirmed in 16.6% (10/60) of patients with ASD (mtdel-ASD). In 90% of this mtdel-ASD children we found rare SNVs in ASD-associated genes (one of those was pathogenic). In the intergenomic panel of this cohort one likely pathogenic variant was present. In patients with mitochondrial disease in genes responsible for mtDNA maintenance pathogenic mutations and variants of uncertain significance (VUS) were detected more frequently than those found in patients from the mtdel-ASD or other comparison groups. In healthy controls and in patients without a mtDNA deletion, only VUS were detected in both panel.
Conclusions: MtDNA alterations are more common in patients with ASD than in control individuals. MtDNA deletions are not isolated genetic alterations found in ASD; they coexist either with other ASD-associated genetic risk factors or with alterations in genes responsible for intergenomic communication. These findings indicate that mitochondrial dysfunction is not rare in ASD. The occurring mtDNA deletions in ASD may be mostly a consequence of the alterations of the causative culprit genes for autism or genes responsible for mtDNA maintenance, or because of the harmful effect of environmental factors.
{"title":"Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion.","authors":"Noémi Ágnes Varga, Klára Pentelényi, Péter Balicza, András Gézsi, Viktória Reményi, Vivien Hársfalvi, Renáta Bencsik, Anett Illés, Csilla Prekop, Mária Judit Molnár","doi":"10.1186/s12993-018-0135-x","DOIUrl":"https://doi.org/10.1186/s12993-018-0135-x","url":null,"abstract":"<p><strong>Background: </strong>The etiology of autism spectrum disorders (ASD) is very heterogeneous. Mitochondrial dysfunction has been described in ASD; however, primary mitochondrial disease has been genetically proven in a small subset of patients. The main goal of the present study was to investigate correlations between mitochondrial DNA (mtDNA) changes and alterations of genes associated with mtDNA maintenance or ASD.</p><p><strong>Methods: </strong>Sixty patients with ASD and sixty healthy individuals were screened for common mtDNA mutations. Next generation sequencing was performed on patients with major mtDNA deletions (mtdel-ASD) using two gene panels to investigate nuclear genes that are associated with ASD or are responsible for mtDNA maintenance. Cohorts of healthy controls, ASD patients without mtDNA alterations, and patients with mitochondrial disorders (non-ASD) harbouring mtDNA deletions served as comparison groups.</p><p><strong>Results: </strong>MtDNA deletions were confirmed in 16.6% (10/60) of patients with ASD (mtdel-ASD). In 90% of this mtdel-ASD children we found rare SNVs in ASD-associated genes (one of those was pathogenic). In the intergenomic panel of this cohort one likely pathogenic variant was present. In patients with mitochondrial disease in genes responsible for mtDNA maintenance pathogenic mutations and variants of uncertain significance (VUS) were detected more frequently than those found in patients from the mtdel-ASD or other comparison groups. In healthy controls and in patients without a mtDNA deletion, only VUS were detected in both panel.</p><p><strong>Conclusions: </strong>MtDNA alterations are more common in patients with ASD than in control individuals. MtDNA deletions are not isolated genetic alterations found in ASD; they coexist either with other ASD-associated genetic risk factors or with alterations in genes responsible for intergenomic communication. These findings indicate that mitochondrial dysfunction is not rare in ASD. The occurring mtDNA deletions in ASD may be mostly a consequence of the alterations of the causative culprit genes for autism or genes responsible for mtDNA maintenance, or because of the harmful effect of environmental factors.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"4"},"PeriodicalIF":5.1,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0135-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35844101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}