首页 > 最新文献

Biochimica et biophysica acta. Proteins and proteomics最新文献

英文 中文
Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy 比较力场研究含锌指蛋白NPL4,二硫仑在癌症治疗中的靶点
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-07-01 DOI: 10.1016/j.bbapap.2023.140921
Simone Scrima , Matteo Tiberti , Ulf Ryde , Matteo Lambrughi , Elena Papaleo

Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.

分子动力学(MD)模拟是研究与健康和疾病相关的蛋白质结构和动力学的有力方法。MD领域的进展使得能够高精度地对蛋白质进行建模。然而,对金属离子及其与蛋白质的相互作用进行建模仍然具有挑战性。NPL4是一种锌结合蛋白,作为p97的辅因子调节蛋白质稳态。NPL4具有生物医学重要性,已被提议作为双硫仑的靶点,双硫仑是一种最近重新用于癌症治疗的药物。实验研究表明,双硫仑代谢产物双(二乙基二硫代氨基甲酸酯)铜和铜离子会诱导NPL4错误折叠和聚集。然而,它们与NPL4相互作用的分子细节以及由此产生的结构效应仍然难以捉摸。在这里,生物分子模拟可以帮助阐明相关的结构细节。为了将MD模拟应用于NPL4及其与铜的相互作用,第一个重要步骤是确定合适的力场来描述处于锌结合状态的蛋白质。我们检查了不同的非键参数,因为我们想研究错误折叠机制,并且不能排除锌在这个过程中可能与蛋白质分离,而铜取代了它。我们通过将MD模拟的结果与使用NPL4模型系统的量子力学(QM)计算的优化几何结构进行比较,研究了对金属离子配位几何结构进行建模的力场能力。此外,我们研究了包括键合参数的力场的性能,以处理NPL4中的铜离子,这是我们基于QM计算获得的。
{"title":"Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy","authors":"Simone Scrima ,&nbsp;Matteo Tiberti ,&nbsp;Ulf Ryde ,&nbsp;Matteo Lambrughi ,&nbsp;Elena Papaleo","doi":"10.1016/j.bbapap.2023.140921","DOIUrl":"10.1016/j.bbapap.2023.140921","url":null,"abstract":"<div><p>Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 4","pages":"Article 140921"},"PeriodicalIF":3.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9750955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Molecular dynamics simulations suggest Thiosemicarbazones can bind p53 cancer mutant R175H 分子动力学模拟表明,硫代氨基脲可以结合p53癌症突变体R175H
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140903
Tanushree Das, Chaitali Mukhopadhyay

Cancer pathologies are associated with the unfolding and aggregation of most recurring mutations in the DNA Binding Domain (DBD) of p53 that coordinate the destabilization of protein. Substitution at the 175th codon with arginine to histidine (R175H, a mutation of large to small side-chain amino acid) destabilizes the DBD by 3 kcal/mol and triggers breasts, lung cancer, etc. Stabilizing the p53 mutant by small molecules offers an attractive drug-targeted anti-cancer therapy. The thiosemicarbazone (TSC) molecules NPC and DPT are known to act as zinc-metallochaperones to reactivate p53R175H. Here, a combination of LESMD simulations for 10 TSC conformations with a p53R175H receptor, single ligand-protein conformation MD, and ensemble docking with multiple p53R175H conformations observed during simulations is suggested to identify the potential binding site of the target protein in light of their importance for the direct TSC – p53R175H binding. NPC binds mutant R175H in the loop region L2-L3, forming pivotal hydrogen bonds with HIS175, pi‑sulfur bonds with TYR163, and pi-alkyl linkages with ARG174 and PRO190, all of which are contiguous to the zinc-binding native site on p53DBD. DPT, on the other hand, was primarily targeting alternative binding sites such as the loop-helix L1/H2 region and the S8 strand. The similar structural characteristics of TSC-bound p53R175H complexes with wild-type p53DBD are thought to be attributable to involved interactions that favour binding free energy contributions of TSC ligands. Our findings may be useful in the identification of novel pockets with druggable properties.

癌症病理与p53的DNA结合结构域(DBD)中大多数重复突变的展开和聚集有关,这些突变协调了蛋白质的不稳定。在第175个密码子处用精氨酸取代组氨酸(R175H,一种大到小的侧链氨基酸突变)使DBD不稳定3 kcal/mol,并引发乳腺癌、肺癌等。通过小分子稳定p53突变提供了一种有吸引力的药物靶向抗癌疗法。已知氨基硫脲(TSC)分子NPC和DPT作为锌金属伴侣激活p53R175H。在此,建议将LESMD模拟与p53R175H受体的10个TSC构象、单配体蛋白构象MD以及在模拟过程中观察到的与多个p53R175H构象的整体对接相结合,以确定靶蛋白的潜在结合位点,因为它们对直接TSC–p53R175H结合的重要性。NPC与环区L2-L3中的突变体R175H结合,与HIS175形成关键氢键,与TYR163形成π硫键,与ARG174和PRO190形成π烷基键,所有这些都与p53DBD上的锌结合天然位点相邻。另一方面,DPT主要靶向替代结合位点,如环螺旋L1/H2区和S8链。TSC结合的p53R175H复合物与野生型p53DBD的相似结构特征被认为可归因于有利于TSC配体结合自由能贡献的相关相互作用。我们的发现可能有助于鉴定具有药物性质的新型口袋。
{"title":"Molecular dynamics simulations suggest Thiosemicarbazones can bind p53 cancer mutant R175H","authors":"Tanushree Das,&nbsp;Chaitali Mukhopadhyay","doi":"10.1016/j.bbapap.2023.140903","DOIUrl":"10.1016/j.bbapap.2023.140903","url":null,"abstract":"<div><p><span><span>Cancer pathologies are associated with the unfolding and aggregation of most recurring mutations in the DNA<span><span> Binding Domain (DBD) of p53 that coordinate the destabilization of protein. Substitution at the 175th codon with arginine to histidine (R175H, a mutation of large to small side-chain amino acid) destabilizes the DBD by 3 kcal/mol and triggers breasts, lung cancer, etc. Stabilizing the p53 mutant by </span>small molecules offers an attractive drug-targeted anti-cancer therapy. The thiosemicarbazone (TSC) molecules NPC and DPT are known to act as zinc-metallochaperones to reactivate p53R175H. Here, a combination of </span></span>LESMD simulations<span> for 10 TSC conformations with a p53R175H receptor, single ligand-protein conformation MD, and ensemble docking with multiple p53R175H conformations observed during simulations is suggested to identify the potential binding site of the target protein in light of their importance for the direct TSC – p53R175H binding. NPC binds mutant R175H in the loop region L2-L3, forming pivotal hydrogen bonds with HIS175, pi‑sulfur bonds with TYR163, and pi-alkyl linkages with ARG174 and PRO190, all of which are contiguous to the zinc-binding native site on p53DBD. DPT, on the other hand, was primarily targeting alternative binding sites such as the loop-helix L1/H2 region and the S8 strand. The similar structural characteristics of TSC-bound p53R175H complexes with wild-type p53DBD are thought to be attributable to involved interactions that favour binding </span></span>free energy contributions of TSC ligands. Our findings may be useful in the identification of novel pockets with druggable properties.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140903"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9114046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural characterization of the type I-B CRISPR Cas7 from Thermobaculum terrenum 末端热杆菌I-B型CRISPR Cas7的结构表征
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140900
Pil-Won Seo , Do-Heon Gu , Ji-Won Kim , Jun-Hong Kim , Suk-Youl Park , Jeong-Sun Kim

Clustered regularly interspaced short palindromic repeats (CRISPR) in many prokaryotes functions as an adaptive immune system against mobile genetic elements. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex.

In this study, we structurally characterized type I-B Cas7 (Csh2 from Thermobaculum terrenum; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.

在许多原核生物中,簇状规则间隔的短回文重复序列(CRISPR)作为一种针对移动遗传元件的适应性免疫系统发挥作用。由CRISPR相关(Cas)蛋白和CRISPR RNA(crRNA)组成的异源核糖核蛋白沉默复合物中和进入的可移动遗传元件。I型和III型沉默复合物通常包括相同亚基的几个拷贝的蛋白质螺旋骨架,例如I型沉默复合中的Cas7。在本研究中,我们对I-B型Cas7(来自Thermobaculum terrenum的Csh2;TterCsh2)进行了结构表征。所揭示的TterCsh2的晶体结构显示了Cas7的典型手套状结构,其由手掌、拇指和指域组成。Csh2蛋白具有5个保守的序列基序,这些基序被排列以在TterCsh2结构中形成可推测的crRNA结合位点。TterCsh2的这种crRNA结合位点在结构上和潜在上与在其他亚型中的螺旋形成Cas7结构中观察到的那些具有可比性。对已报道的Cas7结构及其序列的分析表明,Cas7可分为至少两个亚类。这些数据将拓宽我们对CRISPR/Cas系统级联复合体的理解。
{"title":"Structural characterization of the type I-B CRISPR Cas7 from Thermobaculum terrenum","authors":"Pil-Won Seo ,&nbsp;Do-Heon Gu ,&nbsp;Ji-Won Kim ,&nbsp;Jun-Hong Kim ,&nbsp;Suk-Youl Park ,&nbsp;Jeong-Sun Kim","doi":"10.1016/j.bbapap.2023.140900","DOIUrl":"10.1016/j.bbapap.2023.140900","url":null,"abstract":"<div><p><span>Clustered regularly interspaced short palindromic repeats (CRISPR) in many </span>prokaryotes<span> functions as an adaptive immune system against mobile genetic elements<span><span>. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR </span>RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex.</span></span></p><p>In this study, we structurally characterized type I-B Cas7 (Csh2 from <em>Thermobaculum terrenum</em><span>; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140900"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9472083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure of the complex of camel peptidoglycan recognition protein-S with hexanoic acid reveals novel features of the versatile ligand-binding site at the dimeric interface 骆驼肽聚糖识别蛋白s与己酸复合物的结构揭示了二聚体界面上多功能配体结合位点的新特征
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2022.140887
Ankit Maurya, Pradeep Sharma, Prashant K. Singh, V. Viswanathan, Punit Kaur, Sujata Sharma, Tej P. Singh

The short peptidoglycan recognition protein (PGRP-S) of the innate immune system recognizes the invading microbes through binding to their cell wall molecules. In order to understand the mode of binding of PGRP-S to bacterial cell wall molecules, the structure of the complex of camel PGRP-S (CPGRP-S) with hexanoic acid has been determined at 2.07 Å resolution. Previously, we had reported the structures of CPGRP-S in the native unbound state as well as in the complexed forms with the components of various bacterial cell wall molecules such as peptidoglycan (PGN), lipopolysaccharide (LPS), lipoteichoic acid (LTA), mycolic acid (MA) and other fatty acids. These structures revealed that CPGRP-S formed two homodimers which were designated as A-B and CD dimers. It also showed that the fatty acids bind to CPGRP-S in the binding site at the A-B dimer while the non-fatty acids were shown to bind at the interfaces of both A-B and CD dimers. The present structure of the complex of CPGRP-S with hexanoic acid (HA) showed that HA binds to CPGRP-S at the interface of CD dimer. HA was located in the same groove at the CD interface which was occupied by non-fatty acids such as PGN, LPS and LTA and interacts with residues from both C and D molecules. HA is firmly held in the groove with several hydrogen bonds and a number of van der Waals contacts. This is the first structure which reports the binding of a fatty acid in the cleft at the interface of CD dimer.

先天免疫系统的短肽聚糖识别蛋白(PGRP-S)通过与入侵微生物的细胞壁分子结合来识别入侵微生物。为了了解PGRP-S与细菌细胞壁分子的结合模式,以2.07Å的分辨率测定了骆驼PGRP-S(CPGRP-S)与己酸的复合物的结构。此前,我们已经报道了天然未结合状态下的CPGRP-S的结构,以及与各种细菌细胞壁分子的成分(如肽聚糖(PGN)、脂多糖(LPS)、脂磷壁酸(LTA)、分枝杆菌酸(MA)和其他脂肪酸)的复合形式。这些结构表明,CPGRP-S形成了两个同源二聚体,分别命名为A-B和CD二聚体。研究还表明,脂肪酸在A-B二聚体的结合位点与CPGRP-S结合,而非脂肪酸则在A-B和CD二聚体界面结合。CPGRP-S与己酸(HA)复合物的结构表明,HA在CD二聚体的界面与CPGRP-S结合。HA位于CD界面的同一凹槽中,该凹槽被非脂肪酸如PGN、LPS和LTA占据,并与C和D分子的残基相互作用。HA通过几个氢键和许多范德华接触被牢固地保持在凹槽中。这是第一个报道脂肪酸在CD二聚体界面裂缝中结合的结构。
{"title":"Structure of the complex of camel peptidoglycan recognition protein-S with hexanoic acid reveals novel features of the versatile ligand-binding site at the dimeric interface","authors":"Ankit Maurya,&nbsp;Pradeep Sharma,&nbsp;Prashant K. Singh,&nbsp;V. Viswanathan,&nbsp;Punit Kaur,&nbsp;Sujata Sharma,&nbsp;Tej P. Singh","doi":"10.1016/j.bbapap.2022.140887","DOIUrl":"10.1016/j.bbapap.2022.140887","url":null,"abstract":"<div><p><span><span>The short peptidoglycan<span> recognition protein (PGRP-S) of the innate immune system recognizes the invading microbes through binding to their cell wall molecules. In order to understand the mode of binding of PGRP-S to bacterial cell wall molecules, the structure of the complex of </span></span>camel<span><span><span><span> PGRP-S (CPGRP-S) with hexanoic acid has been determined at 2.07 Å resolution. Previously, we had reported the structures of CPGRP-S in the native unbound state as well as in the complexed forms with the components of various bacterial cell wall molecules such as peptidoglycan (PGN), </span>lipopolysaccharide<span> (LPS), lipoteichoic acid (LTA), </span></span>mycolic acid (MA) and other fatty acids. These structures revealed that CPGRP-S formed two </span>homodimers which were designated as A-B and C</span></span><img>D dimers. It also showed that the fatty acids bind to CPGRP-S in the binding site at the A-B dimer while the non-fatty acids were shown to bind at the interfaces of both A-B and C<img>D dimers. The present structure of the complex of CPGRP-S with hexanoic acid (HA) showed that HA binds to CPGRP-S at the interface of C<img>D dimer. HA was located in the same groove at the C<img><span>D interface which was occupied by non-fatty acids such as PGN, LPS and LTA and interacts with residues from both C and D molecules. HA is firmly held in the groove with several hydrogen bonds and a number of van der Waals contacts. This is the first structure which reports the binding of a fatty acid in the cleft at the interface of C</span><img>D dimer.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140887"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9118627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores 基于互作网络、基因本体和KEGG通路富集评分的蛋白质稳定性分析与预测
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140889
Feiming Huang , Minfei Fu , JiaRui Li , Lei Chen , KaiYan Feng , Tao Huang , Yu-Dong Cai

Metabolic stability of proteins plays a vital role in various dedicated cellular processes. Traditional methods of measuring the metabolic stability are time-consuming and expensive. Therefore, we developed a more efficient computational approach to understand the protein dynamic action mechanisms in biological process networks. In this study, we collected 341 short-lived proteins and 824 non-short-lived proteins from U2OS; 342 short-lived proteins and 821 non-short-lived proteins from HEK293T; 424 short-lived proteins and 1153 non-short-lived proteins from HCT116; and 384 short-lived proteins and 992 non-short-lived proteins from RPE1. The proteins were encoded by GO and KEGG enrichment scores based on the genes and their neighbors in STRING, resulting in 20,681 GO term features and 297 KEGG pathway features. We also incorporated the protein interaction information from STRING into the features and obtained 19,247 node features. Boruta and mRMR methods were used for feature filtering, and IFS method was used to obtain the best feature subsets and create the models with the highest performance. The present study identified 42 features that did not appear in previous studies and classified them into eight groups according to their functional annotation. By reviewing the literature, we found that the following three functional groups were critical in determining the stability of proteins: synaptic transmission, post-translational modifications, and cell fate determination. These findings may serve as a valuable reference for developing drugs that target protein stability.

蛋白质的代谢稳定性在各种专门的细胞过程中起着至关重要的作用。测量代谢稳定性的传统方法耗时且昂贵。因此,我们开发了一种更有效的计算方法来理解生物过程网络中的蛋白质动态作用机制。在本研究中,我们从U2OS中收集了341个短命蛋白和824个非短命蛋白;来自HEK293T的342个短命蛋白和821个非短命蛋白;来自HCT116的424个短命蛋白和1153个非短命蛋白;以及来自RPE1的384个短命蛋白和992个非短命蛋白。基于STRING中的基因及其邻居,通过GO和KEGG富集评分对蛋白质进行编码,产生20681个GO术语特征和297个KEGG途径特征。我们还将来自STRING的蛋白质相互作用信息纳入特征中,并获得19247个节点特征。Boruta和mRMR方法用于特征滤波,IFS方法用于获得最佳特征子集并创建具有最高性能的模型。本研究确定了42个以前研究中没有出现的特征,并根据其功能注释将其分为八组。通过回顾文献,我们发现以下三个官能团在决定蛋白质的稳定性方面至关重要:突触传递、翻译后修饰和细胞命运决定。这些发现可能为开发靶向蛋白质稳定性的药物提供有价值的参考。
{"title":"Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores","authors":"Feiming Huang ,&nbsp;Minfei Fu ,&nbsp;JiaRui Li ,&nbsp;Lei Chen ,&nbsp;KaiYan Feng ,&nbsp;Tao Huang ,&nbsp;Yu-Dong Cai","doi":"10.1016/j.bbapap.2023.140889","DOIUrl":"10.1016/j.bbapap.2023.140889","url":null,"abstract":"<div><p>Metabolic stability of proteins plays a vital role in various dedicated cellular processes. Traditional methods of measuring the metabolic stability are time-consuming and expensive. Therefore, we developed a more efficient computational approach to understand the protein dynamic action mechanisms in biological process<span> networks. In this study, we collected 341 short-lived proteins and 824 non-short-lived proteins from U2OS; 342 short-lived proteins and 821 non-short-lived proteins from HEK293T; 424 short-lived proteins and 1153 non-short-lived proteins from HCT116; and 384 short-lived proteins and 992 non-short-lived proteins from RPE1. The proteins were encoded by GO<span> and KEGG enrichment scores based on the genes and their neighbors in STRING, resulting in 20,681 GO term features and 297 KEGG pathway features. We also incorporated the protein interaction information from STRING into the features and obtained 19,247 node features. Boruta and mRMR methods were used for feature filtering, and IFS method was used to obtain the best feature subsets and create the models with the highest performance. The present study identified 42 features that did not appear in previous studies and classified them into eight groups according to their functional annotation. By reviewing the literature, we found that the following three functional groups were critical in determining the stability of proteins: synaptic transmission, post-translational modifications, and cell fate determination. These findings may serve as a valuable reference for developing drugs that target protein stability.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140889"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9118646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Citrus flavanone metabolites significantly modulate global proteomic profile in pancreatic β-cells under high-glucose-induced metabolic stress 柑橘黄酮代谢物显著调节高糖诱导代谢应激下胰腺β细胞的整体蛋白质组学特征
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140898
Layanne Nascimento Fraga , Dragan Milenkovic , Sara Lima Anacleto , Michelle Salemi , Franco Maria Lajolo , Neuza Mariko Aymoto Hassimotto

Hesperidin and narirutin are the major citrus flavanones. Several studies have associated these compounds with pancreatic β-cell survival through their capacity to reduce oxidative stress, inflammation, and inhibit apoptosis. However, the molecular mechanisms of action of flavanones in pancreatic β-cells under high-glycemic stress is still largely unknown. Therefore, this study aimed to decipher molecular mechanisms of flavanone metabolites in pancreatic β-cells treated with high glucose concentration using untargeted shotgun proteomics. We identified 569 proteins differentially expressed in cells exposed to hesperetin 7-glucuronide (H7G) and 265 in cells exposed to 3-(4′-hydroxyphenyl) propanoic acid (PA). Comparison of global proteomic profiles suggest that these metabolites could counteract changes in protein expression induced by high glucose stress. The bioinformatic analyses suggested that H7G and PA modulated the expression of proteins involved in cell adhesion, cell signaling, metabolism, inflammation, and protein processing in endoplasmic reticulum (ER) pathways. Taken together, this study suggests that H7G and PA can modulate the expression of proteins that may prevent dysfunction of pancreatic β-cells under stress induced by high glucose.

橙皮苷和柚皮芦丁是柑橘中主要的黄酮类化合物。一些研究表明,这些化合物通过减少氧化应激、炎症和抑制细胞凋亡的能力,与胰腺β细胞的存活有关。然而,黄烷酮在高糖应激下对胰腺β细胞作用的分子机制在很大程度上仍然未知。因此,本研究旨在使用非靶向鸟枪蛋白质组学来破解高糖处理的胰腺β细胞中黄烷酮代谢产物的分子机制。我们鉴定了569种蛋白质在暴露于橙皮素7-葡糖苷酸(H7G)的细胞中差异表达,265种蛋白质在接触3-(4′-羟基苯基)丙酸(PA)的细胞内差异表达。全球蛋白质组学图谱的比较表明,这些代谢物可以抵消高糖胁迫诱导的蛋白质表达变化。生物信息学分析表明,H7G和PA调节参与细胞粘附、细胞信号传导、代谢、炎症和内质网(ER)途径中蛋白质加工的蛋白质的表达。总之,这项研究表明,H7G和PA可以调节蛋白质的表达,这些蛋白质可以防止高糖诱导的应激下胰腺β细胞的功能障碍。
{"title":"Citrus flavanone metabolites significantly modulate global proteomic profile in pancreatic β-cells under high-glucose-induced metabolic stress","authors":"Layanne Nascimento Fraga ,&nbsp;Dragan Milenkovic ,&nbsp;Sara Lima Anacleto ,&nbsp;Michelle Salemi ,&nbsp;Franco Maria Lajolo ,&nbsp;Neuza Mariko Aymoto Hassimotto","doi":"10.1016/j.bbapap.2023.140898","DOIUrl":"10.1016/j.bbapap.2023.140898","url":null,"abstract":"<div><p><span>Hesperidin and </span>narirutin<span><span><span><span> are the major citrus flavanones<span>. Several studies have associated these compounds with pancreatic β-cell survival through their capacity to reduce oxidative stress, inflammation, and inhibit apoptosis. However, the molecular mechanisms of action of flavanones in pancreatic β-cells under high-glycemic stress is still largely unknown. Therefore, this study aimed to decipher molecular mechanisms of flavanone metabolites in pancreatic β-cells treated with high glucose concentration using untargeted </span></span>shotgun proteomics. We identified 569 proteins differentially expressed in cells exposed to </span>hesperetin<span> 7-glucuronide (H7G) and 265 in cells exposed to 3-(4′-hydroxyphenyl) propanoic acid (PA). Comparison of global proteomic profiles suggest that these metabolites could counteract changes in </span></span>protein expression<span><span> induced by high glucose stress. The bioinformatic analyses suggested that H7G and PA modulated the expression of proteins involved in cell adhesion, cell signaling, metabolism, inflammation, and </span>protein processing in endoplasmic reticulum (ER) pathways. Taken together, this study suggests that H7G and PA can modulate the expression of proteins that may prevent dysfunction of pancreatic β-cells under stress induced by high glucose.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140898"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9490314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Elucidating the inhibitory effects of rationally designed novel hexapeptide against hen egg white lysozyme fibrillation at acidic and physiological pH 阐明合理设计的新型六肽在酸性和生理pH下对蛋清溶菌酶纤颤的抑制作用
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140899
Amit Mitra, Nandini Sarkar

Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white lysozyme (HEWL) amyloid fibril formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV–vis spectroscopy, FTIR spectroscopy, confocal microscopy and TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.

使用合理设计的基于序列的短肽抑制错误折叠的淀粉样蛋白的高度有序的富含交叉β片的聚集体是治疗神经退行性疾病的一种很有前途的治疗策略。在这里,我们使用计算对接以及各种生物物理技术,如荧光光谱、紫外-可见光谱、傅立叶变换红外光谱、共聚焦显微镜和透射电镜,探索了合理设计的六肽(Tyr-Pro-Gln-Ile-Pro-Asn)在酸性pH和生理pH下对体外鸡蛋清溶菌酶(HEWL)淀粉样原纤维形成的抗淀粉样蛋白生成效力。该肽是基于HEWL的易聚集区(APR)设计的,因此被称为SqP1(基于序列的肽1)。SqP1在pH 2.2时对HEWL淀粉样蛋白形成显示出超过70%的抑制作用,在pH 7.5时显示出大约50%的抑制作用。我们提出SqP1与HEWL的APR结合,并与Trp62/Trp63强烈相互作用,最终在pH条件下稳定单体HEWL,并防止HEWL结构的构象变化,导致淀粉样原纤维结构的形成。以前没有报道过HEWL淀粉样蛋白形成的基于序列的肽抑制剂,这使得这项关键研究将进一步强调短合成肽作为淀粉样蛋白抑制剂的重要性。
{"title":"Elucidating the inhibitory effects of rationally designed novel hexapeptide against hen egg white lysozyme fibrillation at acidic and physiological pH","authors":"Amit Mitra,&nbsp;Nandini Sarkar","doi":"10.1016/j.bbapap.2023.140899","DOIUrl":"10.1016/j.bbapap.2023.140899","url":null,"abstract":"<div><p><span><span><span>Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white </span>lysozyme (HEWL) </span>amyloid fibril<span> formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV–vis spectroscopy, </span></span>FTIR spectroscopy<span><span>, confocal microscopy and </span>TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140899"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9118050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The oxidative nuclease activity of human cytochrome c with mutations in Ω-loop C/D Ω-loop c /D突变的人细胞色素c的氧化核酸酶活性
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140897
Yu Feng , Yao Dong , Ke-Jie Du , Xi-Chun Liu , Shu-Qin Gao , Ying-Wu Lin

Natural and artificial nucleases have extensive applications in biotechnology and biomedicine. The exploration of protein with potential DNA cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process of DNA damage. In this study, we engineered four human cytochrome c (Cyt c) mutants (N52S, N52A, I81N, and I81D Cyt c), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt c, especially under acidic conditions. The mechanism assays revealed that the superoxide (O2•−) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt c mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt c, which may have physiological significance in DNA damage and potential applications in biomedicine.

天然和人工核酸酶在生物技术和生物医学中有着广泛的应用。对具有潜在DNA切割活性的蛋白质的探索也启发了人工核酸酶的设计,并有助于理解DNA损伤的生理过程。在本研究中,我们设计了四种人类细胞色素c(Cyt-c)突变体(N52S、N52A、I81N和I81D-Cyt-c。机理分析表明,超氧化物(O2•−)在核酸酶反应中起着重要作用。动力学分析表明,I81D-Cyt-c突变体的过氧化物酶活性在pH5时提高了9倍。本研究表明,Ile81和Asn52在Ω-环C/D中的突变对Cyt-C的核酸酶活性至关重要,这可能在DNA损伤中具有生理意义,并在生物医学中具有潜在应用。
{"title":"The oxidative nuclease activity of human cytochrome c with mutations in Ω-loop C/D","authors":"Yu Feng ,&nbsp;Yao Dong ,&nbsp;Ke-Jie Du ,&nbsp;Xi-Chun Liu ,&nbsp;Shu-Qin Gao ,&nbsp;Ying-Wu Lin","doi":"10.1016/j.bbapap.2023.140897","DOIUrl":"10.1016/j.bbapap.2023.140897","url":null,"abstract":"<div><p><span><span><span>Natural and artificial nucleases have extensive applications in biotechnology and </span>biomedicine. The exploration of protein with potential </span>DNA<span> cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process<span> of DNA damage. In this study, we engineered four human cytochrome </span></span></span><em>c</em> (Cyt <em>c</em>) mutants (N52S, N52A, I81N, and I81D Cyt <em>c</em>), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt <em>c</em>, especially under acidic conditions. The mechanism assays revealed that the superoxide (O<sub>2</sub><sup>•−</sup><span>) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt </span><em>c</em> mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt <em>c</em>, which may have physiological significance in DNA damage and potential applications in biomedicine.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140897"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9112769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural basis of conserved residue variant effect on enzyme activity of UGT2B15 保守残基变异对UGT2B15酶活性影响的结构基础
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140888
Lin Zhang , Xuerong Zhang , Yibing Yang , Jiangyong Gu , Zhongqiu Liu , Caiyan Wang

UDP-glucuronosyltransferase 2B15 (UGT2B15) is a crucial phase II drug-metabolizing enzyme, which glucuronidates various compounds, including clinical drugs and hormones. Mutants might affect glucuronidation, leading to a disruption of drug metabolism in vivo and decrease of therapeutic effect. Here, we mainly analyzed two representative mutants, H401P and L446S, on UGT2B15 activity using glucuronidation assays, molecular dynamic (MD) simulation and X-ray diffraction methods. The enzyme activity of L446S obviously increased six-fold than the wild type, although the enzyme activities of P191L, T374A, and H401P were lost apparently. Furthermore, we used MD simulations to calculate the energy change in the catalytic process of H401P and L446S, and the results indicated the free binding energies of H401P mutant to oxazepam and UDPGA were −30.98 ± 1.00 kcal/mol and −36.42 ± 1.04 kcal/mol, respectively, increased obviously compared to wild type, suggesting the mutation on position 401 had a crucial effect on the catalysis. Moreover, the three-dimensional structure of UGT2B15 C-terminal domain L446S was determined through protein crystallography and X-ray diffraction technology and the results suggested that one more hydrogen bonding between S446 and K410 was formed in the S446 crystal structure, compared to the wild type. Isothermal titration calorimetry assay further revealed the Kd values of C-terminal domain of UGT2B15 harbored L446S towards the cofactor UDPGA was similar to the value of wild type. Above all, our results pointed out that H401P and L446S affected the enzyme activity by different mechanism. Our work provided a helpful mechanism for variance explained in the UGTs catalyzation process.

UDP葡糖醛酸基转移酶2B15(UGT2B15)是一种重要的II期药物代谢酶,可对包括临床药物和激素在内的各种化合物进行葡糖醛酸化。突变体可能影响葡萄糖醛酸化,导致体内药物代谢中断,降低治疗效果。在这里,我们主要使用葡萄糖醛酸化分析、分子动力学(MD)模拟和X射线衍射方法分析了两个具有代表性的突变体H401P和L446S对UGT2B15活性的影响。L446S的酶活性比野生型明显增加了6倍,但P191L、T374A和H401P的酶活性明显丧失。此外,我们使用MD模拟计算了H401P和L446S在催化过程中的能量变化,结果表明,H401P突变体与氧西泮和UDPGA的自由结合能分别为−30.98±1.00 kcal/mol和−36.42±1.04 kcal/mol,与野生型相比明显增加,表明401位上的突变对催化作用具有关键作用。此外,通过蛋白质晶体学和X射线衍射技术确定了UGT2B15 C-末端结构域L446S的三维结构,结果表明,与野生型相比,S446晶体结构中S446和K410之间形成了一个更多的氢键。等温滴定量热法进一步揭示了携带L446S的UGT2B15的C末端结构域对辅因子UDPGA的Kd值与野生型的值相似。结果表明,H401P和L446S对酶活性的影响机制不同。我们的工作为UGTs催化过程中的方差解释提供了一个有用的机制。
{"title":"The structural basis of conserved residue variant effect on enzyme activity of UGT2B15","authors":"Lin Zhang ,&nbsp;Xuerong Zhang ,&nbsp;Yibing Yang ,&nbsp;Jiangyong Gu ,&nbsp;Zhongqiu Liu ,&nbsp;Caiyan Wang","doi":"10.1016/j.bbapap.2023.140888","DOIUrl":"10.1016/j.bbapap.2023.140888","url":null,"abstract":"<div><p><span><span>UDP-glucuronosyltransferase 2B15 (UGT2B15) is a crucial phase II drug-metabolizing enzyme, which glucuronidates various compounds, including clinical drugs and hormones. Mutants might affect </span>glucuronidation, leading to a disruption of drug metabolism </span><em>in vivo</em><span><span><span> and decrease of therapeutic effect. Here, we mainly analyzed two representative mutants, H401P and L446S, on UGT2B15 activity using glucuronidation assays, molecular dynamic (MD) simulation and X-ray diffraction methods. The enzyme activity<span> of L446S obviously increased six-fold than the wild type, although the enzyme activities of P191L, T374A, and H401P were lost apparently. Furthermore, we used MD simulations to calculate the energy change in the catalytic process of H401P and L446S, and the results indicated the free binding energies of H401P mutant to </span></span>oxazepam and </span>UDPGA<span><span> were −30.98 ± 1.00 kcal/mol and −36.42 ± 1.04 kcal/mol, respectively, increased obviously compared to wild type, suggesting the mutation on position 401 had a crucial effect on the catalysis. Moreover, the three-dimensional structure of UGT2B15 C-terminal domain L446S was determined through protein crystallography and X-ray diffraction technology and the results suggested that one more </span>hydrogen bonding<span> between S446 and K410 was formed in the S446 crystal structure, compared to the wild type. Isothermal titration calorimetry assay further revealed the </span></span></span><em>K</em><sub>d</sub><span> values of C-terminal domain of UGT2B15 harbored L446S towards the cofactor UDPGA was similar to the value of wild type. Above all, our results pointed out that H401P and L446S affected the enzyme activity by different mechanism. Our work provided a helpful mechanism for variance explained in the UGTs catalyzation process.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140888"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9118647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cd-induced cytosolic proteome changes in the cyanobacterium Anabaena sp. PCC7120 are mediated by LexA as one of the regulatory proteins cd诱导的蓝藻Anabaena sp. PCC7120胞质蛋白质组变化是由LexA作为调控蛋白之一介导的
IF 3.2 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-01 DOI: 10.1016/j.bbapap.2023.140902
Akanksha Srivastava , Arvind Kumar , Subhankar Biswas , Vaibhav Srivastava , Hema Rajaram , Yogesh Mishra

LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, Anabaena sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of Anabaena constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including photosynthesis, C-metabolism, antioxidants, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of Anabaena LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.

LexA是异养细菌中SOS基因的转录抑制因子,已被证明可以调节蓝藻中的多种基因。早期的一项研究表明,LexA在蓝细菌Anabaena sp.PC7120中的过表达降低了其对镉胁迫的耐受性。这后来被证明是由于LexA在镉胁迫下对光合氧化还原毒性的调节。然而,由于LexA的全局调控性质和先前对少数重金属响应基因中AnLexA-box的预测,我们推测LexA在镉耐受中具有广泛的作用,除了光合基因外,还对多种镉胁迫响应基因进行调控。因此,为了进一步扩展LexA在镉胁迫耐受中的调节作用的知识,对组成性过表达LexA的Anabaena在镉胁迫下进行了胞质蛋白质组分析。蛋白质组学研究显示,25种差异积累蛋白(DAP)对LexA过表达和Cd胁迫的联合作用作出反应,另外11种DAP仅对Lex A过表达或Cd胁迫作出反应。36种已鉴定的蛋白质与多种功能有关,包括光合作用、C代谢、抗氧化剂、蛋白质周转、转录后修饰,以及一些未知和假设的蛋白质。通过AnLexA盒、转录物和/或启动子分析,进一步验证了LexA对相应基因和六种先前报道的Cd外排转运蛋白的调节。总之,本研究确定了鱼腥藻LexA对几个具有不同功能的镉胁迫反应基因的调节,从而扩大了LexA在镉胁迫下的调节作用。
{"title":"Cd-induced cytosolic proteome changes in the cyanobacterium Anabaena sp. PCC7120 are mediated by LexA as one of the regulatory proteins","authors":"Akanksha Srivastava ,&nbsp;Arvind Kumar ,&nbsp;Subhankar Biswas ,&nbsp;Vaibhav Srivastava ,&nbsp;Hema Rajaram ,&nbsp;Yogesh Mishra","doi":"10.1016/j.bbapap.2023.140902","DOIUrl":"10.1016/j.bbapap.2023.140902","url":null,"abstract":"<div><p><span><span>LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in </span>cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, </span><span><em>Anabaena</em></span><span> sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of </span><em>Anabaena</em><span><span><span> constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including </span>photosynthesis, C-metabolism, </span>antioxidants<span>, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of </span></span><em>Anabaena</em> LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 3","pages":"Article 140902"},"PeriodicalIF":3.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9113619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochimica et biophysica acta. Proteins and proteomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1