Pub Date : 2019-04-16DOI: 10.1186/s12993-019-0159-x
Gregory L Engel, Kreager Taber, Elizabeth Vinton, Amanda J Crocker
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
{"title":"Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'.","authors":"Gregory L Engel, Kreager Taber, Elizabeth Vinton, Amanda J Crocker","doi":"10.1186/s12993-019-0159-x","DOIUrl":"10.1186/s12993-019-0159-x","url":null,"abstract":"<p><p>Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"7"},"PeriodicalIF":5.1,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0159-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37321896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-25DOI: 10.1186/s12993-019-0157-z
Sayuri Hayakawa, Viorica Marian
Language has the power to shape cognition, behavior, and even the form and function of the brain. Technological and scientific developments have recently yielded an increasingly diverse set of tools with which to study the way language changes neural structures and processes. Here, we review research investigating the consequences of multilingualism as revealed by brain imaging. A key feature of multilingual cognition is that two or more languages can become activated at the same time, requiring mechanisms to control interference. Consequently, extensive experience managing multiple languages can influence cognitive processes as well as their neural correlates. We begin with a brief discussion of how bilinguals activate language, and of the brain regions implicated in resolving language conflict. We then review evidence for the pervasive impact of bilingual experience on the function and structure of neural networks that support linguistic and non-linguistic cognitive control, speech processing and production, and language learning. We conclude that even seemingly distinct effects of language on cognitive operations likely arise from interdependent functions, and that future work directly exploring the interactions between multiple levels of processing could offer a more comprehensive view of how language molds the mind.
{"title":"Consequences of multilingualism for neural architecture.","authors":"Sayuri Hayakawa, Viorica Marian","doi":"10.1186/s12993-019-0157-z","DOIUrl":"https://doi.org/10.1186/s12993-019-0157-z","url":null,"abstract":"<p><p>Language has the power to shape cognition, behavior, and even the form and function of the brain. Technological and scientific developments have recently yielded an increasingly diverse set of tools with which to study the way language changes neural structures and processes. Here, we review research investigating the consequences of multilingualism as revealed by brain imaging. A key feature of multilingual cognition is that two or more languages can become activated at the same time, requiring mechanisms to control interference. Consequently, extensive experience managing multiple languages can influence cognitive processes as well as their neural correlates. We begin with a brief discussion of how bilinguals activate language, and of the brain regions implicated in resolving language conflict. We then review evidence for the pervasive impact of bilingual experience on the function and structure of neural networks that support linguistic and non-linguistic cognitive control, speech processing and production, and language learning. We conclude that even seemingly distinct effects of language on cognitive operations likely arise from interdependent functions, and that future work directly exploring the interactions between multiple levels of processing could offer a more comprehensive view of how language molds the mind.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"6"},"PeriodicalIF":5.1,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0157-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37264799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-25DOI: 10.1186/s12993-019-0156-0
Patrícia Sanae Souza Lopes, Ana Carolina Pinheiro Campos, Erich Talamoni Fonoff, Luiz Roberto Giorgetti Britto, Rosana Lima Pagano
Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.
{"title":"Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats.","authors":"Patrícia Sanae Souza Lopes, Ana Carolina Pinheiro Campos, Erich Talamoni Fonoff, Luiz Roberto Giorgetti Britto, Rosana Lima Pagano","doi":"10.1186/s12993-019-0156-0","DOIUrl":"https://doi.org/10.1186/s12993-019-0156-0","url":null,"abstract":"<p><p>Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"5"},"PeriodicalIF":5.1,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0156-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37264794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-18DOI: 10.1186/s12993-019-0155-1
Elise Klein, Silke M Bieck, Johannes Bloechle, Stefan Huber, Julia Bahnmueller, Klaus Willmes, Korbinian Moeller
Background: Difficult cognitive tasks are often associated with negative feelings. This can be already the case for the mere anticipation of having to do a difficult task. For the case of difficult math tasks, it was recently suggested that such a negative emotional response may be exclusive to highly math-anxious individuals. However, it is also conceivable that negative emotional responses simply reflect that math is perceived as difficult. Here we investigated whether non-math-anxious individuals also experience negative emotional responses when anticipating to do difficult math tasks.
Methods: We compared brain activation following the presentation of a numerical cue indicating either difficult or easy upcoming proportion magnitude comparison tasks.
Results: Comparable to previous results for highly math-anxious individuals we observed a network associated with negative emotions to be activated in non-math-anxious individuals when facing cues indicating a difficult upcoming task. Importantly, however, math anxiety scores did not predict the neural response. Furthermore, we observed activation in areas associated with processes of cognitive control areas such as anterior cingulate cortex, which were suggested to play a key role in emotion regulation.
Conclusion: Activation in the emotion processing network was observed when anticipating an upcoming difficult (math) task. However, this activation was not predicted by individual' degree of math anxiety. Therefore, we suggest that negative emotional responses to difficult math tasks might be a rather common reaction not specific to math-anxious individuals. Whether or not this initial negative response impairs math performance, however, might depend on the ability to regulate those emotions effectively.
{"title":"Anticipation of difficult tasks: neural correlates of negative emotions and emotion regulation.","authors":"Elise Klein, Silke M Bieck, Johannes Bloechle, Stefan Huber, Julia Bahnmueller, Klaus Willmes, Korbinian Moeller","doi":"10.1186/s12993-019-0155-1","DOIUrl":"https://doi.org/10.1186/s12993-019-0155-1","url":null,"abstract":"<p><strong>Background: </strong>Difficult cognitive tasks are often associated with negative feelings. This can be already the case for the mere anticipation of having to do a difficult task. For the case of difficult math tasks, it was recently suggested that such a negative emotional response may be exclusive to highly math-anxious individuals. However, it is also conceivable that negative emotional responses simply reflect that math is perceived as difficult. Here we investigated whether non-math-anxious individuals also experience negative emotional responses when anticipating to do difficult math tasks.</p><p><strong>Methods: </strong>We compared brain activation following the presentation of a numerical cue indicating either difficult or easy upcoming proportion magnitude comparison tasks.</p><p><strong>Results: </strong>Comparable to previous results for highly math-anxious individuals we observed a network associated with negative emotions to be activated in non-math-anxious individuals when facing cues indicating a difficult upcoming task. Importantly, however, math anxiety scores did not predict the neural response. Furthermore, we observed activation in areas associated with processes of cognitive control areas such as anterior cingulate cortex, which were suggested to play a key role in emotion regulation.</p><p><strong>Conclusion: </strong>Activation in the emotion processing network was observed when anticipating an upcoming difficult (math) task. However, this activation was not predicted by individual' degree of math anxiety. Therefore, we suggest that negative emotional responses to difficult math tasks might be a rather common reaction not specific to math-anxious individuals. Whether or not this initial negative response impairs math performance, however, might depend on the ability to regulate those emotions effectively.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"4"},"PeriodicalIF":5.1,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0155-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37069077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Maternal immune activation (MIA) during gestation can increase the later risk of schizophrenia in adult offspring. Neuroinflammation is believed to underlie this process. Postmortem brain studies have found changes in the neuroimmune systems of patients with schizophrenia. However, little is known about the dynamic changes in cerebral inflammation and behavior during the course of the disease.
Methods: Here, the prepulse inhibition (PPI) test was conducted in adolescent and adult Sprague-Dawley rats prenatally challenged with polyriboinosinic-polyribocytidylic acid (Poly I:C) on gestational day 9 to determine the behavioral trajectory triggered by early exposure to Poly I:C. Brain immune changes were determined in the prefrontal cortex (PFC) and hippocampus (HC) at both ages. The status of the microglia and astrocytes was determined with immunohistochemical staining. The levels of IL-6, IL-1β, and TNF-α in both brain regions were evaluated with enzyme-linked immunosorbent assays.
Results: Disrupted PPI, the core phenotype of schizophrenia, only emerged in adulthood. Behavioral changes during puberty and adulthood were both accompanied by the activation of microglia (PFC and HC). Astrocytes were only activated at PN60. The levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the offspring of the Poly I:C-exposed mothers differed with brain region and time, with more cytokines elevated during periadolescence than during adulthood.
Conclusions: Our findings indicate that immune activation emerged before symptom manifestation in the offspring of MIA rats. We conclude that early prenatal Poly I:C challenge can lead to age-related behavioral and neuroinflammatory changes. These data provide new insight into the neuroinflammatory and neuropathological mechanisms underlying the development of schizophrenia. They also suggest that periadolescence could be more important than adulthood in the prevention and treatment of schizophrenia.
{"title":"Age-related changes in neuroinflammation and prepulse inhibition in offspring of rats treated with Poly I:C in early gestation.","authors":"Shuang Ding, Yunqing Hu, Binbin Luo, Yaqi Cai, Keke Hao, Yongfeng Yang, Yan Zhang, Xiujuan Wang, Minli Ding, Hongxing Zhang, Wenqiang Li, Luxian Lv","doi":"10.1186/s12993-019-0154-2","DOIUrl":"https://doi.org/10.1186/s12993-019-0154-2","url":null,"abstract":"<p><strong>Background: </strong>Maternal immune activation (MIA) during gestation can increase the later risk of schizophrenia in adult offspring. Neuroinflammation is believed to underlie this process. Postmortem brain studies have found changes in the neuroimmune systems of patients with schizophrenia. However, little is known about the dynamic changes in cerebral inflammation and behavior during the course of the disease.</p><p><strong>Methods: </strong>Here, the prepulse inhibition (PPI) test was conducted in adolescent and adult Sprague-Dawley rats prenatally challenged with polyriboinosinic-polyribocytidylic acid (Poly I:C) on gestational day 9 to determine the behavioral trajectory triggered by early exposure to Poly I:C. Brain immune changes were determined in the prefrontal cortex (PFC) and hippocampus (HC) at both ages. The status of the microglia and astrocytes was determined with immunohistochemical staining. The levels of IL-6, IL-1β, and TNF-α in both brain regions were evaluated with enzyme-linked immunosorbent assays.</p><p><strong>Results: </strong>Disrupted PPI, the core phenotype of schizophrenia, only emerged in adulthood. Behavioral changes during puberty and adulthood were both accompanied by the activation of microglia (PFC and HC). Astrocytes were only activated at PN60. The levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the offspring of the Poly I:C-exposed mothers differed with brain region and time, with more cytokines elevated during periadolescence than during adulthood.</p><p><strong>Conclusions: </strong>Our findings indicate that immune activation emerged before symptom manifestation in the offspring of MIA rats. We conclude that early prenatal Poly I:C challenge can lead to age-related behavioral and neuroinflammatory changes. These data provide new insight into the neuroinflammatory and neuropathological mechanisms underlying the development of schizophrenia. They also suggest that periadolescence could be more important than adulthood in the prevention and treatment of schizophrenia.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"3"},"PeriodicalIF":5.1,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0154-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37025929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01DOI: 10.1186/s12993-019-0152-4
Caio Maximino, Franz Josef van der Staay
The use of animals in neurosciences has a long history. It is considered indispensable in areas in which "translational" research is deemed invaluable, such as behavioral pharmacology and comparative psychology. Animal models are being used in pharmacology and genetics to screen for treatment targets, and in the field of experimental psychopathology to understand the neurobehavioral underpinnings of a disorder and of its putative treatment. The centrality of behavioral models betrays the complexity of the epistemic and semantic considerations which are needed to understand what a model is. In this review, such considerations are made, and the breadth of model building and evaluation approaches is extended to include theoretical considerations on the etiology of mental disorders. This expansion is expected to help improve the validity of behavioral models and to increase their translational value. Moreover, the role of theory in improving construct validity creates the need for behavioral scientists to fully engage this process.
{"title":"Behavioral models in psychopathology: epistemic and semantic considerations.","authors":"Caio Maximino, Franz Josef van der Staay","doi":"10.1186/s12993-019-0152-4","DOIUrl":"https://doi.org/10.1186/s12993-019-0152-4","url":null,"abstract":"<p><p>The use of animals in neurosciences has a long history. It is considered indispensable in areas in which \"translational\" research is deemed invaluable, such as behavioral pharmacology and comparative psychology. Animal models are being used in pharmacology and genetics to screen for treatment targets, and in the field of experimental psychopathology to understand the neurobehavioral underpinnings of a disorder and of its putative treatment. The centrality of behavioral models betrays the complexity of the epistemic and semantic considerations which are needed to understand what a model is. In this review, such considerations are made, and the breadth of model building and evaluation approaches is extended to include theoretical considerations on the etiology of mental disorders. This expansion is expected to help improve the validity of behavioral models and to increase their translational value. Moreover, the role of theory in improving construct validity creates the need for behavioral scientists to fully engage this process.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"1"},"PeriodicalIF":5.1,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0152-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37015379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01DOI: 10.1186/s12993-019-0153-3
Anat Lan, Daniel Stein, Miguel Portillo, Debra Toiber, Ora Kofman
Background: Signs of pervasive developmental disorder and social deficits were reported in toddlers and children whose mothers were exposed to organophosphate pesticides during pregnancy. Deficits in social preference were reported in adult male mice exposed to chlorpyrifos on gestational days 12-15. This study aimed (a) to test the hypothesis that adult female and male mice that were exposed prenatally to subtoxic doses of chlorpyrifos would be impaired in social behavior and (b) to determine if prenatal chlorpyrifos altered the expression of transcripts for oxytocin in the hypothalamus. Pregnant mice were treated by gavage with corn oil vehicle or 2.5 mg/kg or 5 mg/kg of CPF on gestational days 12-15. Social preference, social and non-social conditioned place preference tasks were tested in adults. Expression of oxytocin transcripts in hypothalamus was measured by qPCR.
Results: Chlorpyrifos (5 mg/kg on GD 12-15) reduced the innate preference for a conspecific in a dose and sex dependent manner. Adult males exposed prenatally to 5 mg/kg CPF showed a reduction in social preference. Socially conditioned place preference was impaired in offspring of dams treated with either dose of CPF. Non-social appetitive place conditioning was impaired in offspring of dams exposed to 2.5 mg/kg, but not to 5 mg/kg chlorpyrifos. Prenatal chlorpyrifos treatment did not alter the expression of the oxytocin mRNA in the hypothalamus, although expression was significantly lower in females.
Conclusions: Prenatal chlorpyrifos induced innate and learned social deficits and non-specific conditioning deficits in adult mice in a sex-dependent manner. Males showed specific social deficits following the higher dose whereas both males and females showed a more generalized conditioning deficit following the intermediate dose.
{"title":"Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos.","authors":"Anat Lan, Daniel Stein, Miguel Portillo, Debra Toiber, Ora Kofman","doi":"10.1186/s12993-019-0153-3","DOIUrl":"https://doi.org/10.1186/s12993-019-0153-3","url":null,"abstract":"<p><strong>Background: </strong>Signs of pervasive developmental disorder and social deficits were reported in toddlers and children whose mothers were exposed to organophosphate pesticides during pregnancy. Deficits in social preference were reported in adult male mice exposed to chlorpyrifos on gestational days 12-15. This study aimed (a) to test the hypothesis that adult female and male mice that were exposed prenatally to subtoxic doses of chlorpyrifos would be impaired in social behavior and (b) to determine if prenatal chlorpyrifos altered the expression of transcripts for oxytocin in the hypothalamus. Pregnant mice were treated by gavage with corn oil vehicle or 2.5 mg/kg or 5 mg/kg of CPF on gestational days 12-15. Social preference, social and non-social conditioned place preference tasks were tested in adults. Expression of oxytocin transcripts in hypothalamus was measured by qPCR.</p><p><strong>Results: </strong>Chlorpyrifos (5 mg/kg on GD 12-15) reduced the innate preference for a conspecific in a dose and sex dependent manner. Adult males exposed prenatally to 5 mg/kg CPF showed a reduction in social preference. Socially conditioned place preference was impaired in offspring of dams treated with either dose of CPF. Non-social appetitive place conditioning was impaired in offspring of dams exposed to 2.5 mg/kg, but not to 5 mg/kg chlorpyrifos. Prenatal chlorpyrifos treatment did not alter the expression of the oxytocin mRNA in the hypothalamus, although expression was significantly lower in females.</p><p><strong>Conclusions: </strong>Prenatal chlorpyrifos induced innate and learned social deficits and non-specific conditioning deficits in adult mice in a sex-dependent manner. Males showed specific social deficits following the higher dose whereas both males and females showed a more generalized conditioning deficit following the intermediate dose.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"15 1","pages":"2"},"PeriodicalIF":5.1,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-019-0153-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37014893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-26DOI: 10.1186/s12993-018-0151-x
C Schiappa, S Scarpelli, A D'Atri, M Gorgoni, Luigi De Gennaro
Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. This disease affects significantly the overall patient functioning, interfering with social, work, and affective life. Some symptoms of narcolepsy depend on emotional stimuli; for instance, cataplectic attacks can be triggered by emotional inputs such as laughing, joking, a pleasant surprise, and also anger. Neurophysiological and neurochemical findings suggest the involvement of emotional brain circuits in the physiopathology of cataplexy, which seems to depending on the dysfunctional interplay between the hypothalamus and the amygdala associated with an alteration of hypocretin levels. Furthermore, behavioral studies suggest an impairment of emotions processing in narcolepsy-cataplexy (NC), like a probable coping strategy to avoid or reduce the frequency of cataplexy attacks. Consistently, NC patients seem to use coping strategies even during their sleep, avoiding unpleasant mental sleep activity through lucid dreaming. Interestingly, NC patients, even during sleep, have a different emotional experience than healthy subjects, with more vivid, bizarre, and frightening dreams. Notwithstanding this evidence, the relationship between emotion and narcolepsy is poorly investigated. This review aims to provide a synthesis of behavioral, neurophysiological, and neurochemical evidence to discuss the complex relationship between NC and emotional experience and to direct future research.
{"title":"Narcolepsy and emotional experience: a review of the literature.","authors":"C Schiappa, S Scarpelli, A D'Atri, M Gorgoni, Luigi De Gennaro","doi":"10.1186/s12993-018-0151-x","DOIUrl":"10.1186/s12993-018-0151-x","url":null,"abstract":"<p><p>Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. This disease affects significantly the overall patient functioning, interfering with social, work, and affective life. Some symptoms of narcolepsy depend on emotional stimuli; for instance, cataplectic attacks can be triggered by emotional inputs such as laughing, joking, a pleasant surprise, and also anger. Neurophysiological and neurochemical findings suggest the involvement of emotional brain circuits in the physiopathology of cataplexy, which seems to depending on the dysfunctional interplay between the hypothalamus and the amygdala associated with an alteration of hypocretin levels. Furthermore, behavioral studies suggest an impairment of emotions processing in narcolepsy-cataplexy (NC), like a probable coping strategy to avoid or reduce the frequency of cataplexy attacks. Consistently, NC patients seem to use coping strategies even during their sleep, avoiding unpleasant mental sleep activity through lucid dreaming. Interestingly, NC patients, even during sleep, have a different emotional experience than healthy subjects, with more vivid, bizarre, and frightening dreams. Notwithstanding this evidence, the relationship between emotion and narcolepsy is poorly investigated. This review aims to provide a synthesis of behavioral, neurophysiological, and neurochemical evidence to discuss the complex relationship between NC and emotional experience and to direct future research.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"19"},"PeriodicalIF":5.1,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36816589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-10DOI: 10.1186/s12993-018-0150-y
Aquiles Luna-Rodriguez, Mike Wendt, Julia Kerner Auch Koerner, Caterina Gawrilow, Thomas Jacobsen
Background: Task switch protocols are frequently used in the assessment of cognitive control, both in clinical and non-clinical populations. These protocols frequently confound task switch and attentional set shift. The current study investigated the ability of adult ADHD patients to shift attentional set in the context of switching tasks.
Method: We tested 38 adults with ADHD and 39 control adults with an extensive diagnostic battery and a task switch protocol without proactive interference. The experiment combined orthogonally task-switch vs. repetition, and attentional set shift vs. no shift. Each experimental stimulus had global and local features (Hierarchical/"Navon" stimuli), associated with corresponding attentional sets.
Results: ADHD patients were slower than controls in task switch trials with a simultaneous shift of attention between global/local attentional sets. This also correlated significantly with diagnostic scales for ADHD symptoms. The patients had more variable reaction times, but when the attentional set was kept constant neither were they significantly slower nor showed higher task switch costs.
Conclusion: ADHD is associated with a deficit in flexible deployment of attention to varying sources of stimulus information.
{"title":"Selective impairment of attentional set shifting in adults with ADHD.","authors":"Aquiles Luna-Rodriguez, Mike Wendt, Julia Kerner Auch Koerner, Caterina Gawrilow, Thomas Jacobsen","doi":"10.1186/s12993-018-0150-y","DOIUrl":"https://doi.org/10.1186/s12993-018-0150-y","url":null,"abstract":"<p><strong>Background: </strong>Task switch protocols are frequently used in the assessment of cognitive control, both in clinical and non-clinical populations. These protocols frequently confound task switch and attentional set shift. The current study investigated the ability of adult ADHD patients to shift attentional set in the context of switching tasks.</p><p><strong>Method: </strong>We tested 38 adults with ADHD and 39 control adults with an extensive diagnostic battery and a task switch protocol without proactive interference. The experiment combined orthogonally task-switch vs. repetition, and attentional set shift vs. no shift. Each experimental stimulus had global and local features (Hierarchical/\"Navon\" stimuli), associated with corresponding attentional sets.</p><p><strong>Results: </strong>ADHD patients were slower than controls in task switch trials with a simultaneous shift of attention between global/local attentional sets. This also correlated significantly with diagnostic scales for ADHD symptoms. The patients had more variable reaction times, but when the attentional set was kept constant neither were they significantly slower nor showed higher task switch costs.</p><p><strong>Conclusion: </strong>ADHD is associated with a deficit in flexible deployment of attention to varying sources of stimulus information.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"18"},"PeriodicalIF":5.1,"publicationDate":"2018-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0150-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36653706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Emotion recognition is an increasingly important field of research in brain computer interactions.
Introduction: With the advance of technology, automatic emotion recognition systems no longer seem far-fetched. Be that as it may, detecting neural correlates of emotion has remained a substantial bottleneck. Settling this issue will be a breakthrough of significance in the literature.
Methods: The current study aims to identify the correlations between different emotions and brain regions with the help of suitable electrodes. Initially, independent component analysis algorithm is employed to remove artifacts and extract the independent components. The informative channels are then selected based on the thresholded average activity value for obtained components. Afterwards, effective features are extracted from selected channels common between all emotion classes. Features are reduced using the local subset feature selection method and then fed to a new classification model using modified Dempster-Shafer theory of evidence.
Results: The presented method is employed to DEAP dataset and the results are compared to those of previous studies, which highlights the significant ability of this method to recognize emotions through electroencephalography, by the accuracy of about 91%. Finally, the obtained results are discussed and new aspects are introduced.
Conclusions: The present study addresses the long-standing challenge of finding neural correlates between human emotions and the activated brain regions. Also, we managed to solve uncertainty problem in emotion classification which is one of the most challenging issues in this field. The proposed method could be employed in other practical applications in future.
{"title":"A novel approach to emotion recognition using local subset feature selection and modified Dempster-Shafer theory.","authors":"Morteza Zangeneh Soroush, Keivan Maghooli, Seyed Kamaledin Setarehdan, Ali Motie Nasrabadi","doi":"10.1186/s12993-018-0149-4","DOIUrl":"https://doi.org/10.1186/s12993-018-0149-4","url":null,"abstract":"<p><strong>Background: </strong>Emotion recognition is an increasingly important field of research in brain computer interactions.</p><p><strong>Introduction: </strong>With the advance of technology, automatic emotion recognition systems no longer seem far-fetched. Be that as it may, detecting neural correlates of emotion has remained a substantial bottleneck. Settling this issue will be a breakthrough of significance in the literature.</p><p><strong>Methods: </strong>The current study aims to identify the correlations between different emotions and brain regions with the help of suitable electrodes. Initially, independent component analysis algorithm is employed to remove artifacts and extract the independent components. The informative channels are then selected based on the thresholded average activity value for obtained components. Afterwards, effective features are extracted from selected channels common between all emotion classes. Features are reduced using the local subset feature selection method and then fed to a new classification model using modified Dempster-Shafer theory of evidence.</p><p><strong>Results: </strong>The presented method is employed to DEAP dataset and the results are compared to those of previous studies, which highlights the significant ability of this method to recognize emotions through electroencephalography, by the accuracy of about 91%. Finally, the obtained results are discussed and new aspects are introduced.</p><p><strong>Conclusions: </strong>The present study addresses the long-standing challenge of finding neural correlates between human emotions and the activated brain regions. Also, we managed to solve uncertainty problem in emotion classification which is one of the most challenging issues in this field. The proposed method could be employed in other practical applications in future.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"14 1","pages":"17"},"PeriodicalIF":5.1,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12993-018-0149-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36625280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}