Pub Date : 2023-12-01Epub Date: 2023-10-23DOI: 10.1080/21691401.2023.2271702
{"title":"Statement of retraction: Anti-gastric cancer effect of Salidroside through elevating miR-99a expression.","authors":"","doi":"10.1080/21691401.2023.2271702","DOIUrl":"10.1080/21691401.2023.2271702","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"548"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-30DOI: 10.1080/21691401.2023.2268653
Amany Belal, Mohamed Y Zaky, Doaa S Mohamed, Eman E Mohamed, Rehab Mahmoud, Doaa Essam, R R Atta, Fatma I Abo El-Ela, Fatma Mohamed Halfaya, Kyung-Tae Lee, Ahmed H E Hassan, Mohammed M Ghoneim, Ahmed Farghali
Nanotechnology holds substantial promise in the innovative therapies for rheumatoid arthritis (RA). The current study was designed to synthesize and characterize a new graphene titanate nanocomposite (GTNc) and explore its anti-arthritic, anti-inflammatory, and antioxidant potencies against Complete Freund's adjuvant (CFA)-induced arthritis in rats, as well as investigate the underlying molecular mechanisms. Our characterization methods included XRD, FT-IR, SEM, EDX, zeta potential, practical size, and XRF to characterize the novel GTNc. Our findings revealed that arthritic rats treated with GTNc exhibited lower levels of RF, CRP, IL-1β, TNF-α, IL-17, and ADAMTS-5, and higher levels of IL-4 and TIMP-3. In arthritic rats, GTNc reduced LPO levels while increasing GSH content and GST antioxidant activity. Additionally, GTNc decreased the expression of the TGF-β mRNA gene in arthritic rats. Histopathological investigation showed that GTNc reduced inflammatory cell infiltration, cartilage degradation, and bone destruction in joint injuries caused by CFA in the arthritic rats. Collectively, the anti-arthritic, anti-inflammatory, and antioxidant properties of GTNc appear promising for future arthritis treatments and bone disability research.
{"title":"A study on the therapeutic potential of graphene titanate nanocomposite for treating chemically induced arthritis in rats.","authors":"Amany Belal, Mohamed Y Zaky, Doaa S Mohamed, Eman E Mohamed, Rehab Mahmoud, Doaa Essam, R R Atta, Fatma I Abo El-Ela, Fatma Mohamed Halfaya, Kyung-Tae Lee, Ahmed H E Hassan, Mohammed M Ghoneim, Ahmed Farghali","doi":"10.1080/21691401.2023.2268653","DOIUrl":"https://doi.org/10.1080/21691401.2023.2268653","url":null,"abstract":"<p><p>Nanotechnology holds substantial promise in the innovative therapies for rheumatoid arthritis (RA). The current study was designed to synthesize and characterize a new graphene titanate nanocomposite (GTNc) and explore its anti-arthritic, anti-inflammatory, and antioxidant potencies against Complete Freund's adjuvant (CFA)-induced arthritis in rats, as well as investigate the underlying molecular mechanisms. Our characterization methods included XRD, FT-IR, SEM, EDX, zeta potential, practical size, and XRF to characterize the novel GTNc. Our findings revealed that arthritic rats treated with GTNc exhibited lower levels of RF, CRP, IL-1β, TNF-α, IL-17, and ADAMTS-5, and higher levels of IL-4 and TIMP-3. In arthritic rats, GTNc reduced LPO levels while increasing GSH content and GST antioxidant activity. Additionally, GTNc decreased the expression of the TGF-β mRNA gene in arthritic rats. Histopathological investigation showed that GTNc reduced inflammatory cell infiltration, cartilage degradation, and bone destruction in joint injuries caused by CFA in the arthritic rats. Collectively, the anti-arthritic, anti-inflammatory, and antioxidant properties of GTNc appear promising for future arthritis treatments and bone disability research.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"590-603"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-07DOI: 10.1080/21691401.2023.2274047
Sadeka Nujhat, Hannah S Leese, Mirella Di Lorenzo, Rebecca Bowen, Sandhya Moise
Gynaecological cancers are a major global health concern due to the lack of effective screening programmes for ovarian and endometrial cancer, for example, and variable access to vaccination and screening tests for cervical cancer in many countries. Recent research on portable and cost-effective lab-on-a-chip (LoC) technologies show promise for mass screening and diagnostic procedures for gynaecological cancers. However, most LoCs for gynaecological cancer are still in development, with a need to establish and clinically validate factors such as the type of biomarker, sample and method of detection, before patient use. Multiplex approaches, detecting a panel of gynaecological biomarkers in a single LoC, offer potential for more reliable diagnosis. This review highlights the current research on LoCs for gynaecological cancer screening and diagnosis, emphasizing the need for further research and validation prior to their widespread adoption in clinical practice.
{"title":"Advances in screening and diagnostic lab-on-chip tools for gynaecological cancers - a review.","authors":"Sadeka Nujhat, Hannah S Leese, Mirella Di Lorenzo, Rebecca Bowen, Sandhya Moise","doi":"10.1080/21691401.2023.2274047","DOIUrl":"10.1080/21691401.2023.2274047","url":null,"abstract":"<p><p>Gynaecological cancers are a major global health concern due to the lack of effective screening programmes for ovarian and endometrial cancer, for example, and variable access to vaccination and screening tests for cervical cancer in many countries. Recent research on portable and cost-effective lab-on-a-chip (LoC) technologies show promise for mass screening and diagnostic procedures for gynaecological cancers. However, most LoCs for gynaecological cancer are still in development, with a need to establish and clinically validate factors such as the type of biomarker, sample and method of detection, before patient use. Multiplex approaches, detecting a panel of gynaecological biomarkers in a single LoC, offer potential for more reliable diagnosis. This review highlights the current research on LoCs for gynaecological cancer screening and diagnosis, emphasizing the need for further research and validation prior to their widespread adoption in clinical practice.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"618-629"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-23DOI: 10.1080/21691401.2023.2271700
{"title":"Statement of retraction: Mirt2 functions in synergy with miR-377 to participate in inflammatory pathophysiology of Sjögren's syndrome.","authors":"","doi":"10.1080/21691401.2023.2271700","DOIUrl":"10.1080/21691401.2023.2271700","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"547"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-26DOI: 10.1080/21691401.2023.2270023
Prakash S K
In this study, non-toxic mercury nanoparticle Prakasine (PRK-NP) was synthesized as per 'Prakash theory of metal drugs' and nanoparticle's non toxicity has been demonstrated by employing in vitro MTT (dose = 320ug/ml), SBR (dose = 80ug/ml) and apoptosis assays (dose = 320ug/ml), and in vivo acute and chronic toxicity studies in mice (n = 12, dose = 900 mg/kg body weight oral), rat (n = 14, dose = 500 mg/kg body weight oral for 18 months), rabbit (n = 14, dose = 500 mg/kg body weight oral for 18 months) and dogs (n = 14, dose = 500 mg/kg body weight oral for 18 months). The MTT, SBR and apoptosis assays established no cytotoxicity, no genotoxicity and no cytolytic anticancer effects. The mice, rat, rabbit and dog studies also indicated nontoxicity. The PRK-NPs significantly reduced the breast cancer tumour in murine mammary tumour - C3H/HeJ model 35% and 43.7% in mice at doses of 200 mg/kg and 500 mg/kg respectively. Also, in xenograft mammary tumour mice model the tumour regressions are 25.7% and 83% in the doses of 500 mg/kg and 1000 mg/kg respectively, compared to standard positive control drugs without any adverse effects and toxicity. Thus, the current study beholds anticipation PRK-NPs may play a vital role in therapeutic.
{"title":"Cancer reduction in mice with Prakasine nanomedicine immunotherapy.","authors":"Prakash S K","doi":"10.1080/21691401.2023.2270023","DOIUrl":"10.1080/21691401.2023.2270023","url":null,"abstract":"<p><p>In this study, non-toxic mercury nanoparticle Prakasine (PRK-NP) was synthesized as per 'Prakash theory of metal drugs' and nanoparticle's non toxicity has been demonstrated by employing <i>in vitro</i> MTT (dose = 320ug/ml), SBR (dose = 80ug/ml) and apoptosis assays (dose = 320ug/ml), and <i>in vivo</i> acute and chronic toxicity studies in mice (<i>n</i> = 12, dose = 900 mg/kg body weight oral), rat (<i>n</i> = 14, dose = 500 mg/kg body weight oral for 18 months), rabbit (<i>n</i> = 14, dose = 500 mg/kg body weight oral for 18 months) and dogs (<i>n</i> = 14, dose = 500 mg/kg body weight oral for 18 months). The MTT, SBR and apoptosis assays established no cytotoxicity, no genotoxicity and no cytolytic anticancer effects. The mice, rat, rabbit and dog studies also indicated nontoxicity. The PRK-NPs significantly reduced the breast cancer tumour in murine mammary tumour - C3H/HeJ model 35% and 43.7% in mice at doses of 200 mg/kg and 500 mg/kg respectively. Also, in xenograft mammary tumour mice model the tumour regressions are 25.7% and 83% in the doses of 500 mg/kg and 1000 mg/kg respectively, compared to standard positive control drugs without any adverse effects and toxicity. Thus, the current study beholds anticipation PRK-NPs may play a vital role in therapeutic.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"572-589"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-07DOI: 10.1080/21691401.2023.2278156
R D K Misra, K P Misra
The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys via electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.
{"title":"Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions.","authors":"R D K Misra, K P Misra","doi":"10.1080/21691401.2023.2278156","DOIUrl":"https://doi.org/10.1080/21691401.2023.2278156","url":null,"abstract":"<p><p>The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys <i>via</i> electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"630-640"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.
{"title":"Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy.","authors":"Xiaofei Zhou, Yuetang Zhuang, Xiaohong Liu, Yaowen Gu, Junting Wang, Yuchen Shi, Li Zhang, Rui Li, Yelin Zhao, Hebing Chen, Jiao Li, Hongjuan Yao, Liang Li","doi":"10.1080/21691401.2023.2264358","DOIUrl":"10.1080/21691401.2023.2264358","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"532-546"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1080/21691401.2023.2255635
Yanchun Gao, Ruihong Wang, Lin Liu, Shitao Feng, Xiaozhi Xi, Wengong Yu, Yuchao Gu, Ye Wang
Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.
幽门螺杆菌(Helicobacter pylori, H. pylori)被认为是一种与多种胃肠道疾病相关的病原体。目前的治疗方法有许多缺点,包括抗生素耐药性。幽门螺杆菌可通过幽门螺杆菌粘连素A (HpaA)粘附胃黏膜并定植,抗HpaA抗体可能是治疗幽门螺杆菌的有效途径。免疫球蛋白新抗原受体可变结构域(variable domain of immunoglobulin new antigen receptor, VNAR)是一种体积小、稳定性好、易于制造的新型单域抗体。本研究从免疫鲨鱼VNAR噬菌体展示文库中分离出抗HpaA的VNAR。vnas可以结合重组蛋白和天然HpaA蛋白。vnas 2A2和3D6对不同表位的HpaA具有较高的结合亲和力。此外,构建了二价同源二聚体vnas biNb-2A2和biNb-3D6,以增强其结合亲和力。biNb-2A2和biNb-3D6在胃肠道pH条件下具有良好的稳定性。最后,以BiNb-2A2为捕获抗体,BiNb-3D6为检测抗体,建立夹心ELISA法定量HpaA蛋白。本研究为幽门螺杆菌感染的治疗或诊断提供了新的替代方法的潜在基础。
{"title":"Identification and characterization of shark VNARs targeting the <i>Helicobacter pylori</i> adhesin HpaA.","authors":"Yanchun Gao, Ruihong Wang, Lin Liu, Shitao Feng, Xiaozhi Xi, Wengong Yu, Yuchao Gu, Ye Wang","doi":"10.1080/21691401.2023.2255635","DOIUrl":"https://doi.org/10.1080/21691401.2023.2255635","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. <i>H. pylori</i> can adhere to and colonize the gastric mucosa through <i>H. pylori</i> adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of <i>H. pylori</i> infection.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"509-519"},"PeriodicalIF":5.8,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10211558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.1080/21691401.2023.2179062
Sanjay, Anshul Sharma, Hae-Jeung Lee
Abstract
Carbon quantum dots (CQDs) were synthesized from blue honeysuckle (Lonicera caerulea) berry fruit extracts using a well-known, cost-effective, and environmental friendly hydrothermal process. The material was characterized using UV-vis spectroscopy, photoluminescence (PL), XPS, and TEM studies. The as-synthesized carbon dots exhibit excellent PL properties, with a quantum yield of ∼35.92%. CQDs vary in size from ∼2 nm to 9 nm. This study established the neuroprotective effects of CQDs against lipopolysaccharide (LPS)-induced human microglial cell model. LPS was found to induce cytotoxicity, reactive oxygen species, and pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor-α) and downregulated enzymatic antioxidants such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2), superoxide dismutase, catalase, haem oxygenase (HO)-1, HO-2, and glutathione peroxidase, while CQDs treatment reversed LPS induced cytotoxicity, induced anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor β) and induce enzymatic antioxidants both at transcriptional and translational levels. The study suggested the potential role of CQDs prepared from Lonicera caerulea, as anti-inflammatory and antioxidative agents in neuroinflammatory and neurodegenerative diseases. In addition, CQDs could be exploited in various biomedical applications such as biosensing, drug delivery and tissue engineering.
{"title":"Honeyberry-derived carbon quantum dots ameliorate LPS-induced neuroinflammation and oxidative stress through Nrf2/HO-1 signalling in HMC3 cells","authors":"Sanjay, Anshul Sharma, Hae-Jeung Lee","doi":"10.1080/21691401.2023.2179062","DOIUrl":"https://doi.org/10.1080/21691401.2023.2179062","url":null,"abstract":"<p><b>Abstract</b></p><p>Carbon quantum dots (CQDs) were synthesized from blue honeysuckle (<i>Lonicera caerulea</i>) berry fruit extracts using a well-known, cost-effective, and environmental friendly hydrothermal process. The material was characterized using UV-vis spectroscopy, photoluminescence (PL), XPS, and TEM studies. The as-synthesized carbon dots exhibit excellent PL properties, with a quantum yield of ∼35.92%. CQDs vary in size from ∼2 nm to 9 nm. This study established the neuroprotective effects of CQDs against lipopolysaccharide (LPS)-induced human microglial cell model. LPS was found to induce cytotoxicity, reactive oxygen species, and pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor-α) and downregulated enzymatic antioxidants such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2), superoxide dismutase, catalase, haem oxygenase (HO)-1, HO-2, and glutathione peroxidase, while CQDs treatment reversed LPS induced cytotoxicity, induced anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor β) and induce enzymatic antioxidants both at transcriptional and translational levels. The study suggested the potential role of CQDs prepared from <i>Lonicera caerulea</i>, as anti-inflammatory and antioxidative agents in neuroinflammatory and neurodegenerative diseases. In addition, CQDs could be exploited in various biomedical applications such as biosensing, drug delivery and tissue engineering.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"40 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}