Serratiopeptidase, a serine protease traditionally used as an oral anti-inflammatory drug has been found to show antibiofilm action. Structurally, it comprises of two distinct domains; viz-the N-terminal catalytic domain (Ncat) and a C-terminal RTX (Repeat-In-Toxin) domain (Crtx). Understanding the antibiofilm action of the serratiopeptidase molecule, as well as the antibiofilm action of each of its two domains, was the objective of this study.
Separate clones to express the complete recombinant serratiopeptidase protein and its variant containing a mutation in the catalytic site, the N-terminal catalytic domain and its mutant, and the C-terminal Repeat-In-Toxin domain were prepared, and the proteins were purified. The impact of these proteins on pre-existing biofilms, as well as their effect upon addition of these proteins during biofilm formation was investigated.
In our investigation, we have been able to analyze the antibiofilm action of serratiopeptidase in detail. Obtained results conclude that while N-terminally located proteolytic domain of serratiopeptidase conventionally acts against biofilms by hydrolytic activity, the C-terminal domain regulates or prevents biofilm formation by yet unknown mechanism in addition to its known function as an C-terminal located calcium modulated internal chaperone ensuring the proper folding and secretion of the molecule. The study's findings give new evidence that the Crtx domain plays a significant role in antibiofilm action. The proteolytic Ncat domain breaks down pre-formed biofilms. The C-terminal domain, on the other hand, acts as an inhibitor of biofilm formation by regulating or preventing biofilm development.
Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.
Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in Saccharomyces cerevisiae and Homo sapiens have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in Chlamydomonas reinhardtii, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from C. reinhardtii (CrNip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of CrNip7. Additionally, rRNA modeling analysis was performed using the predicted structure of CrNip7 to investigate its interaction with rRNA. The study revealed that CrNip7 can complement the role of NIP7 in yeast, implicating CrNip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.

