Pub Date : 2024-12-01Epub Date: 2024-05-25DOI: 10.1080/21691401.2024.2356773
Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
{"title":"Three musketeers of PDA-based MRI contrasting and therapy.","authors":"Magdalena J Bigaj-Józefowska, Tomasz Zalewski, Karol Załęski, Emerson Coy, Marcin Frankowski, Radosław Mrówczyński, Bartosz F Grześkowiak","doi":"10.1080/21691401.2024.2356773","DOIUrl":"https://doi.org/10.1080/21691401.2024.2356773","url":null,"abstract":"<p><p>Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"321-333"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-18DOI: 10.1080/21691401.2024.2304814
Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
{"title":"Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review.","authors":"Abdul Nasir, Mujeeb Ur Rehman, Tamreez Khan, Mansoor Husn, Manzar Khan, Ahmad Khan, Abdifatah Mohamed Nuh, Wei Jiang, Hafiz Muhammad Umer Farooqi, Qain Bai","doi":"10.1080/21691401.2024.2304814","DOIUrl":"10.1080/21691401.2024.2304814","url":null,"abstract":"<p><p>Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"84-103"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.
{"title":"The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology.","authors":"Hao-Ming Zhou, Xin-Yu Yang, Shi-Jun Yue, Wen-Xiao Wang, Qiao Zhang, Ding-Qiao Xu, Jia-Jia Li, Yu-Ping Tang","doi":"10.1080/21691401.2024.2319827","DOIUrl":"10.1080/21691401.2024.2319827","url":null,"abstract":"<p><p>Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"145-155"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-02DOI: 10.1080/21691401.2024.2339429
Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt
Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.
{"title":"Green synthesized silver nanoparticles of <i>Terminalia bellirica</i> leaves extract: synthesis, characterization, <i>in-silico</i> studies, and antimalarial activity.","authors":"Sujeet Singh, Hemant Arya, Welka Sahu, K Sony Reddy, Surendra Nimesh, Bader Saud Alotaibi, Mohammed Ageeli Hakami, Hassan H Almasoudi, Khater Balatone Gezira Hessien, Mohammad Raghibul Hasan, Summya Rashid, Tarun Kumar Bhatt","doi":"10.1080/21691401.2024.2339429","DOIUrl":"https://doi.org/10.1080/21691401.2024.2339429","url":null,"abstract":"<p><p>Malaria is a mosquito-borne infectious disease that is caused by the <i>Plasmodium</i> parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of <i>Terminalia bellirica</i>, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from <i>Plasmodium</i> species were studied <i>in silico</i> as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of <i>Terminalia bellirica</i> were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, <i>Plasmodium falciparum</i> (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"238-249"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-04DOI: 10.1080/21691401.2024.2360634
Shantanu Pande
Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.
{"title":"Factors affecting response variables with emphasis on drug release and loading for optimization of liposomes.","authors":"Shantanu Pande","doi":"10.1080/21691401.2024.2360634","DOIUrl":"10.1080/21691401.2024.2360634","url":null,"abstract":"<p><p>Drug delivery through Liposomes has shown tremendous potential in terms of the therapeutic application of nanoparticles. There are several drug-loaded liposomal formulations approved for clinical use that help mitigate harmful effects of life-threatening diseases. Developments in the field of liposomal formulations and drug delivery have made it possible for clinicians and researchers to find therapeutic solutions for complicated medical conditions. A key aspect in the development of drug-loaded liposomes is a careful review of optimization techniques to improve the overall formulation stability and efficacy. Optimization studies help in improving/modulating the various properties of drug-loaded liposomes and are vital for the development of this class of delivery systems. A comprehensive overview of the various process variables and factors involved in the optimization of drug-loaded liposomes is presented in this review. The influence of different independent variables on drug release and loading properties with the application of a statistical experimental design is also explained in this article.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"334-344"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-09DOI: 10.1080/21691401.2024.2396729
{"title":"Expression of Concern.","authors":"","doi":"10.1080/21691401.2024.2396729","DOIUrl":"https://doi.org/10.1080/21691401.2024.2396729","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"437"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.
{"title":"Preparation of titanium dioxide nanoparticles from <i>Solanum Tuberosum</i> peel extract and its applications.","authors":"Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami","doi":"10.1080/21691401.2023.2301068","DOIUrl":"10.1080/21691401.2023.2301068","url":null,"abstract":"<p><p>The present study describes a method for the preparation of green titanium dioxide (TiO<sub>2</sub>) nanoparticles from the peel of <i>Solanum tuberosum</i>, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO<sub>2</sub> (G- TiO<sub>2</sub>) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO<sub>2</sub> nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO<sub>2</sub>, the cell viability in normal as well as cancer cells was assessed. Further, the <i>in vivo</i> toxicity of the G- TiO<sub>2</sub> nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"59-68"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-29DOI: 10.1080/21691401.2024.2395815
Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh
Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.
单克隆抗体(mAbs)具有巨大的治疗潜力,是生物医学研究的宝贵工具。然而,由于缺乏针对单个抗体分泌细胞(ASCs)的高效高通量筛选方法,限制了可用抗体的多样性。在这里,我们介绍了一种新颖的集成工作流程,它采用了自播种微孔和自动显微打孔机系统,用于快速、高通量筛选和分离单个 ASCs。该系统可在大约一天内完成多达 6,400 个细胞的单个筛选和分离,并有机会实现并行化和高效放大。我们成功地将这一工作流程应用于杂交瘤和人类患者来源的 B 细胞,通过优化的单细胞嵌套反转录聚合酶链反应(RT-PCR)程序实现了后续的克隆扩增或抗体序列分析。我们的工作流程既省时又简化了单 ASC 筛选和分离过程,有望推动 mAb 开发取得进展。
{"title":"High-throughput single-cell screening of viable hybridomas and patient-derived antibody-secreting cells using punchable microwells.","authors":"Kaat Rubben, Ann-Sophie Vander Plaetsen, Ruben Almey, Olivier Tytgat, Koen Deserranno, Jamie Debaere, Delphine Diana Acar, Philip Meuleman, Dieter Deforce, Filip Van Nieuwerburgh","doi":"10.1080/21691401.2024.2395815","DOIUrl":"https://doi.org/10.1080/21691401.2024.2395815","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"426-436"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.
{"title":"<i>Zingiberis rhizoma</i>-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice.","authors":"Yumin Chen, Xue Bai, Ying Zhang, Yafang Zhao, Huagen Ma, Yunbo Yang, Meijun Wang, Yinghui Guo, Xiaopeng Li, Tong Wu, Yue Zhang, Hui Kong, Yan Zhao, Huaihua Qu","doi":"10.1080/21691401.2023.2276770","DOIUrl":"10.1080/21691401.2023.2276770","url":null,"abstract":"<p><p>Chinese herbs contain substances that regulate female hormones. Our study confirmed that <i>Zingiberis rhizoma carbonisata</i> contains <i>Zingiberis rhizoma</i>-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"12-22"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.
{"title":"A consortium of <i>Hordeum vulgare</i> and gut microbiota against non-alcoholic fatty liver disease via data-driven analysis.","authors":"Su-Been Lee, Haripriya Gupta, Byeong-Hyun Min, Raja Ganesan, Satya Priya Sharma, Sung-Min Won, Jin-Ju Jeong, Min-Gi Cha, Goo-Hyun Kwon, Min-Kyo Jeong, Ji-Ye Hyun, Jung-A Eom, Hee-Jin Park, Sang-Jun Yoon, Sang Youn Lee, Mi-Ran Choi, Dong Joon Kim, Ki-Kwang Oh, Ki-Tae Suk","doi":"10.1080/21691401.2024.2347380","DOIUrl":"https://doi.org/10.1080/21691401.2024.2347380","url":null,"abstract":"<p><p>Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and <i>Hordeum vulgare</i> (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (<i>Eubacterium limosum</i>, <i>Eggerthella</i> sp. <i>SDG-2</i>, <i>Alistipes indistinctus YIT 12060</i>, <i>Odoribacter laneus YIT 12061</i>, <i>Paraprevotella clara YIT 11840</i>, <i>Paraprevotella xylaniphila YIT 11841</i>) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"250-260"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}