Pub Date : 2024-10-01Epub Date: 2024-08-28DOI: 10.1080/08927014.2024.2395390
Guilherme Dos Santos Gomes Alves, Amanda Munarolo Piacenza de Oliveira, Ana Carolyna Becher Roseno, Natália Pereira Ribeiro, Maria do Socorro Alves, Caio Sampaio, Rosana Leal do Prado, Juliano Pelim Pessan, Douglas Roberto Monteiro
Although Streptococcus pyogenes and Candida albicans may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of S. pyogenes and C. albicans and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of S. pyogenes colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual S. pyogenes/C. albicans biofilms.
尽管化脓性链球菌和白色念珠菌可能在扁桃体组织中定植,但它们在混合生物膜中的相互作用却鲜有研究。本研究建立了化脓性链球菌和白念珠菌的跨领域生物膜模型,并验证了抗菌剂的剂量-反应验证。在有或没有人类唾液调节层的情况下,使用脑心输液(BHI)肉汤或人工唾液(AS)作为培养基,并改变微生物接种顺序,在微孔板上形成生物膜。在人工唾液中生长的生物膜比在 BHI 肉汤中生长的生物膜质量更高,而在新陈代谢方面则观察到相反的趋势。化脓性链球菌菌落的数量在 AS 中较低。阿莫西林和奈他汀的作用呈剂量依赖性。在未来评估抗菌剂对化脓性链球菌/白喉杆菌双重生物膜影响的研究中,同时接种这两种细菌、不事先接触唾液并使用 BHI 肉汤将是首选模型。
{"title":"Interkingdom biofilm of <i>Streptococcus pyogenes</i> and <i>Candida albicans</i>: establishment of an <i>in vitro</i> model and dose-response validation of antimicrobials.","authors":"Guilherme Dos Santos Gomes Alves, Amanda Munarolo Piacenza de Oliveira, Ana Carolyna Becher Roseno, Natália Pereira Ribeiro, Maria do Socorro Alves, Caio Sampaio, Rosana Leal do Prado, Juliano Pelim Pessan, Douglas Roberto Monteiro","doi":"10.1080/08927014.2024.2395390","DOIUrl":"10.1080/08927014.2024.2395390","url":null,"abstract":"<p><p>Although <i>Streptococcus pyogenes</i> and <i>Candida albicans</i> may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of <i>S. pyogenes</i> and <i>C. albicans</i> and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of <i>S. pyogenes</i> colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual <i>S. pyogenes</i>/<i>C. albicans</i> biofilms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"580-592"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-30DOI: 10.1080/08927014.2024.2393841
Renjbar Muksy, Kamal Kolo
This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. Methanosarcina sp., which utilized acetate and methanol for methane production, and Methanobacterium sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.
{"title":"Characterization of methanogens from landfill samples: implications for sustainable biogas production.","authors":"Renjbar Muksy, Kamal Kolo","doi":"10.1080/08927014.2024.2393841","DOIUrl":"10.1080/08927014.2024.2393841","url":null,"abstract":"<p><p>This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. <i>Methanosarcina</i> sp., which utilized acetate and methanol for methane production, and <i>Methanobacterium</i> sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"549-562"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days.HIGHLIGHTSDurable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully.The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days.The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface.The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.
为了提高用于微藻培养的光生物反应器抗生物污损表面的耐久性,成功合成了一系列光活性聚(2,2,2-三氟乙基甲基丙烯酸酯)(PTFEMA),并通过表面涂覆和紫外光接枝法将其用于改性乙烯-醋酸乙烯酯(EVA)薄膜。傅立叶变换红外光谱(FT-IR)、X 射线光电子能谱分析(XPS)和荧光显微镜结果表明,PTFEMA 通过共价键成功固定在 EVA 薄膜表面。在微藻粘附试验中,EVA-PTFEMA 薄膜粘附的微藻数量比 EVA 薄膜低 41.4%。此外,清洗后附着在 EVA-PTFEMA 薄膜上的微藻数量减少了 61.7%,而附着在 EVA 薄膜上的微藻数量只减少了 49.1%。研究发现,EVA-PTFEMA 薄膜表面的接触角增大,在酸碱溶液中浸泡 90 天后仍保持稳定。亮点成功制备了用于微藻培养的耐用光生物反应器防污表面,防污涂层表面的接触角在酸碱环境中保持稳定达 90 天,防污表面上附着的微藻比未改性表面减少了 41.4%,通过改变微藻悬浮液的流速,防污表面上附着的微藻可被清洁 61.7%。
{"title":"Durable photobioreactor antibiofouling coatings for microalgae cultivation by photoreactive poly(2,2,2-trifluoroethyl methacrylate).","authors":"Honghe Song, Yuheng Jiang, Caixiang Chen, Shumei Wen, Zhenzhen Zhou, Chenghu Yan, Wei Cong","doi":"10.1080/08927014.2024.2391000","DOIUrl":"10.1080/08927014.2024.2391000","url":null,"abstract":"<p><p>To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days.HIGHLIGHTSDurable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully.The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days.The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface.The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"538-548"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-08DOI: 10.1080/08927014.2024.2396020
Gabriel Davi Marena, André Luiz Carneiro Soares do Nascimento, Gabriela Corrêa Carvalho, Rafael Miguel Sábio, Tais Maria Bauab, Marlus Chorilli
Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.
{"title":"Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against <i>Candida auris</i> biofilms.","authors":"Gabriel Davi Marena, André Luiz Carneiro Soares do Nascimento, Gabriela Corrêa Carvalho, Rafael Miguel Sábio, Tais Maria Bauab, Marlus Chorilli","doi":"10.1080/08927014.2024.2396020","DOIUrl":"10.1080/08927014.2024.2396020","url":null,"abstract":"<p><p><i>Candida auris</i> is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of <i>C. auris</i>. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC<sub>90</sub>, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against <i>C. auris</i> biofilms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"602-616"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1080/08927014.2024.2403371
Kayla R Kurtz,Lindsay Green-Gavrielidis,Lucie Maranda,Carol S Thornber,Danielle M Moloney,Vinka Oyanedel-Craver
The marine algae Ulva spp. are commonly used as model biofouling organisms. As biofouling studies are primarily conducted using field-collected specimens, factors including species identity, seasonal availability, and physiological status can hinder the replicability of the results. To address these limitations, a protocol was developed for the on-demand laboratory culture and release of Ulva zoospores. The biofouling potential of laboratory-cultured and field-collected Ulva blades was compared using a waterjet. No significant differences were found between field and laboratory-cultured samples in either spore adhesion (before waterjet) or the proportion of spores retained after waterjet exposure. However, there was significant variability within each session type in pre- and post-waterjet exposures, indicating that spore adhesion and retention levels vary significantly among trial runs. In addition, all our laboratory cultures were Ulva Clade C (LPP complex). In contrast, our field samples contained a mix of Ulva Clade C, U. compressa clade I, and U. flexuosa Clade D. This protocol for on-demand production of Ulva spores can improve biofouling research approaches, enables comparison of results across laboratories and regions, and accelerate the development of anti-biofouling strategies.
海洋藻类石灰莼通常被用作生物污损模式生物。由于生物污损研究主要使用野外采集的标本,包括物种特征、季节性可用性和生理状态等因素都会妨碍研究结果的可复制性。为了解决这些限制因素,我们制定了一套按需实验室培养和释放莼菜动物孢子的方案。使用水刀比较了实验室培养的莼菜叶片和野外采集的莼菜叶片的生物污损潜力。在孢子附着力(水喷射前)或水喷射后孢子保留比例方面,野外和实验室培养的样本之间没有发现明显差异。不过,在每种试验类型中,水刀暴露前和暴露后的差异都很大,这表明孢子粘附和保留水平在不同的试验中差异很大。此外,我们所有的实验室培养物都是 C 支系莼菜(LPP 复合体)。这种按需生产莼菜孢子的方案可以改进生物污损研究方法,对不同实验室和地区的结果进行比较,并加快防生物污损策略的开发。
{"title":"A comparison of the biofouling potential of field-collected and laboratory-cultured Ulva.","authors":"Kayla R Kurtz,Lindsay Green-Gavrielidis,Lucie Maranda,Carol S Thornber,Danielle M Moloney,Vinka Oyanedel-Craver","doi":"10.1080/08927014.2024.2403371","DOIUrl":"https://doi.org/10.1080/08927014.2024.2403371","url":null,"abstract":"The marine algae Ulva spp. are commonly used as model biofouling organisms. As biofouling studies are primarily conducted using field-collected specimens, factors including species identity, seasonal availability, and physiological status can hinder the replicability of the results. To address these limitations, a protocol was developed for the on-demand laboratory culture and release of Ulva zoospores. The biofouling potential of laboratory-cultured and field-collected Ulva blades was compared using a waterjet. No significant differences were found between field and laboratory-cultured samples in either spore adhesion (before waterjet) or the proportion of spores retained after waterjet exposure. However, there was significant variability within each session type in pre- and post-waterjet exposures, indicating that spore adhesion and retention levels vary significantly among trial runs. In addition, all our laboratory cultures were Ulva Clade C (LPP complex). In contrast, our field samples contained a mix of Ulva Clade C, U. compressa clade I, and U. flexuosa Clade D. This protocol for on-demand production of Ulva spores can improve biofouling research approaches, enables comparison of results across laboratories and regions, and accelerate the development of anti-biofouling strategies.","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"14 1","pages":"1-13"},"PeriodicalIF":2.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.
{"title":"Effect of flavin adenine dinucleotide (FAD) on Desulfovibrio desulfuricans corrosion of pipeline welded joint.","authors":"Qin Wang,Xiaobao Zhou,Zhen Zhong,Binbin Wang,Zhuowei Tan,Minghua Zhang,Tangqing Wu","doi":"10.1080/08927014.2024.2404204","DOIUrl":"https://doi.org/10.1080/08927014.2024.2404204","url":null,"abstract":"The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"38 1","pages":"1-15"},"PeriodicalIF":2.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-30DOI: 10.1080/08927014.2024.2385038
Glaucia Morgana de Melo Guedes, Crister José Ocadaque, Bruno Rocha Amando, Alyne Soares Freitas, Vinicius Carvalho Pereira, Rossana de Aguiar Cordeiro, Silviane Praciano Bandeira, Pedro Filho Noronha Souza, Marcos Fábio Gadelha Rocha, José Júlio Costa Sidrim, Débora de Souza Collares Maia Castelo-Branco
Efflux pump inhibitors are a potential therapeutic strategy for managing antimicrobial resistance and biofilm formation. This article evaluated the effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on the biofilm growth dynamics and the production of virulence factors by Burkholderia pseudomallei. The effects of CCCP on planktonic, growing, and mature biofilm, interaction with antibacterial drugs, and protease and siderophore production were assessed. CCCP MICs ranged between 128 and 256 µM. The CCCP (128 µM) had a synergic effect with all the antibiotics tested against biofilms. Additionally, CCCP reduced (p < .05) the biomass of biofilm growth and mature biofilms at 128 and 512 µM, respectively. CCCP also decreased (p < .05) protease production by growing (128 µM) and induced (p < .05) siderophore release by planktonic cells (128 µM) growing biofilms (12.8 and 128 µM) and mature biofilms (512 µM). CCCP demonstrates potential as a therapeutic adjuvant for disassembling B. pseudomallei biofilms and enhancing drug penetration.
{"title":"Influence of carbonyl cyanide m-chlorophenyl hydrazone on biofilm dynamics, protease, and siderophore production by <i>Burkholderia pseudomallei</i>.","authors":"Glaucia Morgana de Melo Guedes, Crister José Ocadaque, Bruno Rocha Amando, Alyne Soares Freitas, Vinicius Carvalho Pereira, Rossana de Aguiar Cordeiro, Silviane Praciano Bandeira, Pedro Filho Noronha Souza, Marcos Fábio Gadelha Rocha, José Júlio Costa Sidrim, Débora de Souza Collares Maia Castelo-Branco","doi":"10.1080/08927014.2024.2385038","DOIUrl":"10.1080/08927014.2024.2385038","url":null,"abstract":"<p><p>Efflux pump inhibitors are a potential therapeutic strategy for managing antimicrobial resistance and biofilm formation. This article evaluated the effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on the biofilm growth dynamics and the production of virulence factors by <i>Burkholderia pseudomallei</i>. The effects of CCCP on planktonic, growing, and mature biofilm, interaction with antibacterial drugs, and protease and siderophore production were assessed. CCCP MICs ranged between 128 and 256 µM. The CCCP (128 µM) had a synergic effect with all the antibiotics tested against biofilms. Additionally, CCCP reduced (<i>p</i> < .05) the biomass of biofilm growth and mature biofilms at 128 and 512 µM, respectively. CCCP also decreased (<i>p</i> < .05) protease production by growing (128 µM) and induced (<i>p</i> < .05) siderophore release by planktonic cells (128 µM) growing biofilms (12.8 and 128 µM) and mature biofilms (512 µM). CCCP demonstrates potential as a therapeutic adjuvant for disassembling <i>B. pseudomallei</i> biofilms and enhancing drug penetration.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"514-526"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-29DOI: 10.1080/08927014.2024.2381587
Abdulhamit Çali, Cem Çelik
Using existing adrentimicrobials with essential oil components to prevent antimicrobial resistance is an alternative strategy. This study aimed to evaluate the resistance status, synergistic combinations, and in vitro biofilm formation activities of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia and Candida albicans against antimicrobial agents and cinnamaldehyde, carvacrol, eugenol, limonene and eucalyptol. Antimicrobial activities were evaluated by microdilution, cytotoxicity by XTT, synergy by checkerboard and time-kill, and biofilm inhibition by microplate methods. Cinnamaldehyde and carvacrol showed strong antimicrobial activity. Synergistic effects were observed when using all essential oils with antimicrobials. Only two C. albicans isolates showed antagonism with cinnamaldehyde and fluconazole. The constituents showed cytotoxic effects in the L929 cell line (except limonene). A time-kill analysis revealed a bacteriostatic effect on S. maltophilia and MRSA isolates and a fungicidal effect on C. albicans isolates. These results are important for further research to improve antimicrobial efficacy or to develop new agents.
{"title":"Determination of <i>in vitro</i> synergy and antibiofilm activities of antimicrobials and essential oil components.","authors":"Abdulhamit Çali, Cem Çelik","doi":"10.1080/08927014.2024.2381587","DOIUrl":"10.1080/08927014.2024.2381587","url":null,"abstract":"<p><p>Using existing adrentimicrobials with essential oil components to prevent antimicrobial resistance is an alternative strategy. This study aimed to evaluate the resistance status, synergistic combinations, and <i>in vitro</i> biofilm formation activities of clinical isolates of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), <i>Stenotrophomonas maltophilia</i> and <i>Candida albicans</i> against antimicrobial agents and cinnamaldehyde, carvacrol, eugenol, limonene and eucalyptol. Antimicrobial activities were evaluated by microdilution, cytotoxicity by XTT, synergy by checkerboard and time-kill, and biofilm inhibition by microplate methods. Cinnamaldehyde and carvacrol showed strong antimicrobial activity. Synergistic effects were observed when using all essential oils with antimicrobials. Only two <i>C. albicans</i> isolates showed antagonism with cinnamaldehyde and fluconazole. The constituents showed cytotoxic effects in the L929 cell line (except limonene). A time-kill analysis revealed a bacteriostatic effect on <i>S. maltophilia</i> and MRSA isolates and a fungicidal effect on <i>C. albicans</i> isolates. These results are important for further research to improve antimicrobial efficacy or to develop new agents.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"483-498"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-22DOI: 10.1080/08927014.2024.2380404
Azzeddine Bechar, Sara Er-Rahmani, Mohammed Hassi, Moulay Sadiki, Soumya El Abed, Oumaima Ouaddi, Fatima Tizar, Mohamed Alouani, Saad Ibnsouda Koraichi
Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of Dunaliella salina were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against Pseudomonas aeruginosa. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of P. aeruginosa toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that P. aeruginosa adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.
聚对苯二甲酸乙二醇酯(PET)和聚乳酸(PLA)是食品工业使用的聚合物之一。在这项研究中,使用了杜纳利藻的粗提取物来处理所研究的 3D 打印材料的表面,目的是使其具有抗铜绿假单胞菌的粘附性。使用接触角法对处理过和未处理过的表面的疏水性进行了表征。此外,还对铜绿假单胞菌对基材表面的粘附行为进行了理论和实验研究。结果表明,未经处理的聚乳酸具有疏水性,而未经处理的 PET 具有亲水性。研究还发现,经过处理的材料变得亲水且具有电子捐赠性。粘附总能量显示,理论上铜绿假单胞菌在未处理材料上的粘附是有利的,而在处理过的材料上则是不利的。此外,实验数据证明,铜绿微囊藻在未经处理的基质上获得了粘附力,而在经过处理的表面上则完全被抑制。
{"title":"The effect of <i>Dunaliella salina</i> extracts on the adhesion of <i>Pseudomonas aeruginosa</i> to 3D printed polyethylene terephthalate and polylactic acid.","authors":"Azzeddine Bechar, Sara Er-Rahmani, Mohammed Hassi, Moulay Sadiki, Soumya El Abed, Oumaima Ouaddi, Fatima Tizar, Mohamed Alouani, Saad Ibnsouda Koraichi","doi":"10.1080/08927014.2024.2380404","DOIUrl":"10.1080/08927014.2024.2380404","url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of <i>Dunaliella salina</i> were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against <i>Pseudomonas aeruginosa</i>. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of <i>P. aeruginosa</i> toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that <i>P. aeruginosa</i> adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"447-466"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding factors influencing Listeria monocytogenes biofilms aid in developing more effective elimination/prevention strategies. This study examined the effect of temperature (4 °C, 21 °C, 30 °C), materials (stainless steel 316 L with 2B and 2 R finishes, glass, and polypropylene), and slope (0°/horizontal or 90°/vertical) on mono- and dual-species biofilms using two L. monocytogenes strains and one Pseudomonas aeruginosa strain. All biofilms were grown in 10% TSB for 24 h and analyzed using culture-based methods. Additionally, the architecture of monospecies biofilms was studied using fluorescence microscopy. Overall, P. aeruginosa showed higher biofilm formation potential (6.2 log CFU/cm2) than L. monocytogenes (4.0 log CFU/cm2). Temperature greatly influenced P. aeruginosa and varied for L. monocytogenes. The slope predominantly influenced L. monocytogenes monospecies biofilms, with cell counts increasing by up to 2 log CFU/cm2. Surface material had little impact on biofilm formation. The study highlights the varying effects of different parameters on multispecies biofilms and the importance of surface geometry.
{"title":"Influence of slope, material, and temperature on <i>Listeria monocytogenes</i> and <i>Pseudomonas aeruginosa</i> mono- and dual-species biofilms.","authors":"Tessa Tuytschaever, Christine Faille, Katleen Raes, Imca Sampers","doi":"10.1080/08927014.2024.2380410","DOIUrl":"10.1080/08927014.2024.2380410","url":null,"abstract":"<p><p>Understanding factors influencing <i>Listeria monocytogenes</i> biofilms aid in developing more effective elimination/prevention strategies. This study examined the effect of temperature (4 °C, 21 °C, 30 °C), materials (stainless steel 316 L with 2B and 2 R finishes, glass, and polypropylene), and slope (0°/horizontal or 90°/vertical) on mono- and dual-species biofilms using two <i>L. monocytogenes</i> strains and one <i>Pseudomonas aeruginosa</i> strain. All biofilms were grown in 10% TSB for 24 h and analyzed using culture-based methods. Additionally, the architecture of monospecies biofilms was studied using fluorescence microscopy. Overall, <i>P. aeruginosa</i> showed higher biofilm formation potential (6.2 log CFU/cm<sup>2</sup>) than <i>L. monocytogenes</i> (4.0 log CFU/cm<sup>2</sup>). Temperature greatly influenced <i>P. aeruginosa</i> and varied for <i>L. monocytogenes.</i> The slope predominantly influenced <i>L. monocytogenes</i> monospecies biofilms, with cell counts increasing by up to 2 log CFU/cm<sup>2</sup>. Surface material had little impact on biofilm formation. The study highlights the varying effects of different parameters on multispecies biofilms and the importance of surface geometry.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"467-482"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}