Pub Date : 2024-12-01Epub Date: 2024-05-14DOI: 10.1007/s42977-024-00223-5
Debal Deb
Photoperiod sensitivity in rice cultivars is defined when the cultivar begins anthesis on a relatively invariant date, varying by < 7 days, regardless of the date of sowing or germination. While the date of flowering in photoperiod sensitive (PPS) rice cultivars is characteristically determined by the day length, especially during the short-day season (September-December), the response of the flower opening time (FOT) to photoperiod remains hitherto unexplored. This paper examines whether day length restrains year-to-year variation in FOT in PPS cultivars. We examined 105 PPS and 173 photoperiod insensitive (PPI) cultivars grown in different years and estimated their year-to-year FOT difference (or FOTD) and the year-to-year difference of sunrise to anthesis duration (or SADD). Wilcoxon signed rank test and bootstrap test were then performed to test whether these descriptors significantly differed between PPS and PPI groups of cultivars. The means of FOTD and SADD were detected to be significantly less in the PPS group than in the PPI group of cultivars, indicating significantly lesser variability of FOT in PPS than in PPI cultivars. This is the first report of a strong restraining influence of photoperiod on FOT variability in PPS cultivars.
水稻栽培品种的光周期敏感性是指栽培品种在一个相对不变的日期开始开花,其变化幅度为
{"title":"Is the time of anthesis in rice (Oryza sativa) influenced by photoperiod?","authors":"Debal Deb","doi":"10.1007/s42977-024-00223-5","DOIUrl":"10.1007/s42977-024-00223-5","url":null,"abstract":"<p><p>Photoperiod sensitivity in rice cultivars is defined when the cultivar begins anthesis on a relatively invariant date, varying by < 7 days, regardless of the date of sowing or germination. While the date of flowering in photoperiod sensitive (PPS) rice cultivars is characteristically determined by the day length, especially during the short-day season (September-December), the response of the flower opening time (FOT) to photoperiod remains hitherto unexplored. This paper examines whether day length restrains year-to-year variation in FOT in PPS cultivars. We examined 105 PPS and 173 photoperiod insensitive (PPI) cultivars grown in different years and estimated their year-to-year FOT difference (or FOTD) and the year-to-year difference of sunrise to anthesis duration (or SADD). Wilcoxon signed rank test and bootstrap test were then performed to test whether these descriptors significantly differed between PPS and PPI groups of cultivars. The means of FOTD and SADD were detected to be significantly less in the PPS group than in the PPI group of cultivars, indicating significantly lesser variability of FOT in PPS than in PPI cultivars. This is the first report of a strong restraining influence of photoperiod on FOT variability in PPS cultivars.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"453-458"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-12DOI: 10.1007/s42977-024-00238-y
Kinga Balassa, György Balassa, Szabolcs Rudnóy
Maize dwarf mosaic virus (MDMV) can significantly reduce the growth and development of susceptible varieties of sweet corn. The virus utilises the energy and reserve sources of plant cells to ensure its reproduction in the microspaces formed by cell membranes. Therefore, the severity of stress can be monitored by examining certain physiological changes, for example, changes in the degree of membrane damage caused by lipid peroxidation, as well as changes in the amount of photosynthetic pigments. The activation of antioxidant enzymes (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) and the accumulation of phenolic compounds with antioxidant properties can indirectly protect against the oxidative stress caused by the presence of the positive orientation, single-stranded RNA-virus. This study demonstrates the changes in these physiological processes in a sweet corn hybrid (Zea mays cv. saccharata var. Honey Koern.) susceptible to MDMV infection, and suggests that exogenous small RNA treatment can mitigate the damage caused by virus infection.
{"title":"Alteration of stress-physiological mechanisms in sRNA-treated sweet corn plants during MDMV infection.","authors":"Kinga Balassa, György Balassa, Szabolcs Rudnóy","doi":"10.1007/s42977-024-00238-y","DOIUrl":"10.1007/s42977-024-00238-y","url":null,"abstract":"<p><p>Maize dwarf mosaic virus (MDMV) can significantly reduce the growth and development of susceptible varieties of sweet corn. The virus utilises the energy and reserve sources of plant cells to ensure its reproduction in the microspaces formed by cell membranes. Therefore, the severity of stress can be monitored by examining certain physiological changes, for example, changes in the degree of membrane damage caused by lipid peroxidation, as well as changes in the amount of photosynthetic pigments. The activation of antioxidant enzymes (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) and the accumulation of phenolic compounds with antioxidant properties can indirectly protect against the oxidative stress caused by the presence of the positive orientation, single-stranded RNA-virus. This study demonstrates the changes in these physiological processes in a sweet corn hybrid (Zea mays cv. saccharata var. Honey Koern.) susceptible to MDMV infection, and suggests that exogenous small RNA treatment can mitigate the damage caused by virus infection.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"507-515"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-05DOI: 10.1007/s42977-024-00227-1
Ferenc Lantos, Vivien Váczi, Ingrid Gyalai, Tímea Süli-Zakar, Adrienn Szarvas, Melinda Tar, Péter Püski, Ákos Bajtel, Tivadar Kiss
Young shoots of cereals are widely regarded as superfoods with health benefits attributed to their potential antioxidant activity and antioxidant-related effects (e.g. anticancer). The current study aimed to examine the chemical characteristics of Hordeum vulgare methanolic and aqueous extracts and assess their antioxidant activity using the DDPH and ORAC. Furthermore, the inhibitory effect of xanthine oxidase was screened. TLC bioautography was employed to determine the polarity of the compounds present in the extracts that exhibited the most potent free radical scavenging activity. Total flavonoid content of the methanolic and aqueous extracts was 0.14 mg QE/g and 0.012 mg QE/g, respectively. The antioxidant activity of the methanolic extract was found to be more potent, with a value of 0.97 ± 0.13 mmol TE/g than the aqueous extract which had no activity. This study presents novel findings on the xanthine inhibitory activity of H. vulgare. The methanolic extract demonstrated moderate inhibition of xanthine oxidase with a value of 23.24%. The results of our study were compared with the phytochemical and pharmacological analysis of Triticum aestivum, and further comparison was made with the data reported in the literature. Inconsistencies were observed in the chemical and pharmacological properties of H. vulgare, which could be a result of using herbal material harvested in different vegetative phases and various methods used for extraction. The findings of our study indicate that the timing of the harvest and extraction method may play crucial role in attaining the optimal phytochemical composition of H. vulgare, hence enhancing its pharmacological activity.
{"title":"Investigation of in vitro biological activity of young Hordeum vulgare leaf in correlation with its bioactive compounds.","authors":"Ferenc Lantos, Vivien Váczi, Ingrid Gyalai, Tímea Süli-Zakar, Adrienn Szarvas, Melinda Tar, Péter Püski, Ákos Bajtel, Tivadar Kiss","doi":"10.1007/s42977-024-00227-1","DOIUrl":"10.1007/s42977-024-00227-1","url":null,"abstract":"<p><p>Young shoots of cereals are widely regarded as superfoods with health benefits attributed to their potential antioxidant activity and antioxidant-related effects (e.g. anticancer). The current study aimed to examine the chemical characteristics of Hordeum vulgare methanolic and aqueous extracts and assess their antioxidant activity using the DDPH and ORAC. Furthermore, the inhibitory effect of xanthine oxidase was screened. TLC bioautography was employed to determine the polarity of the compounds present in the extracts that exhibited the most potent free radical scavenging activity. Total flavonoid content of the methanolic and aqueous extracts was 0.14 mg QE/g and 0.012 mg QE/g, respectively. The antioxidant activity of the methanolic extract was found to be more potent, with a value of 0.97 ± 0.13 mmol TE/g than the aqueous extract which had no activity. This study presents novel findings on the xanthine inhibitory activity of H. vulgare. The methanolic extract demonstrated moderate inhibition of xanthine oxidase with a value of 23.24%. The results of our study were compared with the phytochemical and pharmacological analysis of Triticum aestivum, and further comparison was made with the data reported in the literature. Inconsistencies were observed in the chemical and pharmacological properties of H. vulgare, which could be a result of using herbal material harvested in different vegetative phases and various methods used for extraction. The findings of our study indicate that the timing of the harvest and extraction method may play crucial role in attaining the optimal phytochemical composition of H. vulgare, hence enhancing its pharmacological activity.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"391-399"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s42977-024-00246-y
Haniya Mazhar, Ali Afzal, Hanan Afzal, Amara Noureen, Muhammad Mubashir Iqbal Ahmad, Suneela Amaan, Naaz Abbas, Hongxin Zhu, Muhammad Babar Khawar
Lipases are crucial biocatalysts in various industrial applications, and there is considerable interest in developing sustainable methods for their synthesis. This study focuses on the isolation, screening, and comparison of Bacillus cereus strains to produce extracellular lipases utilizing agro-industrial waste through solid-state fermentation. The results indicate that B. cereus exhibited optimal lipase production with soybean extract, yielding 41.2 ± 1.08 µ/ml (p < 0.05), followed by bagasse with 40.5 ± 0.97 µ/ml (p < 0.05). Other substrates, including rice bran (9.9 µ/ml), wheat bran (25.8 µ/ml), sunflower seed (24.0 µ/ml), and oat bran (10.2 µ/ml), demonstrated significantly lower enzyme activity. Additionally, lipase production from fruit peels was assessed, with banana yielding 21.1 µ/ml, orange 20.3 µ/ml, melon 16.3 µ/ml, and watermelon 16.43 µ/ml. Various oil wastes were also evaluated, showing lipase activities of 14.6 µ/ml (Sitara oil), 13.3 µ/ml (Shan oil), 11.0 µ/ml (automobile oil), and 10.2 µ/ml (cooking oil). The bacterial lipases produced from B. cereus demonstrated maximum hydrolysis of tributyrin agar medium at 40°C (p < 0.05). The findings suggest that utilizing different agro-industrial wastes for the production of extracellular lipase could help mitigate environmental pollution while providing a viable option for commercial enzyme production.
{"title":"Extracellular lipase production from Bacillus cereus by using agro-industrial waste.","authors":"Haniya Mazhar, Ali Afzal, Hanan Afzal, Amara Noureen, Muhammad Mubashir Iqbal Ahmad, Suneela Amaan, Naaz Abbas, Hongxin Zhu, Muhammad Babar Khawar","doi":"10.1007/s42977-024-00246-y","DOIUrl":"https://doi.org/10.1007/s42977-024-00246-y","url":null,"abstract":"<p><p>Lipases are crucial biocatalysts in various industrial applications, and there is considerable interest in developing sustainable methods for their synthesis. This study focuses on the isolation, screening, and comparison of Bacillus cereus strains to produce extracellular lipases utilizing agro-industrial waste through solid-state fermentation. The results indicate that B. cereus exhibited optimal lipase production with soybean extract, yielding 41.2 ± 1.08 µ/ml (p < 0.05), followed by bagasse with 40.5 ± 0.97 µ/ml (p < 0.05). Other substrates, including rice bran (9.9 µ/ml), wheat bran (25.8 µ/ml), sunflower seed (24.0 µ/ml), and oat bran (10.2 µ/ml), demonstrated significantly lower enzyme activity. Additionally, lipase production from fruit peels was assessed, with banana yielding 21.1 µ/ml, orange 20.3 µ/ml, melon 16.3 µ/ml, and watermelon 16.43 µ/ml. Various oil wastes were also evaluated, showing lipase activities of 14.6 µ/ml (Sitara oil), 13.3 µ/ml (Shan oil), 11.0 µ/ml (automobile oil), and 10.2 µ/ml (cooking oil). The bacterial lipases produced from B. cereus demonstrated maximum hydrolysis of tributyrin agar medium at 40°C (p < 0.05). The findings suggest that utilizing different agro-industrial wastes for the production of extracellular lipase could help mitigate environmental pollution while providing a viable option for commercial enzyme production.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicon (Si) is an abundant element in the earth's crust essential for plant growth and development. Recent studies silicon's potential for improving plant resilience to numerous biotic stressors, notably fungal diseases. This review seeks to offer a comprehensive understanding of the processes and advantages of silicon-induced systemic resistance in plants, with a special focus on its interactions with fungal pathogens. Furthermore, we investigate the effect of silicon on plant physiological and biochemical changes, such as enhanced lignification, strengthening of physical barriers, and activation of antioxidant systems. Additionally, we examine the influence of silicon on microbial populations within the rhizosphere and its effects on mycorrhizal associations. Lastly, we discuss the potential applications and challenges of integrating silicon-based strategies in sustainable plant disease management. This review provides valuable insights into using silicon as a novel approach to enhance plant systemic resistance against fungal pathogens, offering prospects for developing eco-friendly and efficient agricultural practices.
{"title":"Silicon uptake and transport mechanisms in plants: processes, applications and challenges in sustainable plant management.","authors":"Raghvendra Pandey, Chandan Singh, Smita Mishra, Mukhtar Iderawumi Abdulraheem, Deepak Vyas","doi":"10.1007/s42977-024-00247-x","DOIUrl":"https://doi.org/10.1007/s42977-024-00247-x","url":null,"abstract":"<p><p>Silicon (Si) is an abundant element in the earth's crust essential for plant growth and development. Recent studies silicon's potential for improving plant resilience to numerous biotic stressors, notably fungal diseases. This review seeks to offer a comprehensive understanding of the processes and advantages of silicon-induced systemic resistance in plants, with a special focus on its interactions with fungal pathogens. Furthermore, we investigate the effect of silicon on plant physiological and biochemical changes, such as enhanced lignification, strengthening of physical barriers, and activation of antioxidant systems. Additionally, we examine the influence of silicon on microbial populations within the rhizosphere and its effects on mycorrhizal associations. Lastly, we discuss the potential applications and challenges of integrating silicon-based strategies in sustainable plant disease management. This review provides valuable insights into using silicon as a novel approach to enhance plant systemic resistance against fungal pathogens, offering prospects for developing eco-friendly and efficient agricultural practices.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s42977-024-00245-z
Muhammad Waqas Mazhar, Muhammad Ishtiaq, Mehwish Maqbool, Eman A Mahmoud, Fahed A Almana, Hosam O Elansary
In recent years, the realm of astrobiology has expanded beyond the search for microbial life to encompass the intriguing possibility of plant life beyond our planet. Plant astrobiology delves into the adaptations and mechanisms that might allow Earth's flora to flourish in the harsh conditions of outer space and other celestial bodies. This review aims to shed light on the captivating field of plant astrobiology, its implications, and the challenges and opportunities it presents. Plant astrobiology marries the disciplines of botany and astrobiology, challenging us to envision the growth of plants beyond Earth's atmosphere. Researchers in this field are not only exploring the potential for plant life on other planets and moons but also investigating how plants could be harnessed to sustain life during extended space missions. The review discusses how plants could adapt to environments characterized by low gravity, high radiation, extreme temperature fluctuations, and different atmospheric compositions. It highlights the physiological changes necessary for plants to survive and reproduce in these conditions. A pivotal concept is the integration of plants into closed-loop life support systems, where plants would play a crucial role in recycling waste products, generating oxygen, and producing food. The review delves into ongoing research involving genetic modifications and synthetic biology techniques to enhance plants' resilience in space environments. It addresses ethical considerations associated with altering organisms for off-planet habitation. Additionally, the review contemplates the psychological and emotional benefits of having greenery in enclosed, isolated space habitats. The review concludes that by employing advanced research methodologies, the field of plant astrobiology can greatly enhance the viability and sustainability of future space missions, highlighting the essential role of plants in sustaining long-term human presence beyond Earth.
{"title":"Exploring the potential of plant astrobiology: adapting flora for extra-terrestrial habitats: a review.","authors":"Muhammad Waqas Mazhar, Muhammad Ishtiaq, Mehwish Maqbool, Eman A Mahmoud, Fahed A Almana, Hosam O Elansary","doi":"10.1007/s42977-024-00245-z","DOIUrl":"https://doi.org/10.1007/s42977-024-00245-z","url":null,"abstract":"<p><p>In recent years, the realm of astrobiology has expanded beyond the search for microbial life to encompass the intriguing possibility of plant life beyond our planet. Plant astrobiology delves into the adaptations and mechanisms that might allow Earth's flora to flourish in the harsh conditions of outer space and other celestial bodies. This review aims to shed light on the captivating field of plant astrobiology, its implications, and the challenges and opportunities it presents. Plant astrobiology marries the disciplines of botany and astrobiology, challenging us to envision the growth of plants beyond Earth's atmosphere. Researchers in this field are not only exploring the potential for plant life on other planets and moons but also investigating how plants could be harnessed to sustain life during extended space missions. The review discusses how plants could adapt to environments characterized by low gravity, high radiation, extreme temperature fluctuations, and different atmospheric compositions. It highlights the physiological changes necessary for plants to survive and reproduce in these conditions. A pivotal concept is the integration of plants into closed-loop life support systems, where plants would play a crucial role in recycling waste products, generating oxygen, and producing food. The review delves into ongoing research involving genetic modifications and synthetic biology techniques to enhance plants' resilience in space environments. It addresses ethical considerations associated with altering organisms for off-planet habitation. Additionally, the review contemplates the psychological and emotional benefits of having greenery in enclosed, isolated space habitats. The review concludes that by employing advanced research methodologies, the field of plant astrobiology can greatly enhance the viability and sustainability of future space missions, highlighting the essential role of plants in sustaining long-term human presence beyond Earth.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s42977-024-00240-4
Krisztián Frank, Erzsébet Nagy, János Taller, István Wolf, Zsolt Polgár
Potato (Solanum tuberosum) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of S. tuberosum chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available S. tuberosum sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.
{"title":"Characterisation of the complete chloroplast genome of Solanum tuberosum cv. White Lady","authors":"Krisztián Frank, Erzsébet Nagy, János Taller, István Wolf, Zsolt Polgár","doi":"10.1007/s42977-024-00240-4","DOIUrl":"https://doi.org/10.1007/s42977-024-00240-4","url":null,"abstract":"<p>Potato (<i>Solanum tuberosum</i>) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of <i>S. tuberosum</i> chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available <i>S. tuberosum</i> sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":"2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s42977-024-00242-2
Tamás Felföldi
Growing human population and increasing urbanization call for the need for proper wastewater treatment to reduce environmental pollution and reduce the excess use of natural resources. During the collection of municipal wastewater, the rapid aerobic respiration often causes oxygen depletion and anaerobic conditions in the sewer system resulting in the production of malodorous compounds. The odor problems may lead to public complaints, or in the case of the sewage workers the released volatile compounds even cause serious health hazards. Therefore, microbes have a dual contribution in the urban water cycle, since they have a decisive role in wastewater treatment and the removal of pollutants, but they can also cause problems in the artificial environment. In this review, I would like to summarize the processes underlying the generation of the bad smell associated with sewage and wastewater or with the collection and treatment infrastructure, tracking the way from the households to the plants, including the discussion of processes and possible mitigation related to the released hydrogen sulfide, volatile organics and other compounds.
{"title":"Microbiological aspects of sewage odor problems in the urban environment - a review","authors":"Tamás Felföldi","doi":"10.1007/s42977-024-00242-2","DOIUrl":"https://doi.org/10.1007/s42977-024-00242-2","url":null,"abstract":"<p>Growing human population and increasing urbanization call for the need for proper wastewater treatment to reduce environmental pollution and reduce the excess use of natural resources. During the collection of municipal wastewater, the rapid aerobic respiration often causes oxygen depletion and anaerobic conditions in the sewer system resulting in the production of malodorous compounds. The odor problems may lead to public complaints, or in the case of the sewage workers the released volatile compounds even cause serious health hazards. Therefore, microbes have a dual contribution in the urban water cycle, since they have a decisive role in wastewater treatment and the removal of pollutants, but they can also cause problems in the artificial environment. In this review, I would like to summarize the processes underlying the generation of the bad smell associated with sewage and wastewater or with the collection and treatment infrastructure, tracking the way from the households to the plants, including the discussion of processes and possible mitigation related to the released hydrogen sulfide, volatile organics and other compounds.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":"25 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-26DOI: 10.1007/s42977-024-00236-0
T Mireisz, F B Horváth, N T Kashaija, R Farkas, I Boldizsár, E Tóth
Endocrine disruptors are potential environmental contaminants that can cause toxicity in aquatic ecosystems, so the Water Framework Directive has established limits for these compounds. During our research, 41 bacterial strains were isolated and identified from sewage effluent and tested for their degradation capacities for bisphenol A, 17β-estradiol, and nonylphenol. All the isolated bacteria belonged to the Gammaproteobacteria class of Pseudomonadota phylum (members of Citrobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leclercia, Raoultella, Shigella. Acinetobacter, Aeromonas, and Pseudomonas genera). During the experiments, only strains HF17, HF18 (Pseudomonas aeruginosa), and HF31 (Citrobacter freundii) were unable to grow on these compounds, all other bacterial strains could grow in the presence of the investigated endocrine disruptors. Based on the genomic analysis of the type strains, a set of genes involving aromatic compound degradation was detected, among the peripheral metabolic pathways, the quinate and benzoate degradation pathways proved to be widespread, among the central aromatic intermediates metabolism, the catechol branch of the beta-ketoadipate pathway was the most dominant. Pseudomonas fulva HF16 strain could utilize the investigated endocrine disruptors: bisphenol A by 34%, 17β-estradiol by 52%, and nonylphenol by 54%.
{"title":"Drug-degrading bacteria isolated from the effluent water of a sewage plant.","authors":"T Mireisz, F B Horváth, N T Kashaija, R Farkas, I Boldizsár, E Tóth","doi":"10.1007/s42977-024-00236-0","DOIUrl":"10.1007/s42977-024-00236-0","url":null,"abstract":"<p><p>Endocrine disruptors are potential environmental contaminants that can cause toxicity in aquatic ecosystems, so the Water Framework Directive has established limits for these compounds. During our research, 41 bacterial strains were isolated and identified from sewage effluent and tested for their degradation capacities for bisphenol A, 17β-estradiol, and nonylphenol. All the isolated bacteria belonged to the Gammaproteobacteria class of Pseudomonadota phylum (members of Citrobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leclercia, Raoultella, Shigella. Acinetobacter, Aeromonas, and Pseudomonas genera). During the experiments, only strains HF17, HF18 (Pseudomonas aeruginosa), and HF31 (Citrobacter freundii) were unable to grow on these compounds, all other bacterial strains could grow in the presence of the investigated endocrine disruptors. Based on the genomic analysis of the type strains, a set of genes involving aromatic compound degradation was detected, among the peripheral metabolic pathways, the quinate and benzoate degradation pathways proved to be widespread, among the central aromatic intermediates metabolism, the catechol branch of the beta-ketoadipate pathway was the most dominant. Pseudomonas fulva HF16 strain could utilize the investigated endocrine disruptors: bisphenol A by 34%, 17β-estradiol by 52%, and nonylphenol by 54%.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"351-359"},"PeriodicalIF":1.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-11DOI: 10.1007/s42977-024-00229-z
Viktória Faragó, Melinda Megyes, Balázs Nagy, Andrea K Borsodi
Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.
{"title":"Taxonomic diversity and environmental tolerance of cultivable extremophilic bacteria from a high-altitude meltwater pond on Ojos del Salado (Chile).","authors":"Viktória Faragó, Melinda Megyes, Balázs Nagy, Andrea K Borsodi","doi":"10.1007/s42977-024-00229-z","DOIUrl":"10.1007/s42977-024-00229-z","url":null,"abstract":"<p><p>Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"279-288"},"PeriodicalIF":1.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}