首页 > 最新文献

Biochimica et biophysica acta. General subjects最新文献

英文 中文
Tumor cell loaded thermosensitive hydrogel for photodynamic therapy associated tumor antigens release 用于释放光动力疗法相关肿瘤抗原的肿瘤细胞负载热敏水凝胶。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-18 DOI: 10.1016/j.bbagen.2024.130703
Nisar Ul Khaliq , Juyeon Lee , Yejin Kim , Joohyeon Kim , Taeho Kim , Sohyeon Yu , Dongseong Seo , Daekyung Sung , Hyungjun Kim

Background: Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. Methods: To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. Results: The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. Conclusions: This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.

背景:免疫疗法是治疗癌症的有力策略,可用于抑制肿瘤术后复发:免疫疗法是治疗癌症的有力策略,可用于抑制肿瘤术后复发:为此,以CT26肿瘤细胞和Pluronic® F-127/明胶的混合物为模板,开发了Cell@水凝胶:结果:建议的混合物具有溶液-凝胶功能,反之亦然。扫描电子显微镜和共聚焦显微镜对 Cell@hydrogel 的形态进行了表征。在光动力免疫疗法中,Cell@水凝胶被Cy7功能化(Cy7-Cell@水凝胶),用于量化CT26肿瘤细胞中的活性氧。通过凝胶电泳和膜完整性测试,确定了光动力疗法后 Cy7-Cell@hydrogel 的效率:该方案提供了一种基于免疫疗法的替代方法,从机理上抑制了实体瘤的术后复发。
{"title":"Tumor cell loaded thermosensitive hydrogel for photodynamic therapy associated tumor antigens release","authors":"Nisar Ul Khaliq ,&nbsp;Juyeon Lee ,&nbsp;Yejin Kim ,&nbsp;Joohyeon Kim ,&nbsp;Taeho Kim ,&nbsp;Sohyeon Yu ,&nbsp;Dongseong Seo ,&nbsp;Daekyung Sung ,&nbsp;Hyungjun Kim","doi":"10.1016/j.bbagen.2024.130703","DOIUrl":"10.1016/j.bbagen.2024.130703","url":null,"abstract":"<div><p>Background: Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. Methods: To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. Results: The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. Conclusions: This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130703"},"PeriodicalIF":2.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays 鉴定在刺猬功能测试中具有活性的声波刺猬/肝素结合小分子拮抗剂。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-14 DOI: 10.1016/j.bbagen.2024.130692
David R. Lamson , Michael Tarpley , Kezia Addo , Xiaojia Ji , Dina Abu Rabe , Ben Ehe , Mark Hughes , Ginger R. Smith , Laura R. Daye , David L. Musso , Weifan Zheng , Kevin P. Williams

Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.

音速刺猬(Shh)是一种形态发生因子,在胚胎发育和多种癌症的发病过程中发挥着重要作用。它的活性受与包括肝素和肝素硫酸盐蛋白聚糖(HSPG)在内的结合伙伴和共受体的相互作用调节。为了鉴定 Shh/肝素结合的拮抗剂,我们以单点 384 孔格式筛选了 34,560 种不同的化学物质。我们发现并确认了 26 种新型小分子拮抗剂,它们具有不同的结构,其中包括 4 个可产生多个命中的支架。其中 19 种已确认的小分子拮抗剂阻断了 Shh(ShhN)的 N 端片段与肝素的结合,其 IC50 值为
{"title":"Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays","authors":"David R. Lamson ,&nbsp;Michael Tarpley ,&nbsp;Kezia Addo ,&nbsp;Xiaojia Ji ,&nbsp;Dina Abu Rabe ,&nbsp;Ben Ehe ,&nbsp;Mark Hughes ,&nbsp;Ginger R. Smith ,&nbsp;Laura R. Daye ,&nbsp;David L. Musso ,&nbsp;Weifan Zheng ,&nbsp;Kevin P. Williams","doi":"10.1016/j.bbagen.2024.130692","DOIUrl":"10.1016/j.bbagen.2024.130692","url":null,"abstract":"<div><p>Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC<sub>50</sub> values &lt; 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of <em>Gli1</em> mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130692"},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence 多肽 PaDBS1R6 对临床细菌分离物具有强效抗菌活性,并在其序列中整合了一个免疫调节多肽片段。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-13 DOI: 10.1016/j.bbagen.2024.130693
Samilla B. Rezende , Lai Yue Chan , Karen G.N. Oshiro , Danieli F. Buccini , Ana Paula Ferreira Leal , Camila F. Ribeiro , Carolina M. Souza , Amanda L.O. Brandão , Regina M. Gonçalves , Elizabete S. Cândido , Maria L.R. Macedo , David J. Craik , Octávio L. Franco , Marlon H. Cardoso

Background

Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.

Major conclusions

Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.

General significance

This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.

背景:革兰氏阴性细菌引起的耐药性传染病是全球最严重的健康问题之一。抗菌肽(AMPs)已被视为有望解决这些健康挑战的抗菌、抗生物膜和抗感染候选物质:我们在此报告了多肽 PaDBS1R6 对临床细菌分离物的强效抗菌作用,并鉴定了其中的免疫调节多肽片段。PaDBS1R6 针对鲍曼不动杆菌和大肠埃希菌临床分离物进行了评估,其最小抑菌浓度 (MIC) 值从 8 μmol L-1 到 32 μmol L-1。它具有快速杀菌作用,根据所测试的细菌菌株不同,在培养 3 分钟内就能达到根除效果。此外,PaDBS1R6 还能抑制鲍曼不动杆菌和大肠杆菌的生物膜形成,而且对健康的哺乳动物细胞无毒。通过表面等离子体共振测定和分子动力学模拟评估,PaDBS1R6 比中性膜更喜欢阴离子膜,从而解释了这些发现。考虑到 PaDBS1R6 强大的抗菌活性,我们以其为模板进行了滑动窗口片段研究(窗口大小 = 10 个残基)。在滑动窗口片段中,PaDBS1R6F8、PaDBS1R6F9 和 PaDBS1R6F10 对测试的任何细菌菌株都无效。此外,还进行了其他生物学试验,包括一氧化氮(NO)调节和伤口划痕试验,结果发现 R6F8 肽片段在调节 NO 水平方面具有活性,并具有很强的伤口愈合特性:本研究提出了一个新概念,即通过筛选强效 AMPs 的片段,可以衍生出具有不同生物特性的多肽。
{"title":"Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence","authors":"Samilla B. Rezende ,&nbsp;Lai Yue Chan ,&nbsp;Karen G.N. Oshiro ,&nbsp;Danieli F. Buccini ,&nbsp;Ana Paula Ferreira Leal ,&nbsp;Camila F. Ribeiro ,&nbsp;Carolina M. Souza ,&nbsp;Amanda L.O. Brandão ,&nbsp;Regina M. Gonçalves ,&nbsp;Elizabete S. Cândido ,&nbsp;Maria L.R. Macedo ,&nbsp;David J. Craik ,&nbsp;Octávio L. Franco ,&nbsp;Marlon H. Cardoso","doi":"10.1016/j.bbagen.2024.130693","DOIUrl":"10.1016/j.bbagen.2024.130693","url":null,"abstract":"<div><h3>Background</h3><p>Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.</p></div><div><h3>Major conclusions</h3><p>Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against <em>Acinetobacter baumannii</em> and <em>Escherichia coli</em> clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L<sup>−1</sup>. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for <em>A. baumannii</em> and <em>E. coli</em> and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.</p></div><div><h3>General significance</h3><p>This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130693"},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study ATP aptamer 与目标链和竞争链的 pH 依赖性结合:荧光熔融曲线拟合研究。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-10 DOI: 10.1016/j.bbagen.2024.130689
P.V. Gabrusenok , R.R. Ramazanov , N.A. Kasyanenko , A.O. Lantushenko , P.A. Sokolov

The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.

不同组织和细胞器的 pH 值各不相同,在某些疾病发生时也会发生变化。因此,要在生物系统中应用基于竞争链的分子开关,就必须研究这种系统在不同 pH 值下的热力学。在这项工作中,我们利用荧光熔解曲线分析法研究了经典 ATP 合酶在不同 pH 值和离子条件下与 ATP 和竞争链的结合情况。我们开发了一种处理 PCR 热循环仪源数据的原创方法。这种方法的基础是构建熔化曲线的热力学模型,然后在此模型内拟合实验曲线。我们已经证明,这种方法可以将研究的温度区域缩小到熔化区域的宽度,而不会明显降低结果的质量。与需要强制测量熔化区域外信号的常用技术相比,这种方法的应用范围大大扩展。该方法得出的结果表明,ATP 合酶及其与竞争链双链的热力学参数会随着 pH 值的变化而变化。因此,使用 ATP 合酶竞争链的分子开关的灵敏度可能与 pH 值有关,而这是以前没有考虑过的。今后合理设计类似系统时应考虑到这一点。
{"title":"pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study","authors":"P.V. Gabrusenok ,&nbsp;R.R. Ramazanov ,&nbsp;N.A. Kasyanenko ,&nbsp;A.O. Lantushenko ,&nbsp;P.A. Sokolov","doi":"10.1016/j.bbagen.2024.130689","DOIUrl":"10.1016/j.bbagen.2024.130689","url":null,"abstract":"<div><p>The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130689"},"PeriodicalIF":2.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response 克氏锥虫组装宿主细胞质加工体,以逃避先天性免疫反应。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.bbagen.2024.130686
Eri Seto , Shinichiro Kina , Reika Kawabata-Iwakawa , Makiko Suzuki , Yoko Onizuka , Junko Nakajima-Shimada

Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.

To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.

加工体(P-bodies,PBs)是由翻译失活的信使核糖核蛋白颗粒(mRNPs)凝结而成的细胞质病灶。感染原生寄生虫克鲁斯锥虫(T. cruzi)会促进 PB 在宿主细胞中的积累,这表明它们在寄生虫感染期间参与了宿主 mRNA 代谢。为了确定T. cruzi感染期间PB调控的mRNA靶标,我们通过敲除mRNA解旋增强子4(EDC4)建立了PB缺陷的人纤维肉瘤细胞系,EDC4是PB组装的重要组成部分。利用下一代测序技术建立了野生型(WT)和EDC4基因敲除(KO)细胞感染克鲁斯绦虫0、3和24小时的转录组图谱。基于差异表达基因的 Ingenuity 通路分析表明,PB 消耗增加了参与先天性免疫反应的几种信号通路的激活。缺失 PB 的 KO 细胞感染后,促炎细胞因子 IL-1β 在 mRNA 和蛋白质水平显著上调,而 WT 细胞则没有。此外,用 GFP 标记的野生型 EDC4(+WT)拯救 KO 细胞中的 PB 组装可抑制 IL-1β 的表达,而用 C 端缺失的突变体 EDC4(+Δ)拯救 KO 细胞则不能拯救 PB 组装和下调 IL-1β 的产生。我们的研究结果表明,T. cruzi组装宿主PB以对抗抗寄生虫先天免疫。
{"title":"Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response","authors":"Eri Seto ,&nbsp;Shinichiro Kina ,&nbsp;Reika Kawabata-Iwakawa ,&nbsp;Makiko Suzuki ,&nbsp;Yoko Onizuka ,&nbsp;Junko Nakajima-Shimada","doi":"10.1016/j.bbagen.2024.130686","DOIUrl":"10.1016/j.bbagen.2024.130686","url":null,"abstract":"<div><p>Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite <em>Trypanosoma cruzi</em> (<em>T. cruzi</em>) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.</p><p>To identify PB-regulated mRNA targets during <em>T. cruzi</em> infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with <em>T. cruzi</em> for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that <em>T. cruzi</em> assembles host PBs to counteract antiparasitic innate immunity.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130686"},"PeriodicalIF":2.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304416524001296/pdfft?md5=0ff1b71050efb9cc7cba0ce4ef146494&pid=1-s2.0-S0304416524001296-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and classification of proteins by FTIR microspectroscopy. A proof of concept 利用傅立叶变换红外微光谱对蛋白质进行鉴定和分类。概念验证。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/j.bbagen.2024.130688
Christophe Sandt

FTIR spectroscopy is well known for its molecule fingerprinting capability but is also able to differentiate classes in complex biological systems. This includes strain typing and species level identification of bacterial, yeast or fungal cells, as well as distinguishing between cell layers in eukaryotic tissues. However, its use for the identification of macromolecules such as proteins remains underexplored and rarely used in practice. Here we demonstrate the efficacy of FTIR microspectroscopy coupled with machine learning methods for rapid and accurate identification of proteins in their dry state within minutes, from very small quantities of material, if they are obtained in a pure aqueous solution. FTIR microspectroscopy can provide additional information beside identification: it can detect small differences among different purification batches potentially originating from post-translational modifications or distinct folding states. Moreover, it distinguishes glycoproteins and evaluate glycosylation while detecting contaminants. This methodology presents itself as a valuable quality control tool in protein purification processes or any process requiring the utilization of precisely identified, pure proteins.

傅立叶变换红外光谱以其分子指纹识别能力而闻名,但也能在复杂的生物系统中区分类别。这包括细菌、酵母或真菌细胞的菌株分型和物种鉴定,以及区分真核组织中的细胞层。然而,它在蛋白质等大分子鉴定方面的应用仍未得到充分探索,在实践中也很少使用。在这里,我们展示了傅立叶变换红外显微光谱与机器学习方法相结合的功效,如果蛋白质是在纯水溶液中获得的,则可以在几分钟内从极少量的材料中快速准确地识别出干燥状态下的蛋白质。傅立叶变换红外显微光谱法除鉴定外还能提供其他信息:它能检测出不同纯化批次之间的微小差异,这些差异可能来自翻译后修饰或不同的折叠状态。此外,它还能区分糖蛋白和评估糖基化,同时检测污染物。在蛋白质纯化过程或任何需要使用精确鉴定的纯蛋白质的过程中,这种方法都是一种宝贵的质量控制工具。
{"title":"Identification and classification of proteins by FTIR microspectroscopy. A proof of concept","authors":"Christophe Sandt","doi":"10.1016/j.bbagen.2024.130688","DOIUrl":"10.1016/j.bbagen.2024.130688","url":null,"abstract":"<div><p>FTIR spectroscopy is well known for its molecule fingerprinting capability but is also able to differentiate classes in complex biological systems. This includes strain typing and species level identification of bacterial, yeast or fungal cells, as well as distinguishing between cell layers in eukaryotic tissues. However, its use for the identification of macromolecules such as proteins remains underexplored and rarely used in practice. Here we demonstrate the efficacy of FTIR microspectroscopy coupled with machine learning methods for rapid and accurate identification of proteins in their dry state within minutes, from very small quantities of material, if they are obtained in a pure aqueous solution. FTIR microspectroscopy can provide additional information beside identification: it can detect small differences among different purification batches potentially originating from post-translational modifications or distinct folding states. Moreover, it distinguishes glycoproteins and evaluate glycosylation while detecting contaminants. This methodology presents itself as a valuable quality control tool in protein purification processes or any process requiring the utilization of precisely identified, pure proteins.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130688"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A 关键带电残基影响血清淀粉样蛋白 A 的螺旋-1 区域的淀粉样化倾向。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/j.bbagen.2024.130690
Marvin Bilog , Jayson Vedad , Charisse Capadona , Adam A. Profit , Ruel Z.B. Desamero

Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1–13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1–13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1–13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.

血清淀粉样蛋白 A(SAA)是一种因炎症而分泌的急性期蛋白,它的血浆水平升高会导致淀粉样蛋白在各种器官中积聚,从而阻碍器官的功能。严重的病例会导致一种名为 AA 淀粉样变性的全身性疾病。以往的研究表明,N 端螺旋是 SAA 最易产生淀粉样蛋白的区域。此外,计算研究表明 Arg-1 和残基特异性相互作用在纤维化过程中发挥了重要作用。研究人员以螺旋-1 的 N 端区域 SAA1-13 为重点,采用突变分析来探究 Arg-1、Ser-5、Glu-9 和 Asp-12 等氨基酸残基的作用。通过用丙氨酸或不带电但结构相似的氨基酸取代关键残基,对截短的 SAA1-13 片段进行了系统修饰。我们监测了 SAA1-13 突变所导致的淀粉样蛋白生成倾向、相关构象标记和形态的变化。突变掉 Arg-1 后,淀粉样蛋白的聚集倾向大大降低,并且缺乏可检测到的β结构,这表明 Arg-1 参与的盐桥相互作用非常重要。我们的数据显示,通过系统地突变关键氨基酸残基,我们可以调节淀粉样蛋白生成倾向,并改变多肽随时间变化的构象变化。在分析每种突变肽的行为时,它们都提供了与 MD 模拟研究预测的聚集途径相一致的证据。在此,我们详细介绍了 Arg-1 与 Ser-5、Glu-9 和 Asp-12 在时间上形成的重要分子相互作用,并讨论了其对 SAA 螺旋-1 区域自组装的机理影响。
{"title":"Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A","authors":"Marvin Bilog ,&nbsp;Jayson Vedad ,&nbsp;Charisse Capadona ,&nbsp;Adam A. Profit ,&nbsp;Ruel Z.B. Desamero","doi":"10.1016/j.bbagen.2024.130690","DOIUrl":"10.1016/j.bbagen.2024.130690","url":null,"abstract":"<div><p>Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA<sub>1–13</sub>, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA<sub>1–13</sub> fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA<sub>1–13</sub>. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130690"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds 强调基于漆酶的安培生物传感技术是快速有效检测酚类化合物的最终泛药典。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/j.bbagen.2024.130691
Himani Guliya , Meena Yadav , Bhawna Nohwal , Suman Lata , Reeti Chaudhary

Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.

酚类和酚类化合物是工业中用于生产杀虫剂、染料、药品和塑料的主要植物代谢物。这些化合物通过这些工业途径进入水体、土壤和生物体。一些多酚化合物(如酚酸、类黄酮)具有抗氧化和感官特性,对神经退行性疾病、心血管疾病、糖尿病和癌症有预防作用。然而,许多多酚类化合物,如双酚 A、邻苯二甲酸盐和二恶英,一旦剂量达到令人反感的水平,也会造成严重的环境污染和内分泌紊乱。开发可靠、快速的方法来研究它们的剂量依赖性、高影响的有害效应,以及持续监测人体和环境样本中的酚含量,是当今的当务之急。采用酪氨酸酶、过氧化物酶和漆酶等苯酚氧化酶的酶生物传感器,利用电化学安培法,是苯酚定量的创新方法。酶生物传感是一种高灵敏度、高效率的技术,本综述文章将其作为苯酚定量的一种渐进方法加以阐述,并特别强调了漆酶安培生物传感器。此外,评论文章的讨论范围还扩展到纳米酶、金属有机框架(MOFs)复合材料和分子印迹聚合物(MIPs)等新兴的酚类电化学传感材料。此外,还具体介绍了苯酚定量和绿色生物传感的应用。对具有未来前景的创新性多酚检测方法的具体总结表明,这些方法克服了现象学方法的一些现有限制,为现代研究人员提供了一条通往大量可读性的信息通道。
{"title":"Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds","authors":"Himani Guliya ,&nbsp;Meena Yadav ,&nbsp;Bhawna Nohwal ,&nbsp;Suman Lata ,&nbsp;Reeti Chaudhary","doi":"10.1016/j.bbagen.2024.130691","DOIUrl":"10.1016/j.bbagen.2024.130691","url":null,"abstract":"<div><p>Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130691"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains 探索人类糖基转移酶的结构域:突显非催化附加结构域的功能多样性
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-02 DOI: 10.1016/j.bbagen.2024.130687
Hirokazu Yagi , Katsuki Takagi , Koichi Kato

Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.

人类糖基转移酶(GTs)在糖的生物合成中发挥着至关重要的作用,并表现出多种多样的结构域结构。本研究利用来自 AlphaFold 蛋白结构数据库的数据,探讨了人类糖基转移酶中 "附加 "结构域的功能多样性。在 215 个有注释的人类 GT 中,有 74 个除了催化结构域外还包含一个或多个附加结构域。这些结构域包括凝集素褶皱、纤连蛋白 III 型和硫氧还蛋白样结构域,它们有助于底物特异性、寡聚化和由此产生的酶活性。值得注意的是,某些 GT 因催化附加结构域而具有双重酶功能。分析强调了附加结构域在酶功能和疾病影响(如先天性糖基化紊乱)方面的重要性。这一全面概述加深了我们对 GT 结构域组织的了解,为糖基化机制和潜在治疗靶点提供了见解。
{"title":"Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains","authors":"Hirokazu Yagi ,&nbsp;Katsuki Takagi ,&nbsp;Koichi Kato","doi":"10.1016/j.bbagen.2024.130687","DOIUrl":"10.1016/j.bbagen.2024.130687","url":null,"abstract":"<div><p>Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130687"},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting SMYD2 promotes ferroptosis and impacts the progression of pancreatic cancer through the c-Myc/NCOA4 axis-mediated ferritinophagy 靶向 SMYD2 可通过 c-Myc/NCOA4 轴介导的噬铁蛋白作用促进铁蛋白沉积并影响胰腺癌的进展。
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-31 DOI: 10.1016/j.bbagen.2024.130683
Juan Tan , Shan Liao , Bowen Yuan , Xinrong Liu , Wentao Yu , Han Zhan , Yan Jiang , Yang Liu

Background

Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression.

Methods

The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth.

Results

SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. In vivo, SMYD2 knockdown inhibited tumor growth.

Conclusions

Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.

背景:胰腺癌(PC)的特点是预后差、治疗方案有限。铁突变在癌症、SET和含MYND结构域蛋白2(SMYD2)中起着重要作用,而SMYD2在各种癌症中广泛表达。然而,SMYD2在PC中调控铁凋亡的作用仍有待探索。本研究旨在探讨SMYD2在介导铁凋亡中的作用及其在PC进展中的机理意义:方法:评估了PC组织和瘤周组织中SMYD2、c-Myc和NCOA4的水平。进一步分析了人 PC 细胞系中 SMYD2 的表达。在 BxPC3 细胞中,转染 si-SMYD2 并用自噬抑制剂和铁突变抑制剂处理后,评估了 c-Myc、NCOA4、自噬相关蛋白和线粒体形态的表达。使用流式细胞术和酶联免疫吸附试验对铁突变水平进行了量化。为阐明 c-Myc 和 NCOA4 mRNA 之间的相互作用,进行了 RNA 免疫沉淀。构建了异种移植小鼠模型,以验证SMYD2敲除对PC生长的影响:结果:研究发现,SMYD2和c-Myc在PC组织中高表达,而NCOA4则表达较低。在所研究的PC细胞系中,BxPC3细胞的SMYD2表达量最高。敲除SMYD2会导致c-Myc水平降低、NCOA4表达增加、自噬相关蛋白表达减少、线粒体萎缩以及铁变态水平升高。此外,还发现了 c-Myc 和 NCOA4 之间的相互作用。在体内,SMYD2的敲除抑制了肿瘤的生长:结论:靶向 SMYD2 可通过 c-Myc/NCOA4 轴促进依赖性嗜铁蛋白的铁凋亡,从而抑制 PC 的进展。这些发现为PC的潜在诊断和治疗策略提供了启示。
{"title":"Targeting SMYD2 promotes ferroptosis and impacts the progression of pancreatic cancer through the c-Myc/NCOA4 axis-mediated ferritinophagy","authors":"Juan Tan ,&nbsp;Shan Liao ,&nbsp;Bowen Yuan ,&nbsp;Xinrong Liu ,&nbsp;Wentao Yu ,&nbsp;Han Zhan ,&nbsp;Yan Jiang ,&nbsp;Yang Liu","doi":"10.1016/j.bbagen.2024.130683","DOIUrl":"10.1016/j.bbagen.2024.130683","url":null,"abstract":"<div><h3>Background</h3><p>Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression.</p></div><div><h3>Methods</h3><p>The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth.</p></div><div><h3>Results</h3><p>SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. <em>In vivo</em>, SMYD2 knockdown inhibited tumor growth.</p></div><div><h3>Conclusions</h3><p>Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130683"},"PeriodicalIF":2.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochimica et biophysica acta. General subjects
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1