Pub Date : 2024-02-01Epub Date: 2024-03-07DOI: 10.1080/08927014.2024.2324008
Heting Hong, Aijuan Deng, Yang Tang, Zhixiong Liu
The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.
{"title":"How to identify biofouling species in marine and freshwater.","authors":"Heting Hong, Aijuan Deng, Yang Tang, Zhixiong Liu","doi":"10.1080/08927014.2024.2324008","DOIUrl":"10.1080/08927014.2024.2324008","url":null,"abstract":"<p><p>The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"130-152"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-03-11DOI: 10.1080/08927014.2024.2326038
Alexandra Guennec, Eric Balnois, Antoine Augias, Mama Aïssata Bangoura, Cédric Jaffry, Christelle Simon-Colin, Valérie Langlois, Fabrice Azemar, Guillaume Vignaud, Isabelle Linossier, Fabienne Faÿ, Karine Vallée-Réhel
Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection via biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.
{"title":"Investigating the anti-bioadhesion properties of short, medium chain length, and amphiphilic polyhydroxyalkanoate films.","authors":"Alexandra Guennec, Eric Balnois, Antoine Augias, Mama Aïssata Bangoura, Cédric Jaffry, Christelle Simon-Colin, Valérie Langlois, Fabrice Azemar, Guillaume Vignaud, Isabelle Linossier, Fabienne Faÿ, Karine Vallée-Réhel","doi":"10.1080/08927014.2024.2326038","DOIUrl":"10.1080/08927014.2024.2326038","url":null,"abstract":"<p><p>Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection <i>via</i> biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"177-192"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-03-27DOI: 10.1080/08927014.2024.2332709
João Marcos Carvalho-Silva, Ana Beatriz Vilela Teixeira, Mariana Lima da Costa Valente, Marcos Vinicius Wada Shimano, Andréa Cândido Dos Reis
This study aimed to answer the question formulated according to the PICO strategy: 'Which essential oils show antimicrobial activity against biofilms formed on dental acrylic resin?' composed by population (dental acrylic resin), intervention (application of essential oils), comparison (denture cleansers, antifungal drugs, chlorhexidine, and oral mouthwashes), and outcome (antibiofilm activity). In vitro experimental studies evaluating the activity of EOs on biofilm formed on acrylic resin were included. PRISMA guidelines were followed, and the search was performed in the PubMed, Science Direct, Embase, and Lilacs databases and in the gray literature using Google Scholar and ProQuest in December 2023. A manual search of the reference lists of the included primary studies was performed. Of the 1467 articles identified, 37 were selected for full-text reading and 12 were included. Twelve EOs were evaluated, of which 11 showed activity against Candida spp., 3 against Staphylococcus aureus, and 1 against Pseudomonas aeruginosa. The EOs of Cymbopogon citratus, Cinnamomum zeylanicum, and Cymbopogon nardus showed higher action than chlorhexidine, C. nardus higher than Listerine, C. citratus higher than nystatin, and Melaleuca alternifolia higher than fluconazole and nystatin. However, chlorhexidine was more effective than Lippia sidoides and Salvia officinalis, sodium hypochlorite was more effective than L. sidoides, nystatin was more effective than Zingiber officinale, Amphotericin B more effective than Eucalyptus globulus and M. alternifolia. In conclusion, the EOs of C. zeylanicum, C. citratus, C. nardus, and M. alternifolia showed antimicrobial activity to reduce biofilm on dental acrylic resin.
{"title":"Antimicrobial activity of essential oils against biofilms formed in dental acrylic resin: a systematic review of <i>in vitro</i> studies.","authors":"João Marcos Carvalho-Silva, Ana Beatriz Vilela Teixeira, Mariana Lima da Costa Valente, Marcos Vinicius Wada Shimano, Andréa Cândido Dos Reis","doi":"10.1080/08927014.2024.2332709","DOIUrl":"10.1080/08927014.2024.2332709","url":null,"abstract":"<p><p>This study aimed to answer the question formulated according to the PICO strategy: 'Which essential oils show antimicrobial activity against biofilms formed on dental acrylic resin?' composed by population (dental acrylic resin), intervention (application of essential oils), comparison (denture cleansers, antifungal drugs, chlorhexidine, and oral mouthwashes), and outcome (antibiofilm activity). <i>In vitro</i> experimental studies evaluating the activity of EOs on biofilm formed on acrylic resin were included. PRISMA guidelines were followed, and the search was performed in the PubMed, Science Direct, Embase, and Lilacs databases and in the gray literature using Google Scholar and ProQuest in December 2023. A manual search of the reference lists of the included primary studies was performed. Of the 1467 articles identified, 37 were selected for full-text reading and 12 were included. Twelve EOs were evaluated, of which 11 showed activity against <i>Candida</i> spp., 3 against <i>Staphylococcus aureus</i>, and 1 against <i>Pseudomonas aeruginosa</i>. The EOs of <i>Cymbopogon citratus, Cinnamomum zeylanicum,</i> and <i>Cymbopogon nardus</i> showed higher action than chlorhexidine, <i>C. nardus</i> higher than Listerine, <i>C. citratus</i> higher than nystatin, and <i>Melaleuca alternifolia</i> higher than fluconazole and nystatin. However, chlorhexidine was more effective than <i>Lippia sidoides</i> and <i>Salvia officinalis</i>, sodium hypochlorite was more effective than <i>L. sidoides</i>, nystatin was more effective than <i>Zingiber officinale</i>, Amphotericin B more effective than <i>Eucalyptus globulus</i> and <i>M. alternifolia</i>. In conclusion, the EOs of <i>C. zeylanicum, C. citratus, C. nardus,</i> and <i>M. alternifolia</i> showed antimicrobial activity to reduce biofilm on dental acrylic resin.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"114-129"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-29DOI: 10.1080/08927014.2024.2321965
Bruna Tavares Carneiro, Fernanda Novais Arantes Maciel de Castro, Francine Benetti, Gabriel Nima, Thais Yumi Umeda Suzuki, Carolina Bosso André
This scoping review focused on exploring the efficacy of flavonoids against bacteria associated with dental caries and periodontal diseases. Inclusion criteria comprise studies investigating the antibacterial effects of flavonoids against bacteria linked to caries or periodontal diseases, both pure or diluted in vehicle forms. The search, conducted in August 2023, in databases including PubMed/MEDLINE, Scopus, Web of Science, Embase, LILACS, and Gray Literature. Out of the initial 1125 studies, 79 met the inclusion criteria, majority in vitro studies. Prominent flavonoids tested included epigallocatechin-gallate, apigenin, quercetin, and myricetin. Predominant findings consistently pointed to bacteriostatic, bactericidal, and antibiofilm activities. The study primarily investigated bacteria associated with dental caries, followed by periodontopathogens. A higher number of publications presented positive antibacterial results against Streptococcus mutans in comparison to Porphyromonas gingivalis. These encouraging findings underline the potential applicability of commercially available flavonoids in materials or therapies, underscoring the need for further exploration in this field.
{"title":"Flavonoids effects against bacteria associated to periodontal disease and dental caries: a scoping review.","authors":"Bruna Tavares Carneiro, Fernanda Novais Arantes Maciel de Castro, Francine Benetti, Gabriel Nima, Thais Yumi Umeda Suzuki, Carolina Bosso André","doi":"10.1080/08927014.2024.2321965","DOIUrl":"10.1080/08927014.2024.2321965","url":null,"abstract":"<p><p>This scoping review focused on exploring the efficacy of flavonoids against bacteria associated with dental caries and periodontal diseases. Inclusion criteria comprise studies investigating the antibacterial effects of flavonoids against bacteria linked to caries or periodontal diseases, both pure or diluted in vehicle forms. The search, conducted in August 2023, in databases including PubMed/MEDLINE, Scopus, Web of Science, Embase, LILACS, and Gray Literature. Out of the initial 1125 studies, 79 met the inclusion criteria, majority <i>in vitro</i> studies. Prominent flavonoids tested included epigallocatechin-gallate, apigenin, quercetin, and myricetin. Predominant findings consistently pointed to bacteriostatic, bactericidal, and antibiofilm activities. The study primarily investigated bacteria associated with dental caries, followed by periodontopathogens. A higher number of publications presented positive antibacterial results against <i>Streptococcus mutans</i> in comparison to <i>Porphyromonas gingivalis</i>. These encouraging findings underline the potential applicability of commercially available flavonoids in materials or therapies, underscoring the need for further exploration in this field.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"99-113"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-03-18DOI: 10.1080/08927014.2024.2328611
Ariane V Zmozinski, Rafael S Peres, Alexandre José Macedo, Emilene Mendes Becker, Amanda Pasinato Napp, Rafael Schneider, Jade Reisdörfer Silveira, Carlos Arthur Ferreira, Marilene H Vainstein, Augusto Schrank
This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.
{"title":"Silicone-geranium essential oil blend for long-term antifouling coatings.","authors":"Ariane V Zmozinski, Rafael S Peres, Alexandre José Macedo, Emilene Mendes Becker, Amanda Pasinato Napp, Rafael Schneider, Jade Reisdörfer Silveira, Carlos Arthur Ferreira, Marilene H Vainstein, Augusto Schrank","doi":"10.1080/08927014.2024.2328611","DOIUrl":"10.1080/08927014.2024.2328611","url":null,"abstract":"<p><p>This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by <sup>13</sup>Carbon nuclear magnetic resonance (<sup>13</sup>C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with <i>Psychrobacter adeliensis</i> and <i>Shewanella algidipiscicola</i> being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of <i>Psychrobacter adeliensis</i> biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"209-222"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-12DOI: 10.1080/08927014.2023.2300150
Leslie K Daille, John R Spear, Iwona Beech, Ignacio T Vargas, Rodrigo De la Iglesia
Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.
在全球范围内,对沿海环境中硅藻群落特征的季节性变化进行描述的研究很少。尽管硅藻在微污损中很普遍,但它们在微生物影响的金属材料腐蚀中的作用仍鲜为人知。本研究报告了季节变化对海洋硅藻沉降和暴露在智利沿海海水中的 316 L 不锈钢表面腐蚀的影响。电子显微镜成像显示硅藻的组合多种多样,夏季和冬季硅藻属的差异明显,冬季硅藻沉降明显延迟。电化学测量结果表明,在生物膜形成过程中,硅藻在增加腐蚀电流方面发挥了积极作用。虽然硅藻的最终组成与季节无关,但硅藻组合的分析结果随时间的变化而不同,显示在硅酸盐和硝酸盐含量较高时,硅藻的定殖速度更快。这项研究为今后研究特定季节的主要硅藻属奠定了基础,以揭示可能导致腐蚀的微生物相互作用,并评估它们作为替代监控策略的生物指标的潜力。
{"title":"Seasonal variation in the biological succession of marine diatoms over 316L stainless steel in a coastal environment of Chile.","authors":"Leslie K Daille, John R Spear, Iwona Beech, Ignacio T Vargas, Rodrigo De la Iglesia","doi":"10.1080/08927014.2023.2300150","DOIUrl":"10.1080/08927014.2023.2300150","url":null,"abstract":"<p><p>Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-13"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1080/08927014.2024.2305381
Nousi Parvin, Sikha Mandal, Jnanendra Rath
The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.
{"title":"Microbiome of seventh-century old Parsurameswara stone monument of India and role of desiccation-tolerant cyanobacterium <i>Lyngbya corticicola</i> on its biodeterioration.","authors":"Nousi Parvin, Sikha Mandal, Jnanendra Rath","doi":"10.1080/08927014.2024.2305381","DOIUrl":"10.1080/08927014.2024.2305381","url":null,"abstract":"<p><p>The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. <i>Lyngbya corticicola</i> was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation <i>in vitro</i>. With six months of desiccation, chlorophyll-<i>a</i> decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and <i>L. corticicola</i> show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"40-53"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-21DOI: 10.1080/08927014.2024.2319178
Paul Whitworth, Nick Aldred, John A Finlay, Kevin J Reynolds, Joseph Plummer, Anthony S Clare
The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, Navicula incerta. UV-C-induced mutations were identified via Illumina HiSeq. A de novo genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm-2. Fluences >2.54 J cm-2 were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.
{"title":"UV-C LED-induced cyclobutane pyrimidine dimer formation, lesion repair and mutagenesis in the biofilm-forming diatom, <i>Navicula incerta</i>.","authors":"Paul Whitworth, Nick Aldred, John A Finlay, Kevin J Reynolds, Joseph Plummer, Anthony S Clare","doi":"10.1080/08927014.2024.2319178","DOIUrl":"10.1080/08927014.2024.2319178","url":null,"abstract":"<p><p>The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, <i>Navicula incerta</i>. UV-C-induced mutations were identified <i>via</i> Illumina HiSeq. A <i>de novo</i> genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm<sup>-2</sup>. Fluences >2.54 J cm<sup>-2</sup> were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"76-87"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-19DOI: 10.1080/08927014.2024.2316611
Huan Jiang, Zhennan Wang, Ai-Qun Jia
Aeromonas hydrophila, a Gram-negative zoonotic bacterium, causes high mortality in fish farming and immunocompromised patients. This study aimed to extract methyl gallate (MG) from the flowers of Camellia nitidissima Chi and evaluate its potential as a quorum sensing inhibitor (QSI) against Aeromonas hydrophila SHAe 115. MG reduced QS-associated virulence factors, including hemolysis, protease, and lipase, while impairing swimming motility and biofilm formation. Additionally, MG down-regulated positive regulatory genes (ahyR, fleQ) and up-regulated negative regulators (litR, fleN). This highlights MG's promise as a potent QSI for A. hydrophila SHAe 115, advancing strategies against infections in aquaculture and human health.
{"title":"Methyl gallate from <i>Camellia nitidissima</i> Chi flowers reduces quorum sensing related virulence and biofilm formation against <i>Aeromonas hydrophila</i>.","authors":"Huan Jiang, Zhennan Wang, Ai-Qun Jia","doi":"10.1080/08927014.2024.2316611","DOIUrl":"10.1080/08927014.2024.2316611","url":null,"abstract":"<p><p><i>Aeromonas hydrophila</i>, a Gram-negative zoonotic bacterium, causes high mortality in fish farming and immunocompromised patients. This study aimed to extract methyl gallate (MG) from the flowers of <i>Camellia nitidissima</i> Chi and evaluate its potential as a quorum sensing inhibitor (QSI) against <i>Aeromonas hydrophila</i> SHAe 115. MG reduced QS-associated virulence factors, including hemolysis, protease, and lipase, while impairing swimming motility and biofilm formation. Additionally, MG down-regulated positive regulatory genes (<i>ahyR</i>, <i>fleQ</i>) and up-regulated negative regulators (<i>litR</i>, <i>fleN</i>). This highlights MG's promise as a potent QSI for <i>A. hydrophila</i> SHAe 115, advancing strategies against infections in aquaculture and human health.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"64-75"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139904886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-14DOI: 10.1080/08927014.2024.2310482
Martina Oder, Kaća Piletić, Rok Fink, Zvonimir Marijanović, Romana Krištof, Lucija Bićanić, Dijana Tomić Linšak, Ivana Gobin
Legionella pneumophila is a Gram-negative bacterial pathogen that colonizes natural and artificial water systems and has the ability to form a biofilm. The biofilm protects L. pneumophila from various environmental factors and makes it more resistant to chlorine-based disinfectants. This study investigated the anti-bacterial properties of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel) oil and lemon eucalyptus tree (Eucalyptus citriodora Hook) essential oils (EOs) and their synergistic, additive inhibitory and anti-adhesive effects against L. pneumophila biofilm formation on polystyrene. The minimum effective concentration (MEC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. In the checkerboard assay, different combinations of these two EO show synergistic and additive anti-microbial activity. The minimum anti-adhesive concentration (MAC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. A combination of 3.2 mg ml-1 tea tree EO and 0.8 mg ml-1 lemon eucalyptus tree EO showed the strongest anti-adhesive effect against L. pneumophila on polystyrene. The tested oils and their combination showed intriguing potential to inhibit L. pneumophila biofilm formation.
{"title":"A synergistic anti-bacterial and anti-adhesion activity of tea tree (<i>Melaleuca alternifolia</i>) and lemon eucalyptus tree (<i>Eucalyptus citriodora</i> Hook) essential oils on <i>Legionella pneumophila</i>.","authors":"Martina Oder, Kaća Piletić, Rok Fink, Zvonimir Marijanović, Romana Krištof, Lucija Bićanić, Dijana Tomić Linšak, Ivana Gobin","doi":"10.1080/08927014.2024.2310482","DOIUrl":"10.1080/08927014.2024.2310482","url":null,"abstract":"<p><p><i>Legionella pneumophila</i> is a Gram-negative bacterial pathogen that colonizes natural and artificial water systems and has the ability to form a biofilm. The biofilm protects <i>L. pneumophila</i> from various environmental factors and makes it more resistant to chlorine-based disinfectants. This study investigated the anti-bacterial properties of tea tree (<i>Melaleuca alternifolia</i> (Maiden and Betche) Cheel) oil and lemon eucalyptus tree (<i>Eucalyptus citriodora</i> Hook) essential oils (EOs) and their synergistic, additive inhibitory and anti-adhesive effects against <i>L. pneumophila</i> biofilm formation on polystyrene. The minimum effective concentration (MEC) for tea tree is 12.8 mg ml<sup>-1</sup> and for lemon eucalyptus tree EO 6.4 mg ml<sup>-1</sup>. In the checkerboard assay, different combinations of these two EO show synergistic and additive anti-microbial activity. The minimum anti-adhesive concentration (MAC) for tea tree is 12.8 mg ml<sup>-1</sup> and for lemon eucalyptus tree EO 6.4 mg ml<sup>-1</sup>. A combination of 3.2 mg ml<sup>-1</sup> tea tree EO and 0.8 mg ml<sup>-1</sup> lemon eucalyptus tree EO showed the strongest anti-adhesive effect against <i>L. pneumophila</i> on polystyrene. The tested oils and their combination showed intriguing potential to inhibit <i>L. pneumophila</i> biofilm formation.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"54-63"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}