Pub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1080/21691401.2024.2422870
Magdalena Ziąbka, Agnieszka Wojteczko, Barbara Zagrajczuk, Aleksandra Benko, Sebastian Komarek, Elżbieta Menaszek
In this work, zirconia (ZrO2) composites modified with bioactive hydroxyapatite (HAp), hexagonal boron nitride (hBN), bioglass (BG), and bioglass with copper (BGCu) via the hydrothermal method were synthesized. The aim was to obtain highly bioactive and cytocompatible materials that could combine beneficial properties of inert and bioactive ceramics. Such materials could be applied as fillers for tooth extraction cavities, guaranteeing osseintegration without the need to introduce additional bone cements or other adhesives. It was proven that while all materials were favourable towards cells adhesion and growth, the HAp and BG-doped ones facilitated early adhesion, especially when compared to unmodified ZrO2. Only the HAp-doped materials showed satisfactory bioactivity results, with a well-developed apatite layer forming on their surfaces. This study confirms that the Hap-doped ZrO2 is suitable for treating bone defects.
{"title":"Biological evaluation of ZrO<sub>2</sub> composites modified with different ceramics additives.","authors":"Magdalena Ziąbka, Agnieszka Wojteczko, Barbara Zagrajczuk, Aleksandra Benko, Sebastian Komarek, Elżbieta Menaszek","doi":"10.1080/21691401.2024.2422870","DOIUrl":"https://doi.org/10.1080/21691401.2024.2422870","url":null,"abstract":"<p><p>In this work, zirconia (ZrO<sub>2</sub>) composites modified with bioactive hydroxyapatite (HAp), hexagonal boron nitride (hBN), bioglass (BG), and bioglass with copper (BGCu) <i>via</i> the hydrothermal method were synthesized. The aim was to obtain highly bioactive and cytocompatible materials that could combine beneficial properties of inert and bioactive ceramics. Such materials could be applied as fillers for tooth extraction cavities, guaranteeing osseintegration without the need to introduce additional bone cements or other adhesives. It was proven that while all materials were favourable towards cells adhesion and growth, the HAp and BG-doped ones facilitated early adhesion, especially when compared to unmodified ZrO<sub>2</sub>. Only the HAp-doped materials showed satisfactory bioactivity results, with a well-developed apatite layer forming on their surfaces. This study confirms that the Hap-doped ZrO<sub>2</sub> is suitable for treating bone defects.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"551-563"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-11DOI: 10.1080/21691401.2024.2325942
Fanai Lalsangpuii, Samuel Lalthazuala Rokhum, Fanai Nghakliana, Joseph V L Ruatpuia, Lalchhandami Tochhawng, Amit Kumar Trivedi, Ralte Lalfakzuala, Zothan Siama
Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Mikania micrantha leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of M. micrantha leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.
{"title":"<i>Mikania micrantha</i> silver nanoparticles exhibit anticancer activities against human lung adenocarcinoma via caspase-mediated apoptotic cell death.","authors":"Fanai Lalsangpuii, Samuel Lalthazuala Rokhum, Fanai Nghakliana, Joseph V L Ruatpuia, Lalchhandami Tochhawng, Amit Kumar Trivedi, Ralte Lalfakzuala, Zothan Siama","doi":"10.1080/21691401.2024.2325942","DOIUrl":"10.1080/21691401.2024.2325942","url":null,"abstract":"<p><p>Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using <i>Mikania micrantha</i> leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of <i>M. micrantha</i> leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"186-200"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1080/21691401.2024.2402298
Yali Yu,Guixiang Dong,Yanli Niu
Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.
骨关节炎(OA)是一种综合性关节疾病。引发 OA 的特定基因以及有效治疗 OA 的策略尚未完全明了。本研究的重点是确定与铁代谢有关的关键基因,这些基因可能会影响 OA 的诊断和治疗方法。对 GEO 微阵列数据和铁代谢基因的分析发现了 15 个与铁代谢相关的 DEGs,这些 DEGs 富集于缺氧和 HIF-1 通路。确定了10个关键枢纽基因(ATM、GCLC、PSEN1、CYBB、ATG7、MAP1LC3B、PLIN2、GRN、APOC1、SIAH2)。通过逐步回归,我们筛选出了上述 10 个基因中的 4 个,即 GCLC、GRN、APOC1 和 SIAH2,从而获得了最佳模型。在训练集和验证集中,这4个中心基因诊断OA的AUROC分别为0.81和0.80。免疫浸润结果显示,OA 与记忆性 B 细胞、M0 巨噬细胞、调节性 T 细胞和静止肥大细胞的显著增加有关,但与活化树突状细胞的减少有关。四个枢纽基因显示出与它们的密切关系。通过评估血液样本中特定基因的表达,预计该模型将有助于诊断骨关节炎。此外,研究这些枢纽基因可能会进一步阐明骨关节炎的发病机制。
{"title":"Construction of ferroptosis-related gene signatures for identifying potential biomarkers and immune cell infiltration in osteoarthritis.","authors":"Yali Yu,Guixiang Dong,Yanli Niu","doi":"10.1080/21691401.2024.2402298","DOIUrl":"https://doi.org/10.1080/21691401.2024.2402298","url":null,"abstract":"Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"12 1","pages":"449-461"},"PeriodicalIF":5.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1080/21691401.2024.2338127
R.D.K Misra, Aladin M. Boriek
The cytological behaviour and functional dynamics (adhesion, spreading, synthesis of proteins) of fibroblasts when interacting with biomedical surfaces are intricately influenced by the inherent na...
{"title":"Exploring fibroblast interactions on nanocrystalline surfaces in physiological environments through a phenomenological lens","authors":"R.D.K Misra, Aladin M. Boriek","doi":"10.1080/21691401.2024.2338127","DOIUrl":"https://doi.org/10.1080/21691401.2024.2338127","url":null,"abstract":"The cytological behaviour and functional dynamics (adhesion, spreading, synthesis of proteins) of fibroblasts when interacting with biomedical surfaces are intricately influenced by the inherent na...","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"33 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successf...
{"title":"Synthesis and characterization of Fe3O4@SiO2@PDA@Ag core–shell nanoparticles and biological application on human lung cancer cell line and antibacterial strains","authors":"Snigdha Singh, Tanya Goel, Aarushi Singh, Heerak Chugh, Nayanika Chakraborty, Indrajit Roy, Manisha Tiwari, Ramesh Chandra","doi":"10.1080/21691401.2023.2295534","DOIUrl":"https://doi.org/10.1080/21691401.2023.2295534","url":null,"abstract":"Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successf...","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"77 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139067076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-01DOI: 10.1080/21691401.2023.2274526
Omar Awad Alsaidan, Ameeduzzafar Zafar, Rayan Hamood Al-Ruwaili, Mohd Yasir, Sami I Alzarea, Aseel Awad Alsaidan, Lubhan Singh, Mohammad Khalid
Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.
Niosomes(NS)是一种很有前途的新型药物载体。芹菜素是一种天然的生物活性化合物,具有多种药理活性。AN水溶性差,直接影响疗效。本研究的目的是开发AN-NS凝胶以改善透皮给药。采用薄膜水化法开发了AN-NS。优化的AN-NS(AN-NS2)的囊泡大小为272.56 ± 12.49 nm,PDI为0.249,ζ电位为-38.7 mV,截留效率86.19 ± AN-NS2的FTIR光谱显示AN包封在NS基体中。将AN-NS2制剂成功地掺入壳聚糖凝胶中并进行了评价。优化的AN-NS2凝胶(AN-NS2G4)具有2110 ± 14cps粘度,10.40 ± 0.21g.cm/sec的铺展性和99.65 ± 占药物含量的0.53%。AN-NS2G4表现显著(p p p
{"title":"Niosomes gel of apigenin to improve the topical delivery: development, optimization, <i>ex vivo</i> permeation, antioxidant study, and <i>in vivo</i> evaluation.","authors":"Omar Awad Alsaidan, Ameeduzzafar Zafar, Rayan Hamood Al-Ruwaili, Mohd Yasir, Sami I Alzarea, Aseel Awad Alsaidan, Lubhan Singh, Mohammad Khalid","doi":"10.1080/21691401.2023.2274526","DOIUrl":"https://doi.org/10.1080/21691401.2023.2274526","url":null,"abstract":"<p><p>Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (<i>p</i> < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (<i>p</i> < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (<i>p</i> < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"604-617"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/21691401.2023.2239274
Muhammad Asraf Mansor, Mohd Ridzuan Ahmad, Michal Petrů, Seyed Saeid Rahimian Koloor
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
{"title":"An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.","authors":"Muhammad Asraf Mansor, Mohd Ridzuan Ahmad, Michal Petrů, Seyed Saeid Rahimian Koloor","doi":"10.1080/21691401.2023.2239274","DOIUrl":"10.1080/21691401.2023.2239274","url":null,"abstract":"<p><p>Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m<sup>-2</sup>, with the regression coefficients, <math><mi>ρ</mi></math> at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"371-383"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-17DOI: 10.1080/21691401.2023.2268167
Rohazila Mohamad Hanafiah, Siti Aisyah Abd Ghafar, Vuanghao Lim, Siti Nor Asma Musa, Fahmi Yakop, Arif Haikal Hairil Anuar
This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p < 0.05). This study indicated that the synthesized SC-AgNPs were stable with enhanced antibacterial activities.
{"title":"Green synthesis, characterisation and antibacterial activities of <i>Strobilanthes crispus-</i>mediated silver nanoparticles (SC-AGNPS) against selected bacteria.","authors":"Rohazila Mohamad Hanafiah, Siti Aisyah Abd Ghafar, Vuanghao Lim, Siti Nor Asma Musa, Fahmi Yakop, Arif Haikal Hairil Anuar","doi":"10.1080/21691401.2023.2268167","DOIUrl":"10.1080/21691401.2023.2268167","url":null,"abstract":"<p><p>This study aims to characterize and determine the antibacterial activities of synthesized <i>Strobilanthes crispus</i>-mediated AgNPs (SC-AgNPs) against <i>Streptococcus mutans</i>, <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa. S. crispus</i> water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm<sup>-1</sup>. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against <i>E. coli</i>, <i>P. aeruginosa and S. mutans</i>, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of <i>eae</i> A, <i>gtf</i> B and <i>Pel</i> A (<i>p</i> < 0.05). This study indicated that the synthesized SC-AgNPs were stable with enhanced antibacterial activities.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"549-559"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human papillomavirus (HPV) infection and related diseases are clinical challenges. The efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) using red laser (630 ± 5 nm) is remarkable and safe. In this study, we aim to investigate the efficacy of ALA-450 nm PDT comparing with ALA-635 nm PDT. We detected cell proliferation and cell apoptosis through MTT assay and flow cytometry assay respectively. Flow cytometry assay determined the intracellular reactive oxygen species (ROS) generation. Western blotting analysis investigated the protein expression. In vivo, immunohistochemical staining assay and TUNEL assay were performer to detect cell apoptosis. ALA-450 nm PDT inhibited the proliferation of End1 and HeLa cells, promoted cell apoptosis more effectively than ALA-635 nm PDT, and induced cell death probably through increasing the intracellular ROS generation and caspase-dependent apoptosis pathway. In vivo, ALA-450 nm PDT significantly inhibited tumour growth and activated cell apoptosis. The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibiting the proliferation of End1 and HeLa cells and inducing cell apoptosis. The ALA-450 nm PDT might be a promising therapeutic strategy for eradicating the HR-HPV infected cells and promoting the integration of diagnosis and treatment of HR-HPV related diseases.HighlightsWe combined 5-aminolevulinic acid with 450 nm blue laser using as a novel type of photodynamic therapy.The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibition of the proliferation of End1 and HeLa cells and inducing cell apoptosis in vitro and in vivo.The ALA-450 nm PDT may provide a novel alternative therapeutic option in patients with persistent HPV infection and promote the integration of diagnosis and treatment.
{"title":"A novel PDT: 5-aminolevulinic acid combined 450 nm blue laser photodynamic therapy significantly promotes cell death of HR-HPV infected cells.","authors":"Yuqing Chen, Yibo Mei, Lijiang Gu, Xing Li, Peng Guo, Lihong Chen, Dalin He","doi":"10.1080/21691401.2022.2164585","DOIUrl":"10.1080/21691401.2022.2164585","url":null,"abstract":"<p><p>Human papillomavirus (HPV) infection and related diseases are clinical challenges. The efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) using red laser (630 ± 5 nm) is remarkable and safe. In this study, we aim to investigate the efficacy of ALA-450 nm PDT comparing with ALA-635 nm PDT. We detected cell proliferation and cell apoptosis through MTT assay and flow cytometry assay respectively. Flow cytometry assay determined the intracellular reactive oxygen species (ROS) generation. Western blotting analysis investigated the protein expression. <i>In vivo</i>, immunohistochemical staining assay and TUNEL assay were performer to detect cell apoptosis. ALA-450 nm PDT inhibited the proliferation of End1 and HeLa cells, promoted cell apoptosis more effectively than ALA-635 nm PDT, and induced cell death probably through increasing the intracellular ROS generation and caspase-dependent apoptosis pathway. <i>In vivo</i>, ALA-450 nm PDT significantly inhibited tumour growth and activated cell apoptosis. The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibiting the proliferation of End1 and HeLa cells and inducing cell apoptosis. The ALA-450 nm PDT might be a promising therapeutic strategy for eradicating the HR-HPV infected cells and promoting the integration of diagnosis and treatment of HR-HPV related diseases.HighlightsWe combined 5-aminolevulinic acid with 450 nm blue laser using as a novel type of photodynamic therapy.The ALA-450 nm PDT had an advantage over ALA-635 nm PDT on inhibition of the proliferation of End1 and HeLa cells and inducing cell apoptosis <i>in vitro</i> and <i>in vivo</i>.The ALA-450 nm PDT may provide a novel alternative therapeutic option in patients with persistent HPV infection and promote the integration of diagnosis and treatment.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"22-32"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10528911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-18DOI: 10.1080/21691401.2023.2268137
Xinmin Guo, Jianru Lin, Liwen Pan, Kun He, Zhihui Huang, Jialin Chen, Cuiyan Lin, Baohui Zeng, Sijia Luo, Mengdie Wang
This study was aimed to develop an efficient tumour-targeted liposome nanobubbles (LNBs) system using ultrasound-targeted nanobubble destruction for enhanced release and transfection of miRNA-199a-3p in hepatocellular carcinoma (HCC) therapy. The prepared LNBs comprised a polyethylene glycol-modified liposome shell and a perfluoropentane (PFP) core. MiRNA-199a-3p was attached to the nanocomposite surface via electrostatic adsorption, while RGD peptide functionalized the LNBs surface for enhanced HCC cell targeting, namely PFP@miR-RGD-LNBs. The LNBs were spherical with a narrow size distribution. The gene-loaded LNBs effectively condensed miR-199a-3p and protected it from enzymatic degradation. Low-intensity focused ultrasound (LIFU) promoted a fast release of miR-199a-3p from the prepared LNBs, thereby enhancing therapeutic effects. The combined application of PFP@miR-RGD-LNBs and LIFU exhibited a more potent inhibitory effect on HepG2 cells than the other groups, potentially due to LIFU promoting rapid and efficient gene release at the target site and increasing cell membrane permeability. Quantitative reverse transcription-polymerase chain reaction analysis revealed significantly increased mRNA expression levels of key apoptosis markers (Bad, Bax, Caspase-9 and Caspase-3) in the PFP@miR-RGD-LNBs + LIFU group compared to other groups. These findings suggest that the prepared LNBs are highly likely to be promising candidates for further exploration of HCC gene delivery and therapy.
{"title":"Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment.","authors":"Xinmin Guo, Jianru Lin, Liwen Pan, Kun He, Zhihui Huang, Jialin Chen, Cuiyan Lin, Baohui Zeng, Sijia Luo, Mengdie Wang","doi":"10.1080/21691401.2023.2268137","DOIUrl":"10.1080/21691401.2023.2268137","url":null,"abstract":"<p><p>This study was aimed to develop an efficient tumour-targeted liposome nanobubbles (LNBs) system using ultrasound-targeted nanobubble destruction for enhanced release and transfection of miRNA-199a-3p in hepatocellular carcinoma (HCC) therapy. The prepared LNBs comprised a polyethylene glycol-modified liposome shell and a perfluoropentane (PFP) core. MiRNA-199a-3p was attached to the nanocomposite surface via electrostatic adsorption, while RGD peptide functionalized the LNBs surface for enhanced HCC cell targeting, namely PFP@miR-RGD-LNBs. The LNBs were spherical with a narrow size distribution. The gene-loaded LNBs effectively condensed miR-199a-3p and protected it from enzymatic degradation. Low-intensity focused ultrasound (LIFU) promoted a fast release of miR-199a-3p from the prepared LNBs, thereby enhancing therapeutic effects. The combined application of PFP@miR-RGD-LNBs and LIFU exhibited a more potent inhibitory effect on HepG2 cells than the other groups, potentially due to LIFU promoting rapid and efficient gene release at the target site and increasing cell membrane permeability. Quantitative reverse transcription-polymerase chain reaction analysis revealed significantly increased mRNA expression levels of key apoptosis markers (Bad, Bax, Caspase-9 and Caspase-3) in the PFP@miR-RGD-LNBs + LIFU group compared to other groups. These findings suggest that the prepared LNBs are highly likely to be promising candidates for further exploration of HCC gene delivery and therapy.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"560-571"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}