Pub Date : 2023-09-20DOI: 10.1016/j.bbapap.2023.140965
Evgeniia V. Leisi , Andrey V. Moiseenko , Sofia S. Kudryavtseva , Denis V. Pozdyshev , Vladimir I. Muronetz , Lidia P. Kurochkina
The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.
{"title":"Bacteriophage-encoded chaperonins stimulate prion protein fibrillation in an ATP-dependent manner","authors":"Evgeniia V. Leisi , Andrey V. Moiseenko , Sofia S. Kudryavtseva , Denis V. Pozdyshev , Vladimir I. Muronetz , Lidia P. Kurochkina","doi":"10.1016/j.bbapap.2023.140965","DOIUrl":"10.1016/j.bbapap.2023.140965","url":null,"abstract":"<div><p><span><span>The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie<span> isoform. Several chaperones, including the Hsp60 family of group I </span></span>chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by </span>thioflavin<span><span> T fluorescence, electron microscopy<span>, proteinase K<span> digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein </span></span></span>monomers<span> into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140965"},"PeriodicalIF":3.2,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41096571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1016/j.bbapap.2023.140966
MeiLing Zhang , JiaXiang Zhang , Yan Liang, ShiCheng Tian, ShuYang Xie, Tong Zhou, Qin Wang
RGLG2, an E3 ubiquitin ligase in Arabidopsis thaliana, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca2+ ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca2+ ions and switches to closed state after Ca2+ ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from integrin α and β VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca2+ ions in conformational change of VWA domain. In addition, we found that RGLG2closed, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.
RGLG2是拟南芥E3泛素连接酶,影响激素信号并参与干旱调控。在这里,我们确定了RGLG2 VWA域的两种晶体结构,分别代表两种构象,开放和封闭。这两种结构表明Ca2+离子是RGLG2-VWA的变构调节剂,当NCBS1(Novel Calcium ions Binding Site 1)与Ca2+离子结合时,RGLG2-VWA处于开放状态,Ca2+离子去除后,RGLG2-VWA进入封闭状态。这种变构调节机制与RGLG1-VWA相同,但与整合素α和β VWA结构域不同。因此,我们的数据为理解Ca2+离子在VWA结构域构象变化中的作用提供了一个背景。此外,我们发现RGLG2closed,对应于低亲和力,可以结合伪配体,这在其他VWA结构域中从未观察到。
{"title":"The regulation of RGLG2-VWA by Ca2+ ions","authors":"MeiLing Zhang , JiaXiang Zhang , Yan Liang, ShiCheng Tian, ShuYang Xie, Tong Zhou, Qin Wang","doi":"10.1016/j.bbapap.2023.140966","DOIUrl":"https://doi.org/10.1016/j.bbapap.2023.140966","url":null,"abstract":"<div><p><span>RGLG2, an E3 ubiquitin ligase in </span><span><em>Arabidopsis thaliana</em></span>, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca<sup>2+</sup><span> ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca</span><sup>2+</sup> ions and switches to closed state after Ca<sup>2+</sup><span><span> ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from </span>integrin α and β VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca</span><sup>2+</sup><span> ions in conformational change of VWA domain. In addition, we found that RGLG2</span><sup>closed</sup>, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140966"},"PeriodicalIF":3.2,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49888360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
{"title":"Importance of aspartate 4 in the Mg2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase","authors":"Gaurab Chowdhury, Saroj Biswas, Yuthika Dholey, Puja Panja, Sumit Das, Subrata Adak","doi":"10.1016/j.bbapap.2023.140964","DOIUrl":"https://doi.org/10.1016/j.bbapap.2023.140964","url":null,"abstract":"<div><p><span><span>Magnesium is an important divalent cation for the regulation of </span>catalytic activity. Recently, we have described that the Mg</span><sup>2+</sup><span> binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from </span><span><em>Leishmania major</em></span><span> (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg</span><sup>2+</sup><span> ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg</span><sup>2+</sup> binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg<sup>2+</sup> binding. Mg<sup>2+</sup><span><span> ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and </span>isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg</span><sup>2+</sup><span> binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg</span><sup>2+</sup> dependent repressed state of the catalytic PGK domain at neutral pH.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140964"},"PeriodicalIF":3.2,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49786063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1016/j.bbapap.2023.140962
Shima Ghaedizadeh , Majid Zeinali , Bahareh Dabirmanesh , Behnam Rasekh , Khosrow Khajeh , Ali Mohammad Banaei-Moghaddam
Implementing hyperthermostable carbonic anhydrases into CO2 capture and storage technologies in order to increase the rate of CO2 absorption from the industrial flue gases is of great importance from technical and economical points of view. The present study employed a combination of in silico tools to further improve thermostability of a known thermostable carbonic anhydrase from Sulfurihydrogenibium yellowstonense. Experimental results showed that our rationally engineered K100G mutant not only retained the overall structure and catalytic efficiency but also showed a 3 °C increase in the melting temperature and a two-fold improvement in the enzyme half-life at 85 °C. Based on the molecular dynamics simulation results, rearrangement of salt bridges and hydrogen interactions network causes a reduction in local flexibility of the K100G variant. In conclusion, our study demonstrated that thermostability can be improved through imposing local structural rigidity by engineering a single-point mutation on the surface of the enzyme.
{"title":"Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies","authors":"Shima Ghaedizadeh , Majid Zeinali , Bahareh Dabirmanesh , Behnam Rasekh , Khosrow Khajeh , Ali Mohammad Banaei-Moghaddam","doi":"10.1016/j.bbapap.2023.140962","DOIUrl":"10.1016/j.bbapap.2023.140962","url":null,"abstract":"<div><p><span>Implementing hyperthermostable carbonic anhydrases into CO</span><sub>2</sub> capture and storage technologies in order to increase the rate of CO<sub>2</sub><span> absorption from the industrial flue gases<span> is of great importance from technical and economical points of view. The present study employed a combination of in silico tools to further improve thermostability of a known thermostable carbonic anhydrase from </span></span><em>Sulfurihydrogenibium yellowstonense.</em><span><span> Experimental results showed that our rationally engineered K100G mutant not only retained the overall structure and catalytic efficiency<span> but also showed a 3 °C increase in the melting temperature and a two-fold improvement in the enzyme half-life at 85 °C. Based on the </span></span>molecular dynamics simulation results, rearrangement of salt bridges and hydrogen interactions network causes a reduction in local flexibility of the K100G variant. In conclusion, our study demonstrated that thermostability can be improved through imposing local structural rigidity by engineering a single-point mutation on the surface of the enzyme.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140962"},"PeriodicalIF":3.2,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10269191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat β-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 μM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.
{"title":"Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis","authors":"Viviane Brito Andrade , Geizecler Tomazetto , Dnane Vieira Almeida , Robson Tramontina , Fabio Marcio Squina , Wanius Garcia","doi":"10.1016/j.bbapap.2023.140963","DOIUrl":"10.1016/j.bbapap.2023.140963","url":null,"abstract":"<div><p><span>Cellulases<span><span> from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 </span>endoglucanase from the anaerobic gut fungus </span></span><span><em>Piromyces</em><em> finnis</em></span> (named here <em>Pf</em><span>GH5). Multiple sequences alignments indicate that </span><em>Pf</em><span><span>GH5 is composed of a GH5 catalytic domain and a </span>CBM1<span> carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that </span></span><em>Pf</em>GH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. <em>Pf</em><span><span>GH5 exhibited preference for hydrolysis<span> of oat β-glucan, followed by galactomannan, </span></span>carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, </span><em>Pf</em><span>GH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with K</span><sub>m</sub><span><span> of 7.1 μM. Ion exchange chromatography analyzes revealed the production of </span>oligosaccharides with a wide degree of polymerization indicated that </span><em>Pf</em>GH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of <em>Pf</em>GH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140963"},"PeriodicalIF":3.2,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.bbapap.2023.140932
Manish K. Jain , Rajiv Bhat
Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.
{"title":"Modulation of the conformation, fibrillation, and fibril morphologies of human brain α-, β-, and γ-synuclein proteins by the disaccharide chemical chaperone trehalose","authors":"Manish K. Jain , Rajiv Bhat","doi":"10.1016/j.bbapap.2023.140932","DOIUrl":"10.1016/j.bbapap.2023.140932","url":null,"abstract":"<div><p><span>Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing </span>osmolytes<span><span> such as trehalose which has an exceptional stabilizing effect for </span>globular proteins<span><span>. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live </span>cell imaging<span> of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.</span></span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140932"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fe and Zn ions are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox enzymes, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.
{"title":"The Fe and Zn cofactor dilemma","authors":"Jiahua Chen, Logan A. Calderone, Luying Pan, Trent Quist, Maria-Eirini Pandelia","doi":"10.1016/j.bbapap.2023.140931","DOIUrl":"10.1016/j.bbapap.2023.140931","url":null,"abstract":"<div><p>Fe and Zn ions<span><span> are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox </span>enzymes<span><span>, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in </span>oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140931"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10245849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.bbapap.2023.140928
Mona Nourazaran , Reza Yousefi , Faezeh Moosavi-Movahedi , Farhad Panahi , Jun Hong , Ali A. Moosavi-Movahedi
Crystallins are the major soluble lens proteins, and α-crystallin, the most important protective protein of the eye lens, has two subunits (αA and αB) with chaperone activity. αB-crystallin (αB-Cry) with a relatively wide tissue distribution has an innate ability to interact effectively with the misfolded proteins, preventing their aggregation. Melatonin and serotonin have also been identified in relatively high concentrations in the lenticular tissues. This study investigated the effect of these naturally occurring compounds and medications on the structure, oligomerization, aggregation, and chaperone-like activity of human αB-Cry. Various spectroscopic methods, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and molecular docking have been used for this purpose. Based on our results, melatonin indicates an inhibitory effect on the aggregation of human αB-Cry without altering its chaperone-like activity. However, serotonin decreases αB-Cry oligomeric size distribution by creating hydrogen bonds, decreases its chaperone-like activity, and at high concentrations increases protein aggregation.
{"title":"The structural and functional consequences of melatonin and serotonin on human αB-crystallin and their dual role in the eye lens transparency","authors":"Mona Nourazaran , Reza Yousefi , Faezeh Moosavi-Movahedi , Farhad Panahi , Jun Hong , Ali A. Moosavi-Movahedi","doi":"10.1016/j.bbapap.2023.140928","DOIUrl":"10.1016/j.bbapap.2023.140928","url":null,"abstract":"<div><p><span>Crystallins are the major soluble lens proteins, and α-crystallin, the most important protective protein of the eye lens, has two subunits (αA and αB) with chaperone activity. αB-crystallin (αB-Cry) with a relatively wide tissue distribution has an innate ability to interact effectively with the misfolded proteins, preventing their aggregation. </span>Melatonin<span> and serotonin have also been identified in relatively high concentrations in the lenticular tissues. This study investigated the effect of these naturally occurring compounds and medications on the structure, oligomerization<span><span><span><span>, aggregation, and chaperone-like activity of human αB-Cry. Various spectroscopic methods, </span>dynamic light scattering (DLS), </span>differential scanning calorimetry<span> (DSC), and molecular docking have been used for this purpose. Based on our results, melatonin indicates an inhibitory effect on the aggregation of human αB-Cry without altering its chaperone-like activity. However, serotonin decreases αB-Cry oligomeric size distribution by creating </span></span>hydrogen bonds, decreases its chaperone-like activity, and at high concentrations increases protein aggregation.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140928"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9865575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.
In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.
{"title":"Oligomeric state of the N-terminal domain of DnaT for replication restart in Escherichia coli","authors":"Shogo Inoue , Yohei Ikeda , Saki Fujiyama , Tadashi Ueda , Yoshito Abe","doi":"10.1016/j.bbapap.2023.140929","DOIUrl":"10.1016/j.bbapap.2023.140929","url":null,"abstract":"<div><p><span>DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The </span><em>Escherichia coli</em><span> primosome<span> is a complex of proteins and DNA responsible for reloading the replication helicase DnaB<span>. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.</span></span></span></p><p><span><span><span>In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin<span> structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The </span></span>molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. </span>NMR<span> analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in </span></span><em>Escherichia coli</em>.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140929"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9869273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.1016/j.bbapap.2023.140952
Khaled A. Elnahriry , Dorothy C.C. Wai , Lauren M. Ashwood , Muhammad Umair Naseem , Tibor G. Szanto , Shaodong Guo , Gyorgy Panyi , Peter J. Prentis , Raymond S. Norton
Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.
{"title":"Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni","authors":"Khaled A. Elnahriry , Dorothy C.C. Wai , Lauren M. Ashwood , Muhammad Umair Naseem , Tibor G. Szanto , Shaodong Guo , Gyorgy Panyi , Peter J. Prentis , Raymond S. Norton","doi":"10.1016/j.bbapap.2023.140952","DOIUrl":"10.1016/j.bbapap.2023.140952","url":null,"abstract":"<div><p>Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone <em>Telmatactis stephensoni</em> identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (Na<sub>V</sub>, TRPV1, K<sub>V</sub> and Ca<sub>V</sub>). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in <em>Escherichia coli</em>, enabling the production of both unlabelled and uniformly <sup>13</sup>C,<sup>15</sup>N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (Na<sub>V</sub>) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against <em>Drosophila melanogaster</em> flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140952"},"PeriodicalIF":3.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10179986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}