Pub Date : 2024-08-18DOI: 10.1016/j.bbagen.2024.130703
Nisar Ul Khaliq , Juyeon Lee , Yejin Kim , Joohyeon Kim , Taeho Kim , Sohyeon Yu , Dongseong Seo , Daekyung Sung , Hyungjun Kim
Background: Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. Methods: To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. Results: The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. Conclusions: This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.
{"title":"Tumor cell loaded thermosensitive hydrogel for photodynamic therapy associated tumor antigens release","authors":"Nisar Ul Khaliq , Juyeon Lee , Yejin Kim , Joohyeon Kim , Taeho Kim , Sohyeon Yu , Dongseong Seo , Daekyung Sung , Hyungjun Kim","doi":"10.1016/j.bbagen.2024.130703","DOIUrl":"10.1016/j.bbagen.2024.130703","url":null,"abstract":"<div><p>Background: Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. Methods: To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. Results: The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. Conclusions: This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130703"},"PeriodicalIF":2.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.bbagen.2024.130692
David R. Lamson , Michael Tarpley , Kezia Addo , Xiaojia Ji , Dina Abu Rabe , Ben Ehe , Mark Hughes , Ginger R. Smith , Laura R. Daye , David L. Musso , Weifan Zheng , Kevin P. Williams
Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.
{"title":"Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays","authors":"David R. Lamson , Michael Tarpley , Kezia Addo , Xiaojia Ji , Dina Abu Rabe , Ben Ehe , Mark Hughes , Ginger R. Smith , Laura R. Daye , David L. Musso , Weifan Zheng , Kevin P. Williams","doi":"10.1016/j.bbagen.2024.130692","DOIUrl":"10.1016/j.bbagen.2024.130692","url":null,"abstract":"<div><p>Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC<sub>50</sub> values < 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of <em>Gli1</em> mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130692"},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.bbagen.2024.130693
Samilla B. Rezende , Lai Yue Chan , Karen G.N. Oshiro , Danieli F. Buccini , Ana Paula Ferreira Leal , Camila F. Ribeiro , Carolina M. Souza , Amanda L.O. Brandão , Regina M. Gonçalves , Elizabete S. Cândido , Maria L.R. Macedo , David J. Craik , Octávio L. Franco , Marlon H. Cardoso
Background
Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.
Major conclusions
Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L−1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.
General significance
This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
{"title":"Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence","authors":"Samilla B. Rezende , Lai Yue Chan , Karen G.N. Oshiro , Danieli F. Buccini , Ana Paula Ferreira Leal , Camila F. Ribeiro , Carolina M. Souza , Amanda L.O. Brandão , Regina M. Gonçalves , Elizabete S. Cândido , Maria L.R. Macedo , David J. Craik , Octávio L. Franco , Marlon H. Cardoso","doi":"10.1016/j.bbagen.2024.130693","DOIUrl":"10.1016/j.bbagen.2024.130693","url":null,"abstract":"<div><h3>Background</h3><p>Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.</p></div><div><h3>Major conclusions</h3><p>Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against <em>Acinetobacter baumannii</em> and <em>Escherichia coli</em> clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L<sup>−1</sup>. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for <em>A. baumannii</em> and <em>E. coli</em> and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.</p></div><div><h3>General significance</h3><p>This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130693"},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.
不同组织和细胞器的 pH 值各不相同,在某些疾病发生时也会发生变化。因此,要在生物系统中应用基于竞争链的分子开关,就必须研究这种系统在不同 pH 值下的热力学。在这项工作中,我们利用荧光熔解曲线分析法研究了经典 ATP 合酶在不同 pH 值和离子条件下与 ATP 和竞争链的结合情况。我们开发了一种处理 PCR 热循环仪源数据的原创方法。这种方法的基础是构建熔化曲线的热力学模型,然后在此模型内拟合实验曲线。我们已经证明,这种方法可以将研究的温度区域缩小到熔化区域的宽度,而不会明显降低结果的质量。与需要强制测量熔化区域外信号的常用技术相比,这种方法的应用范围大大扩展。该方法得出的结果表明,ATP 合酶及其与竞争链双链的热力学参数会随着 pH 值的变化而变化。因此,使用 ATP 合酶竞争链的分子开关的灵敏度可能与 pH 值有关,而这是以前没有考虑过的。今后合理设计类似系统时应考虑到这一点。
{"title":"pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study","authors":"P.V. Gabrusenok , R.R. Ramazanov , N.A. Kasyanenko , A.O. Lantushenko , P.A. Sokolov","doi":"10.1016/j.bbagen.2024.130689","DOIUrl":"10.1016/j.bbagen.2024.130689","url":null,"abstract":"<div><p>The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130689"},"PeriodicalIF":2.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.bbagen.2024.130686
Eri Seto , Shinichiro Kina , Reika Kawabata-Iwakawa , Makiko Suzuki , Yoko Onizuka , Junko Nakajima-Shimada
Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.
To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.
加工体(P-bodies,PBs)是由翻译失活的信使核糖核蛋白颗粒(mRNPs)凝结而成的细胞质病灶。感染原生寄生虫克鲁斯锥虫(T. cruzi)会促进 PB 在宿主细胞中的积累,这表明它们在寄生虫感染期间参与了宿主 mRNA 代谢。为了确定T. cruzi感染期间PB调控的mRNA靶标,我们通过敲除mRNA解旋增强子4(EDC4)建立了PB缺陷的人纤维肉瘤细胞系,EDC4是PB组装的重要组成部分。利用下一代测序技术建立了野生型(WT)和EDC4基因敲除(KO)细胞感染克鲁斯绦虫0、3和24小时的转录组图谱。基于差异表达基因的 Ingenuity 通路分析表明,PB 消耗增加了参与先天性免疫反应的几种信号通路的激活。缺失 PB 的 KO 细胞感染后,促炎细胞因子 IL-1β 在 mRNA 和蛋白质水平显著上调,而 WT 细胞则没有。此外,用 GFP 标记的野生型 EDC4(+WT)拯救 KO 细胞中的 PB 组装可抑制 IL-1β 的表达,而用 C 端缺失的突变体 EDC4(+Δ)拯救 KO 细胞则不能拯救 PB 组装和下调 IL-1β 的产生。我们的研究结果表明,T. cruzi组装宿主PB以对抗抗寄生虫先天免疫。
{"title":"Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response","authors":"Eri Seto , Shinichiro Kina , Reika Kawabata-Iwakawa , Makiko Suzuki , Yoko Onizuka , Junko Nakajima-Shimada","doi":"10.1016/j.bbagen.2024.130686","DOIUrl":"10.1016/j.bbagen.2024.130686","url":null,"abstract":"<div><p>Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite <em>Trypanosoma cruzi</em> (<em>T. cruzi</em>) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.</p><p>To identify PB-regulated mRNA targets during <em>T. cruzi</em> infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with <em>T. cruzi</em> for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that <em>T. cruzi</em> assembles host PBs to counteract antiparasitic innate immunity.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130686"},"PeriodicalIF":2.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304416524001296/pdfft?md5=0ff1b71050efb9cc7cba0ce4ef146494&pid=1-s2.0-S0304416524001296-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.bbagen.2024.130688
Christophe Sandt
FTIR spectroscopy is well known for its molecule fingerprinting capability but is also able to differentiate classes in complex biological systems. This includes strain typing and species level identification of bacterial, yeast or fungal cells, as well as distinguishing between cell layers in eukaryotic tissues. However, its use for the identification of macromolecules such as proteins remains underexplored and rarely used in practice. Here we demonstrate the efficacy of FTIR microspectroscopy coupled with machine learning methods for rapid and accurate identification of proteins in their dry state within minutes, from very small quantities of material, if they are obtained in a pure aqueous solution. FTIR microspectroscopy can provide additional information beside identification: it can detect small differences among different purification batches potentially originating from post-translational modifications or distinct folding states. Moreover, it distinguishes glycoproteins and evaluate glycosylation while detecting contaminants. This methodology presents itself as a valuable quality control tool in protein purification processes or any process requiring the utilization of precisely identified, pure proteins.
{"title":"Identification and classification of proteins by FTIR microspectroscopy. A proof of concept","authors":"Christophe Sandt","doi":"10.1016/j.bbagen.2024.130688","DOIUrl":"10.1016/j.bbagen.2024.130688","url":null,"abstract":"<div><p>FTIR spectroscopy is well known for its molecule fingerprinting capability but is also able to differentiate classes in complex biological systems. This includes strain typing and species level identification of bacterial, yeast or fungal cells, as well as distinguishing between cell layers in eukaryotic tissues. However, its use for the identification of macromolecules such as proteins remains underexplored and rarely used in practice. Here we demonstrate the efficacy of FTIR microspectroscopy coupled with machine learning methods for rapid and accurate identification of proteins in their dry state within minutes, from very small quantities of material, if they are obtained in a pure aqueous solution. FTIR microspectroscopy can provide additional information beside identification: it can detect small differences among different purification batches potentially originating from post-translational modifications or distinct folding states. Moreover, it distinguishes glycoproteins and evaluate glycosylation while detecting contaminants. This methodology presents itself as a valuable quality control tool in protein purification processes or any process requiring the utilization of precisely identified, pure proteins.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130688"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.bbagen.2024.130690
Marvin Bilog , Jayson Vedad , Charisse Capadona , Adam A. Profit , Ruel Z.B. Desamero
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1–13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1–13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1–13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
血清淀粉样蛋白 A(SAA)是一种因炎症而分泌的急性期蛋白,它的血浆水平升高会导致淀粉样蛋白在各种器官中积聚,从而阻碍器官的功能。严重的病例会导致一种名为 AA 淀粉样变性的全身性疾病。以往的研究表明,N 端螺旋是 SAA 最易产生淀粉样蛋白的区域。此外,计算研究表明 Arg-1 和残基特异性相互作用在纤维化过程中发挥了重要作用。研究人员以螺旋-1 的 N 端区域 SAA1-13 为重点,采用突变分析来探究 Arg-1、Ser-5、Glu-9 和 Asp-12 等氨基酸残基的作用。通过用丙氨酸或不带电但结构相似的氨基酸取代关键残基,对截短的 SAA1-13 片段进行了系统修饰。我们监测了 SAA1-13 突变所导致的淀粉样蛋白生成倾向、相关构象标记和形态的变化。突变掉 Arg-1 后,淀粉样蛋白的聚集倾向大大降低,并且缺乏可检测到的β结构,这表明 Arg-1 参与的盐桥相互作用非常重要。我们的数据显示,通过系统地突变关键氨基酸残基,我们可以调节淀粉样蛋白生成倾向,并改变多肽随时间变化的构象变化。在分析每种突变肽的行为时,它们都提供了与 MD 模拟研究预测的聚集途径相一致的证据。在此,我们详细介绍了 Arg-1 与 Ser-5、Glu-9 和 Asp-12 在时间上形成的重要分子相互作用,并讨论了其对 SAA 螺旋-1 区域自组装的机理影响。
{"title":"Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A","authors":"Marvin Bilog , Jayson Vedad , Charisse Capadona , Adam A. Profit , Ruel Z.B. Desamero","doi":"10.1016/j.bbagen.2024.130690","DOIUrl":"10.1016/j.bbagen.2024.130690","url":null,"abstract":"<div><p>Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA<sub>1–13</sub>, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA<sub>1–13</sub> fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA<sub>1–13</sub>. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130690"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.
{"title":"Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds","authors":"Himani Guliya , Meena Yadav , Bhawna Nohwal , Suman Lata , Reeti Chaudhary","doi":"10.1016/j.bbagen.2024.130691","DOIUrl":"10.1016/j.bbagen.2024.130691","url":null,"abstract":"<div><p>Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 11","pages":"Article 130691"},"PeriodicalIF":2.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.bbagen.2024.130687
Hirokazu Yagi , Katsuki Takagi , Koichi Kato
Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.
{"title":"Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains","authors":"Hirokazu Yagi , Katsuki Takagi , Koichi Kato","doi":"10.1016/j.bbagen.2024.130687","DOIUrl":"10.1016/j.bbagen.2024.130687","url":null,"abstract":"<div><p>Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of “add-on” domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130687"},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.bbagen.2024.130683
Juan Tan , Shan Liao , Bowen Yuan , Xinrong Liu , Wentao Yu , Han Zhan , Yan Jiang , Yang Liu
Background
Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression.
Methods
The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth.
Results
SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. In vivo, SMYD2 knockdown inhibited tumor growth.
Conclusions
Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.
{"title":"Targeting SMYD2 promotes ferroptosis and impacts the progression of pancreatic cancer through the c-Myc/NCOA4 axis-mediated ferritinophagy","authors":"Juan Tan , Shan Liao , Bowen Yuan , Xinrong Liu , Wentao Yu , Han Zhan , Yan Jiang , Yang Liu","doi":"10.1016/j.bbagen.2024.130683","DOIUrl":"10.1016/j.bbagen.2024.130683","url":null,"abstract":"<div><h3>Background</h3><p>Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression.</p></div><div><h3>Methods</h3><p>The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth.</p></div><div><h3>Results</h3><p>SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. <em>In vivo</em>, SMYD2 knockdown inhibited tumor growth.</p></div><div><h3>Conclusions</h3><p>Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 10","pages":"Article 130683"},"PeriodicalIF":2.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}