首页 > 最新文献

Artificial Cells, Nanomedicine, and Biotechnology最新文献

英文 中文
Three musketeers of PDA-based MRI contrasting and therapy. 基于 PDA 的磁共振成像对比和治疗三剑客。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-05-25 DOI: 10.1080/21691401.2024.2356773
Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak

Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.

聚多巴胺(PDA)因其独特的性能而成为癌症纳米医学领域的一种多功能材料,为多功能给药平台提供了机遇。本研究探讨了利用一锅合成法将铁、钆和锰离子同时整合到多孔 PDA 治疗药物递送平台(分别称为 Ferritis、Gadolinis 和 Manganis)中的潜力。我们的研究涵盖了这些强效纳米制剂的形态、磁性能、光热特性和细胞毒性特征。所获得的结构具有球形形态、强大的磁性响应和良好的光热性能。所有展示的纳米粒子(NPs)都显示出明显的顺磁性,揭示了核磁共振成像的对比潜力。弛豫度值是决定造影效果的关键因素,与现有的常用造影剂相比,弛豫度值具有竞争力或更优越的性能。在近红外照射下,这些纳米制剂还表现出强大的光热特性,展示了它们在癌症光热疗法中的应用前景。我们的研究结果为掺杂金属的 PDA NPs 在癌症治疗学方面的应用潜力提供了启示。
{"title":"Three musketeers of PDA-based MRI contrasting and therapy.","authors":"Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak","doi":"10.1080/21691401.2024.2356773","DOIUrl":"https://doi.org/10.1080/21691401.2024.2356773","url":null,"abstract":"<p><p>Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"321-333"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. 纳米技术辅助光动力疗法治疗神经系统疾病的进展:综述。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-18 DOI: 10.1080/21691401.2024.2304814
Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai

Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.

神经退行性疾病和神经系统肿瘤等神经系统疾病影响着全球十多亿人。神经组织的生理敏感性限制了侵入性疗法的应用,导致治疗效果和预后不佳。光动力疗法(PDT)是一种前景广阔的解决方案,它有可能彻底改变神经系统疾病的治疗格局,因而备受关注。光动力疗法在抗癌疗效和药物共轭靶向给药方面获得了广泛认可。这篇综述全面阐述了光导疗法的基本原理、科学干预措施、光导疗法的进展及其治疗脑相关病症的复杂机制。此外,PDT 在神经系统疾病中的优缺点为其可行性和挑战提供了一个全面的视角。总之,这篇综述概括了光动力疗法在改变神经系统疾病治疗格局方面的巨大潜力,强调了它作为一种非侵入性、靶向治疗方法在多方面应用中的作用。
{"title":"Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review.","authors":"Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai","doi":"10.1080/21691401.2024.2304814","DOIUrl":"10.1080/21691401.2024.2304814","url":null,"abstract":"<p><p>Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"84-103"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. 通过网络药理学鉴定冠心病中肠道微生物群的代谢物。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-27 DOI: 10.1080/21691401.2024.2319827
Hao-Ming Zhou, Xin-Yu Yang, Shi-Jun Yue, Wen-Xiao Wang, Qiao Zhang, Ding-Qiao Xu, Jia-Jia Li, Yu-Ping Tang

Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.

虽然肠道微生物代谢物对冠心病(CHD)有潜在影响,但其潜在机制仍不清楚。在这项研究中,我们通过网络药理学方法探索了对冠心病有作用的活性肠道微生物代谢物及其潜在的作用机制。我们从 gutMgene 数据库中收集了 208 种代谢物,并从相似性集合方法(SEA)和 SwissTargetPrediction(STP)数据库中收集了 726 个重叠靶点,最终确定了 610 个与 CHD 相关的靶点。结合 gutMGene 数据库,我们确定了 12 个关键靶点。去除外源性物质靶标,最终保留了10个与CHD相关的核心靶标。通过微生物群-代谢物-靶点-信号通路网络分析发现,C型凝集素受体信号通路、拉克氏菌、埃希氏菌、丝裂原活化蛋白激酶1、前列腺素内过氧化物酶合成酶2、苯乙酰谷氨酰胺和乙醇酸是CHD的重要组成成分,并在CHD的发病过程中发挥重要作用。分子对接实验结果表明,AKT1-甘氨胆酸和 PTGS2-苯乙酰谷氨酰胺复合物可能作用于 C 型凝集素受体信号通路。本研究通过网络药理学方法分析了肠道微生物代谢产物的关键物质和潜在机制,为肠道微生物代谢产物对CHD的影响提供了科学依据和全面的思路。
{"title":"The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology.","authors":"Hao-Ming Zhou, Xin-Yu Yang, Shi-Jun Yue, Wen-Xiao Wang, Qiao Zhang, Ding-Qiao Xu, Jia-Jia Li, Yu-Ping Tang","doi":"10.1080/21691401.2024.2319827","DOIUrl":"10.1080/21691401.2024.2319827","url":null,"abstract":"<p><p>Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"145-155"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesized silver nanoparticles of Terminalia bellirica leaves extract: synthesis, characterization, in-silico studies, and antimalarial activity. 槟榔叶提取物的绿色合成银纳米粒子:合成、表征、硅内研究和抗疟活性。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-05-02 DOI: 10.1080/21691401.2024.2339429
Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.

疟疾是一种由疟原虫引起的蚊媒传染病。现有的大多数药物都失去了疗效。因此,开发新的抗疟疾药物至关重要。最近,绿色银纳米粒子(AgNPs)在生物医学研究领域引起了广泛关注。因此,本研究采用了一种据称具有抗疟作用的药用植物 Terminalia bellirica 叶子中的绿色介导 AgNPs。最初,研究人员将疟原虫物种中富含半胱氨酸的蛋白质作为潜在的治疗目标进行了硅学研究。根据-9.93和-11.25 kcal/mol之间的对接得分,确定了四种Terminalia bellirica的叶片成分。随后,利用叶提取物制备了绿色介导的银纳米粒子,并使用紫外-可见分光光度计、DLS、Zeta 电位、傅立叶变换红外光谱、XRD 和 FESEM 对其进行了进一步检测。FESEM 结果验证了合成的 TBL-AgNPs 的尺寸;TBL-AgNPs 的平均尺寸约为 44.05 nm。zeta 电位研究也证明了绿色介导的 AgNPs 的稳定性。此外,用恶性疟原虫(3D7)培养物来评估抗疟药效,绿色介导的 AgNPs 能有效抑制寄生红细胞(pRBCs)。总之,这种新型的 AgNPs 可用作治疗疟疾的潜在替代疗法。
{"title":"Green synthesized silver nanoparticles of <i>Terminalia bellirica</i> leaves extract: synthesis, characterization, <i>in-silico</i> studies, and antimalarial activity.","authors":"Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt","doi":"10.1080/21691401.2024.2339429","DOIUrl":"https://doi.org/10.1080/21691401.2024.2339429","url":null,"abstract":"<p><p>Malaria is a mosquito-borne infectious disease that is caused by the <i>Plasmodium</i> parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of <i>Terminalia bellirica</i>, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from <i>Plasmodium</i> species were studied <i>in silico</i> as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of <i>Terminalia bellirica</i> were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, <i>Plasmodium falciparum</i> (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"238-249"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes. 影响响应变量的因素,重点是优化脂质体的药物释放和负载。
IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-06-04 DOI: 10.1080/21691401.2024.2360634
Shantanu Pande

Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.

在纳米粒子的治疗应用方面,通过脂质体给药已显示出巨大的潜力。有几种载药脂质体制剂已被批准用于临床,有助于减轻危及生命的疾病的有害影响。脂质体制剂和给药领域的发展使临床医生和研究人员有可能找到复杂病症的治疗方案。开发载药脂质体的一个关键环节是仔细审查优化技术,以提高制剂的整体稳定性和功效。优化研究有助于改善/调节载药脂质体的各种特性,对这类给药系统的开发至关重要。本综述全面概述了载药脂质体优化过程中涉及的各种工艺变量和因素。本文还应用统计实验设计解释了不同自变量对药物释放和负载特性的影响。
{"title":"Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes.","authors":"Shantanu Pande","doi":"10.1080/21691401.2024.2360634","DOIUrl":"10.1080/21691401.2024.2360634","url":null,"abstract":"<p><p>Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"334-344"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern. 表达关切。
IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-09 DOI: 10.1080/21691401.2024.2396729
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2024.2396729","DOIUrl":"https://doi.org/10.1080/21691401.2024.2396729","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"437"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications. 从茄属植物果皮提取物中制备二氧化钛纳米粒子及其应用。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-12 DOI: 10.1080/21691401.2023.2301068
Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami

The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.

本研究介绍了一种利用马铃薯(俗称土豆)皮制备绿色二氧化钛(TiO2)纳米粒子的方法。利用紫外可见光谱、动态光散射、扫描电子显微镜、TEM、XRD 和傅立叶变换红外光谱对合成的绿色二氧化钛(G- TiO2)纳米粒子进行了表征。此外,还利用溴酚蓝染料显示了 G- TiO2 纳米粒子的光催化活性。为了探索 G- TiO2 的生物相容性,还对正常细胞和癌细胞的存活率进行了评估。此外,还使用斑马鱼胚胎评估了 G- TiO2 纳米粒子的体内毒性。本发明的新颖之处在于利用厨房废弃物来合成二氧化钛纳米粒子,众所周知,二氧化钛纳米粒子具有清除紫外线的特性。此外,马铃薯皮是一种天然抗氧化剂,具有美白皮肤的功效。马铃薯皮萃取物和利用萃取物制备的二氧化钛的组合,将在保护皮肤免受紫外线照射和淡化肤色方面产生组合效果。
{"title":"Preparation of titanium dioxide nanoparticles from <i>Solanum Tuberosum</i> peel extract and its applications.","authors":"Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami","doi":"10.1080/21691401.2023.2301068","DOIUrl":"10.1080/21691401.2023.2301068","url":null,"abstract":"<p><p>The present study describes a method for the preparation of green titanium dioxide (TiO<sub>2</sub>) nanoparticles from the peel of <i>Solanum tuberosum</i>, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO<sub>2</sub> (G- TiO<sub>2</sub>) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO<sub>2</sub> nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO<sub>2</sub>, the cell viability in normal as well as cancer cells was assessed. Further, the <i>in vivo</i> toxicity of the G- TiO<sub>2</sub> nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"59-68"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells. 使用可打孔微孔对有活力的杂交瘤和源自患者的抗体分泌细胞进行高通量单细胞筛选。
IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI: 10.1080/21691401.2024.2395815
Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh

Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.

单克隆抗体(mAbs)具有巨大的治疗潜力,是生物医学研究的宝贵工具。然而,由于缺乏针对单个抗体分泌细胞(ASCs)的高效高通量筛选方法,限制了可用抗体的多样性。在这里,我们介绍了一种新颖的集成工作流程,它采用了自播种微孔和自动显微打孔机系统,用于快速、高通量筛选和分离单个 ASCs。该系统可在大约一天内完成多达 6,400 个细胞的单个筛选和分离,并有机会实现并行化和高效放大。我们成功地将这一工作流程应用于杂交瘤和人类患者来源的 B 细胞,通过优化的单细胞嵌套反转录聚合酶链反应(RT-PCR)程序实现了后续的克隆扩增或抗体序列分析。我们的工作流程既省时又简化了单 ASC 筛选和分离过程,有望推动 mAb 开发取得进展。
{"title":"High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells.","authors":"Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh","doi":"10.1080/21691401.2024.2395815","DOIUrl":"https://doi.org/10.1080/21691401.2024.2395815","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"426-436"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. 以姜黄根茎为基础的碳点改变雌性小鼠血清雌二醇和促卵泡激素水平。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2023-11-23 DOI: 10.1080/21691401.2023.2276770
Yumin Chen, Xue Bai, Ying Zhang, Yafang Zhao, Huagen Ma, Yunbo Yang, Meijun Wang, Yinghui Guo, Xiaopeng Li, Tong Wu, Yue Zhang, Hui Kong, Yan Zhao, Huaihua Qu

Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.

中草药含有调节女性荷尔蒙的物质。本研究证实,姜黄中含有姜黄碳点(ZR-CDs),对小鼠血清雌二醇和卵泡刺激素有调节作用,对子宫内膜生长和卵泡发育有影响,可能影响女性生育能力。表征ZR-CDs的微观结构、光学特征和官能团特征。结果表明,ZR-CDs是直径为0.97 ~ 2.3 nm的球形碳纳米结构,具有荧光特性,表面含有丰富的官能团。我们采用正常雌性小鼠和外源性雌二醇干预模型,进一步研究ZR-CDs对血清雌二醇和卵泡刺激素、卵巢和子宫生长发育的影响。观察到ZR-CDs能促进雌激素代谢,减轻雌二醇诱导的子宫内膜增生。同时,ZR-CDs触发FSH的增加,即使存在抑制FSH分泌的高血清雌二醇。我们的研究结果表明,ZR-CDs可能是一种潜在的治疗无排卵性月经的方法。
{"title":"<i>Zingiberis rhizoma</i>-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice.","authors":"Yumin Chen, Xue Bai, Ying Zhang, Yafang Zhao, Huagen Ma, Yunbo Yang, Meijun Wang, Yinghui Guo, Xiaopeng Li, Tong Wu, Yue Zhang, Hui Kong, Yan Zhao, Huaihua Qu","doi":"10.1080/21691401.2023.2276770","DOIUrl":"10.1080/21691401.2023.2276770","url":null,"abstract":"<p><p>Chinese herbs contain substances that regulate female hormones. Our study confirmed that <i>Zingiberis rhizoma carbonisata</i> contains <i>Zingiberis rhizoma</i>-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"12-22"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A consortium of Hordeum vulgare and gut microbiota against non-alcoholic fatty liver disease via data-driven analysis. 通过数据驱动的分析,研究冬虫夏草和肠道微生物群联合防治非酒精性脂肪肝。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-04-30 DOI: 10.1080/21691401.2024.2347380
Su-Been Lee, Haripriya Gupta, Byeong-Hyun Min, Raja Ganesan, Satya Priya Sharma, Sung-Min Won, Jin-Ju Jeong, Min-Gi Cha, Goo-Hyun Kwon, Min-Kyo Jeong, Ji-Ye Hyun, Jung-A Eom, Hee-Jin Park, Sang-Jun Yoon, Sang Youn Lee, Mi-Ran Choi, Dong Joon Kim, Ki-Kwang Oh, Ki-Tae Suk

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.

尽管最近有许多关于非酒精性脂肪肝(NAFLD)疗法的研究,但最佳治疗方法尚未确定。在这个未完成的项目中,我们结合了来自肠道微生物群(GM)和大麦(HV)的次生代谢物(SMs),通过网络药理学(NP)研究它们的组合效应。此外,我们还从组合角度(HV 和 GM)分析了 GM 或大麦-信号通路-靶标-代谢物(GBSTMs)。我们通过蛋白质-蛋白质相互作用(PPI)网络分析了31个关键靶点,发现JUN是非酒精性脂肪肝的首要靶点。在气泡图上,我们发现凋亡蛋白信号通路的富集因子最低,但却能拮抗非酒精性脂肪肝。从整体上看,我们仔细研究了 GBSTM,以确定与 Apelin 信号通路相关的关键成分(基因组、信号通路、靶标和代谢物)。结果,我们发现主要的基因改造菌(Eubacterium limosum、Eggerthella sp.SDG-2、Alistipes indistinctus YIT 12060、Odoribacter laneus YIT 12061、Paraprevotella clara YIT 11840、Paraprevotella xylaniphila YIT 11841)可改善非酒精性脂肪肝。分子对接试验(MDT)表明,tryptanthrin-JUN 是一种激动剂,相反,二氢甘氨酰-HDAC5、1,3-二苯基丙烷-2-醇-NOS1 和(10[(乙酰氧基)甲基]-9-蒽基)甲基乙酸酯-NOS2 是 apelin 信号通路中的拮抗构象。总之,这些结果表明,联合疗法可能是治疗非酒精性脂肪肝的有效策略。
{"title":"A consortium of <i>Hordeum vulgare</i> and gut microbiota against non-alcoholic fatty liver disease via data-driven analysis.","authors":"Su-Been Lee, Haripriya Gupta, Byeong-Hyun Min, Raja Ganesan, Satya Priya Sharma, Sung-Min Won, Jin-Ju Jeong, Min-Gi Cha, Goo-Hyun Kwon, Min-Kyo Jeong, Ji-Ye Hyun, Jung-A Eom, Hee-Jin Park, Sang-Jun Yoon, Sang Youn Lee, Mi-Ran Choi, Dong Joon Kim, Ki-Kwang Oh, Ki-Tae Suk","doi":"10.1080/21691401.2024.2347380","DOIUrl":"https://doi.org/10.1080/21691401.2024.2347380","url":null,"abstract":"<p><p>Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and <i>Hordeum vulgare</i> (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (<i>Eubacterium limosum</i>, <i>Eggerthella</i> sp. <i>SDG-2</i>, <i>Alistipes indistinctus YIT 12060</i>, <i>Odoribacter laneus YIT 12061</i>, <i>Paraprevotella clara YIT 11840</i>, <i>Paraprevotella xylaniphila YIT 11841</i>) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"250-260"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Artificial Cells, Nanomedicine, and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1