Pub Date : 2024-10-11DOI: 10.1186/s12896-024-00901-1
Sara Bayoumi Ali, Ayman Saber Mohamed, Marwa Ahmed Abdelfattah, Alia Baher Samir, Farha Youssef Abdullah, Halla Ahmed Elsayed, Manar Abdelhalem, Nour Elsadek, Sara Osama, Seif Eldin Mohamed, Sohair R Fahmy
Sepsis is an inevitable stage of bacterial invasion characterized by an uncontrolled inflammatory response resulting in a syndrome of multiorgan dysfunction. Most conventional antibiotics used to treat sepsis are efficacious, but they have undesirable side effects. The green synthesised Ag NPs were synthesized by 5 g of the earthworm extract dissolved in a volume of 500mL of distilled water and then added to 2,500 mL aqueous solution of 1mM silver nitrate at 40 °C. After 4 h, the mixture was then allowed to dry overnight at 60 °C. Later, Ag NPs were washed and collected. They were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, and transmission electron microscopy. Sepsis model as induced by feces-intraperitoneal injection method. Eighteen male mice were assigned into three main groups: the control group, the sepsis-model group, and the Ag NPs-treated group. The control group received a single oral dose of distilled water and, after two days, intraperitoneally injected with 30% glycerol in phosphate buffer saline. The Sepsis-model group received a single oral dose of distilled water. Ag NPs - The treated group received a single oral dose of 5.5 mg/kg of Ag NPs. After two days, the sepsis-model group and Ag NPs-treated group were intraperitoneally injected with 200 µL of faecal slurry. Ag NPs treatment in septic mice significantly decreased liver enzyme activities, total protein, and serum albumin. Moreover, Ag NPs significantly enhanced kidney function, as indicated by a significant decrease in the levels of creatinine, urea, and uric acid. In addition, Ag NPs showed a powerful antioxidant effect via the considerable reduction of malondialdehyde and nitric oxide levels and the increase in antioxidant content. The histopathological investigation showed clear improvement in hepatic and kidney architecture. Our findings demonstrate the protective efficacy of biogenic Ag NPs against sepsis-induced liver and kidney damage.
败血症是细菌入侵的必然阶段,其特点是炎症反应失控,导致多器官功能障碍综合征。用于治疗败血症的大多数传统抗生素虽然有效,但却有不良副作用。将 5 克蚯蚓提取物溶解在 500 毫升蒸馏水中,然后加入 2,500 毫升 1 毫摩尔硝酸银水溶液中,在 40 °C 下合成绿色合成的 Ag NPs。4 小时后,混合物在 60 °C 下干燥过夜。之后,清洗并收集 Ag NPs。通过 X 射线衍射、紫外可见光谱和透射电子显微镜对其进行表征。粪便腹腔注射法诱导的败血症模型。18 只雄性小鼠被分为三大组:对照组、败血症模型组和 Ag NPs 处理组。对照组口服一次蒸馏水,两天后腹腔注射 30% 甘油磷酸盐缓冲盐水。败血症模型组口服一次蒸馏水。Ag NPs - 治疗组单次口服 5.5 mg/kg Ag NPs。两天后,败血症模型组和 Ag NPs 处理组腹腔注射 200 µL 粪便。用 Ag NPs 治疗败血症小鼠可显著降低肝酶活性、总蛋白和血清白蛋白。此外,Ag NPs 还能明显增强肾功能,这体现在肌酐、尿素和尿酸水平的明显下降上。此外,Ag NPs 还通过大幅降低丙二醛和一氧化氮水平以及增加抗氧化剂含量显示出强大的抗氧化作用。组织病理学调查显示,肝脏和肾脏结构明显改善。我们的研究结果表明,生物源Ag NPs对败血症引起的肝脏和肾脏损伤具有保护作用。
{"title":"Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model.","authors":"Sara Bayoumi Ali, Ayman Saber Mohamed, Marwa Ahmed Abdelfattah, Alia Baher Samir, Farha Youssef Abdullah, Halla Ahmed Elsayed, Manar Abdelhalem, Nour Elsadek, Sara Osama, Seif Eldin Mohamed, Sohair R Fahmy","doi":"10.1186/s12896-024-00901-1","DOIUrl":"10.1186/s12896-024-00901-1","url":null,"abstract":"<p><p>Sepsis is an inevitable stage of bacterial invasion characterized by an uncontrolled inflammatory response resulting in a syndrome of multiorgan dysfunction. Most conventional antibiotics used to treat sepsis are efficacious, but they have undesirable side effects. The green synthesised Ag NPs were synthesized by 5 g of the earthworm extract dissolved in a volume of 500mL of distilled water and then added to 2,500 mL aqueous solution of 1mM silver nitrate at 40 °C. After 4 h, the mixture was then allowed to dry overnight at 60 °C. Later, Ag NPs were washed and collected. They were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, and transmission electron microscopy. Sepsis model as induced by feces-intraperitoneal injection method. Eighteen male mice were assigned into three main groups: the control group, the sepsis-model group, and the Ag NPs-treated group. The control group received a single oral dose of distilled water and, after two days, intraperitoneally injected with 30% glycerol in phosphate buffer saline. The Sepsis-model group received a single oral dose of distilled water. Ag NPs - The treated group received a single oral dose of 5.5 mg/kg of Ag NPs. After two days, the sepsis-model group and Ag NPs-treated group were intraperitoneally injected with 200 µL of faecal slurry. Ag NPs treatment in septic mice significantly decreased liver enzyme activities, total protein, and serum albumin. Moreover, Ag NPs significantly enhanced kidney function, as indicated by a significant decrease in the levels of creatinine, urea, and uric acid. In addition, Ag NPs showed a powerful antioxidant effect via the considerable reduction of malondialdehyde and nitric oxide levels and the increase in antioxidant content. The histopathological investigation showed clear improvement in hepatic and kidney architecture. Our findings demonstrate the protective efficacy of biogenic Ag NPs against sepsis-induced liver and kidney damage.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"79"},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1186/s12896-024-00906-w
Jehad Zuhair Tayyeb, Ajay Guru, Karthikeyan Kandaswamy, Divya Jain, Chandrakumar Manivannan, Khairiyah Binti Mat, Mohd Asif Shah, Jesu Arockiaraj
Wound infections resulting from pathogen infiltration pose a significant challenge in healthcare settings and everyday life. When the skin barrier is compromised due to injuries, surgeries, or chronic conditions, pathogens such as bacteria, fungi, and viruses can enter the body, leading to infections. These infections can range from mild to severe, causing discomfort, delayed healing, and, in some cases, life-threatening complications. Zinc oxide (ZnO) nanoparticles (NPs) have been widely recognized for their antimicrobial and wound healing properties, while cinnamic acid is known for its antioxidant and anti-inflammatory activities. Based on these properties, the combination of ZnO NPs with cinnamic acid (CA) was hypothesized to have enhanced efficacy in addressing wound infections and promoting healing. This study aimed to synthesize and evaluate the potential of ZnO-CN NPs as a multifunctional agent for wound treatment. ZnO-CN NPs were synthesized and characterized using key techniques to confirm their structure and composition. The antioxidant and anti-inflammatory potential of ZnO-CN NPs was evaluated through standard in vitro assays, demonstrating strong free radical scavenging and inhibition of protein denaturation. The antimicrobial activity of the nanoparticles was tested against common wound pathogens, revealing effective inhibition at a minimal concentration. A zebrafish wound healing model was employed to assess both the safety and therapeutic efficacy of the nanoparticles, showing no toxicity at tested concentrations and facilitating faster wound closure. Additionally, pro-inflammatory cytokine gene expression was analyzed to understand the role of ZnO-CN NPs in wound healing mechanisms. In conclusion, ZnO-CN NPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for wound treatment. Given their multifunctional properties and non-toxicity at tested concentrations, ZnO-CN NPs hold significant potential as a therapeutic agent for clinical wound management, warranting further investigation in human models.
{"title":"Synergistic effect of zinc oxide-cinnamic acid nanoparticles for wound healing management: in vitro and zebrafish model studies.","authors":"Jehad Zuhair Tayyeb, Ajay Guru, Karthikeyan Kandaswamy, Divya Jain, Chandrakumar Manivannan, Khairiyah Binti Mat, Mohd Asif Shah, Jesu Arockiaraj","doi":"10.1186/s12896-024-00906-w","DOIUrl":"10.1186/s12896-024-00906-w","url":null,"abstract":"<p><p>Wound infections resulting from pathogen infiltration pose a significant challenge in healthcare settings and everyday life. When the skin barrier is compromised due to injuries, surgeries, or chronic conditions, pathogens such as bacteria, fungi, and viruses can enter the body, leading to infections. These infections can range from mild to severe, causing discomfort, delayed healing, and, in some cases, life-threatening complications. Zinc oxide (ZnO) nanoparticles (NPs) have been widely recognized for their antimicrobial and wound healing properties, while cinnamic acid is known for its antioxidant and anti-inflammatory activities. Based on these properties, the combination of ZnO NPs with cinnamic acid (CA) was hypothesized to have enhanced efficacy in addressing wound infections and promoting healing. This study aimed to synthesize and evaluate the potential of ZnO-CN NPs as a multifunctional agent for wound treatment. ZnO-CN NPs were synthesized and characterized using key techniques to confirm their structure and composition. The antioxidant and anti-inflammatory potential of ZnO-CN NPs was evaluated through standard in vitro assays, demonstrating strong free radical scavenging and inhibition of protein denaturation. The antimicrobial activity of the nanoparticles was tested against common wound pathogens, revealing effective inhibition at a minimal concentration. A zebrafish wound healing model was employed to assess both the safety and therapeutic efficacy of the nanoparticles, showing no toxicity at tested concentrations and facilitating faster wound closure. Additionally, pro-inflammatory cytokine gene expression was analyzed to understand the role of ZnO-CN NPs in wound healing mechanisms. In conclusion, ZnO-CN NPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for wound treatment. Given their multifunctional properties and non-toxicity at tested concentrations, ZnO-CN NPs hold significant potential as a therapeutic agent for clinical wound management, warranting further investigation in human models.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"78"},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1186/s12896-024-00903-z
Yankui Liu, Yaru Li, Rong Wang, Shuning Chen, Ning Sun, Xiaowei Qi
Background: Homocysteine (HCY) is a sulfur-containing amino acid that is an independent or important risk factor for the occurrence of many chronic diseases and is one of the most important indicators for determining health risks. However, existing HCY detection methods do not meet the requirements of clinical diagnosis. Therefore, there is an urgent need to establish new detection methods to meet the needs of clinical detection.
Results: In this study, we used the principle of competitive method to establish a new method for the determination of HCY in human serum using a chemiluminescent enzyme immunoassay in conjunction with a chemiluminescent assay instrument that uses magnetic microparticles as the solid phase of the immunoreaction. The established method achieved satisfactory results in terms of minimum detection limit, specificity, accuracy, and clinical application. The limit of detection was 0.03 ng/mL. The intra-assay coefficient of variation (CV) was 1.94-5.05%, the inter-assay CV was 2.29-6.88%, and the recovery rate was 88.60-93.27%. Cross-reactivity with L-cysteine ranged from 0.0100 to 0.0200 μmol/L, and cross-reactivity with glutathione ranged from 0.0100 to 0.200 μmol/L, all of which were less than the limit of detection (LoD) of this method. The linear factor R of this method was greater than 0.99.
Conclusions: In summary, the developed method showed a good correlation with the product from Abbott. A total of 996 clinical patients with cardiovascular diseases were evaluated using the method developed in this study.
{"title":"Development of a chemiluminescent immunoassay based on magnetic solid phase for quantification of homocysteine in human serum.","authors":"Yankui Liu, Yaru Li, Rong Wang, Shuning Chen, Ning Sun, Xiaowei Qi","doi":"10.1186/s12896-024-00903-z","DOIUrl":"10.1186/s12896-024-00903-z","url":null,"abstract":"<p><strong>Background: </strong>Homocysteine (HCY) is a sulfur-containing amino acid that is an independent or important risk factor for the occurrence of many chronic diseases and is one of the most important indicators for determining health risks. However, existing HCY detection methods do not meet the requirements of clinical diagnosis. Therefore, there is an urgent need to establish new detection methods to meet the needs of clinical detection.</p><p><strong>Results: </strong>In this study, we used the principle of competitive method to establish a new method for the determination of HCY in human serum using a chemiluminescent enzyme immunoassay in conjunction with a chemiluminescent assay instrument that uses magnetic microparticles as the solid phase of the immunoreaction. The established method achieved satisfactory results in terms of minimum detection limit, specificity, accuracy, and clinical application. The limit of detection was 0.03 ng/mL. The intra-assay coefficient of variation (CV) was 1.94-5.05%, the inter-assay CV was 2.29-6.88%, and the recovery rate was 88.60-93.27%. Cross-reactivity with L-cysteine ranged from 0.0100 to 0.0200 μmol/L, and cross-reactivity with glutathione ranged from 0.0100 to 0.200 μmol/L, all of which were less than the limit of detection (LoD) of this method. The linear factor R of this method was greater than 0.99.</p><p><strong>Conclusions: </strong>In summary, the developed method showed a good correlation with the product from Abbott. A total of 996 clinical patients with cardiovascular diseases were evaluated using the method developed in this study.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"77"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The encapsulation of metagenome-derived multi-enzymes presents a novel approach to improving poultry feed by enhancing nutrient availability and reducing anti-nutritional factors. By integrating and encapsulated enzymes such as carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase into feed formulations, this method not only improves feed digestibility but also potentially contributes to animal health and productivity through antimicrobial properties.
Results: This study investigates the encapsulation of metagenome-derived enzymes, including carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase, using Arabic and Guar gums as encapsulating agents. The encapsulated multi-enzymes exhibited significant antimicrobial activity, achieving a 92.54% inhibition rate against Escherichia coli at a concentration of 6 U/mL. Fluorescence tracking with FITC-labeled enzymes confirmed efficient encapsulation and distribution, while physical characterization, including moisture content and solubility assessments, along with Atomic Force Microscopy (AFM) imaging, validated successful encapsulation. The encapsulated enzymes also effectively hydrolyzed poultry feed, leading to an increase in phenolic content and antioxidant activity, as confirmed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays.
Conclusions: The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars and enhancing physical properties such as solubility and water-holding capacity. The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars, antioxidant activity and enhancing physical properties such as solubility and water-holding capacity. Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses confirmed the enzymatic breakdown of the feed structure. These results suggest that supplementing poultry feed with encapsulated multi-enzymes can enhance its physical, nutritional, and functional properties, leading to improved digestibility and overall feed quality.
{"title":"Enhancing nutritional and potential antimicrobial properties of poultry feed through encapsulation of metagenome-derived multi-enzymes.","authors":"Shohreh Ariaeenejad, Mehrshad Zeinalabedini, Akram Sadeghi, Sajjad Gharaghani, Mohsen Mardi","doi":"10.1186/s12896-024-00904-y","DOIUrl":"10.1186/s12896-024-00904-y","url":null,"abstract":"<p><strong>Background: </strong>The encapsulation of metagenome-derived multi-enzymes presents a novel approach to improving poultry feed by enhancing nutrient availability and reducing anti-nutritional factors. By integrating and encapsulated enzymes such as carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase into feed formulations, this method not only improves feed digestibility but also potentially contributes to animal health and productivity through antimicrobial properties.</p><p><strong>Results: </strong>This study investigates the encapsulation of metagenome-derived enzymes, including carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase, using Arabic and Guar gums as encapsulating agents. The encapsulated multi-enzymes exhibited significant antimicrobial activity, achieving a 92.54% inhibition rate against Escherichia coli at a concentration of 6 U/mL. Fluorescence tracking with FITC-labeled enzymes confirmed efficient encapsulation and distribution, while physical characterization, including moisture content and solubility assessments, along with Atomic Force Microscopy (AFM) imaging, validated successful encapsulation. The encapsulated enzymes also effectively hydrolyzed poultry feed, leading to an increase in phenolic content and antioxidant activity, as confirmed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays.</p><p><strong>Conclusions: </strong>The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars and enhancing physical properties such as solubility and water-holding capacity. The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars, antioxidant activity and enhancing physical properties such as solubility and water-holding capacity. Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses confirmed the enzymatic breakdown of the feed structure. These results suggest that supplementing poultry feed with encapsulated multi-enzymes can enhance its physical, nutritional, and functional properties, leading to improved digestibility and overall feed quality.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"76"},"PeriodicalIF":3.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Silver nanoparticles are extensively researched for their antimicrobial properties. Cold atmospheric plasma, containing reactive oxygen and nitrogen species, is increasingly used for disinfecting microbes, wound healing, and cancer treatment. Therefore, this study examined the effect of water activated by dielectric barrier discharge (DBD) plasma and gliding arc discharge plasma on the antimicrobial activity of silver nanoparticles from Alborzia kermanshahica.
Methods: Silver nanoparticles were synthesized using the boiling method, as well as biomass from Alborzia kermanshahica extract grown in water activated by DBD and GA plasma. The physicochemical properties of the synthesized nanoparticles were evaluated using UV-vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, the disk diffusion method was used to assess the antimicrobial efficacy of the manufactured nanoparticles against both Gram-positive and Gram-negative bacteria.
Results: The spectroscopy results verified the presence of silver nanoparticles, indicating their biosynthesis. The highest amount of absorption (1.049) belonged to the nanoparticles synthesized by boiling under GA plasma conditions. Comparing the FTIR spectra of the plasma-treated samples with DBD and GA revealed that the DBD-treated samples had more intense peaks, indicating that the DBD method proved to be more effective in enhancing the functional groups on the silver nanoparticles. The DLS results revealed that the boiling method synthesized silver nanoparticles under DBD plasma treatment had a smaller particle size (149.89 nm) with a PDI of 0.251 compared to the GA method, and the DBD method produced nanoparticles with a higher zeta potential (27.7 mV) than the GA method, indicating greater stability of the biosynthesized nanoparticles. Moreover, the highest antimicrobial properties against E. coli (14.333 ± 0.47 mm) were found in the DBD-treated nanoparticles. TEM tests confirmed that spherical nanoparticles attacked the E. coli bacterial membrane, causing cell membrane destruction and cell death. The GC-MS results showed that compounds like 2-methylfuran, 3-methylbutanal, 2-methylbutanal, 3-hydroxy-2-butanone, benzaldehyde, 2-phenylethanol, and 3-octen-2-ol were much higher in the samples that were treated with DBD compared to the samples that were treated with GA plasma.
Conclusion: The research indicated that DBD plasma was more efficient than GA plasma in boosting the antimicrobial characteristics of nanoparticles. These results might be a cornerstone for future advancements in utilizing cold plasma to create nanoparticles with enhanced antimicrobial properties.
背景:银纳米粒子因其抗菌特性而受到广泛研究。冷大气等离子体含有活性氧和氮物种,越来越多地被用于微生物消毒、伤口愈合和癌症治疗。因此,本研究考察了介质阻挡放电(DBD)等离子体和滑弧放电等离子体激活的水对来自 Alborzia kermanshahica 的银纳米粒子抗菌活性的影响:方法:采用沸腾法合成了银纳米粒子,并用DBD和GA等离子体活化了在水中生长的Alborzia kermanshahica提取物的生物质。使用紫外-可见光谱、傅立叶变换红外光谱、动态光散射、ZETA 电位分析、透射电子显微镜和气相色谱-质谱分析评估了合成纳米粒子的理化性质。此外,还采用盘扩散法评估了所制纳米粒子对革兰氏阳性菌和革兰氏阴性菌的抗菌效果:光谱结果验证了银纳米粒子的存在,表明其是生物合成的。在 GA 等离子条件下沸腾合成的纳米粒子吸光度最高(1.049)。比较经 DBD 和 GA 等离子体处理的样品的傅立叶变换红外光谱发现,DBD 处理的样品具有更强的峰值,这表明 DBD 方法更有效地增强了银纳米粒子上的官能团。DLS 结果显示,在 DBD 等离子体处理下,沸腾法合成的银纳米粒子的粒径(149.89 nm)比 GA 法小,PDI 为 0.251;DBD 法生成的纳米粒子的 zeta 电位(27.7 mV)比 GA 法高,表明生物合成的纳米粒子更稳定。此外,经 DBD 处理的纳米颗粒对大肠杆菌的抗菌性能最高(14.333 ± 0.47 mm)。TEM 测试证实,球形纳米粒子能攻击大肠杆菌的细菌膜,导致细胞膜破坏和细胞死亡。气相色谱-质谱(GC-MS)结果显示,与使用 GA 血浆处理的样品相比,使用 DBD 处理的样品中 2-甲基呋喃、3-甲基丁醛、2-甲基丁醛、3-羟基-2-丁酮、苯甲醛、2-苯乙醇和 3-辛烯-2-醇等化合物的含量要高得多:研究表明,DBD 等离子比 GA 等离子更有效地提高了纳米粒子的抗菌特性。这些结果可能是未来利用冷等离子体制造具有更强抗菌特性的纳米粒子的基础。
{"title":"The effect of plasma activated water on antimicrobial activity of silver nanoparticles biosynthesized by cyanobacterium Alborzia kermanshahica.","authors":"Bahareh Nowruzi, Hassan Beiranvand, Fatemeh Malihi Aghdam, Rojan Barandak","doi":"10.1186/s12896-024-00905-x","DOIUrl":"https://doi.org/10.1186/s12896-024-00905-x","url":null,"abstract":"<p><strong>Background: </strong>Silver nanoparticles are extensively researched for their antimicrobial properties. Cold atmospheric plasma, containing reactive oxygen and nitrogen species, is increasingly used for disinfecting microbes, wound healing, and cancer treatment. Therefore, this study examined the effect of water activated by dielectric barrier discharge (DBD) plasma and gliding arc discharge plasma on the antimicrobial activity of silver nanoparticles from Alborzia kermanshahica.</p><p><strong>Methods: </strong>Silver nanoparticles were synthesized using the boiling method, as well as biomass from Alborzia kermanshahica extract grown in water activated by DBD and GA plasma. The physicochemical properties of the synthesized nanoparticles were evaluated using UV-vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, the disk diffusion method was used to assess the antimicrobial efficacy of the manufactured nanoparticles against both Gram-positive and Gram-negative bacteria.</p><p><strong>Results: </strong>The spectroscopy results verified the presence of silver nanoparticles, indicating their biosynthesis. The highest amount of absorption (1.049) belonged to the nanoparticles synthesized by boiling under GA plasma conditions. Comparing the FTIR spectra of the plasma-treated samples with DBD and GA revealed that the DBD-treated samples had more intense peaks, indicating that the DBD method proved to be more effective in enhancing the functional groups on the silver nanoparticles. The DLS results revealed that the boiling method synthesized silver nanoparticles under DBD plasma treatment had a smaller particle size (149.89 nm) with a PDI of 0.251 compared to the GA method, and the DBD method produced nanoparticles with a higher zeta potential (27.7 mV) than the GA method, indicating greater stability of the biosynthesized nanoparticles. Moreover, the highest antimicrobial properties against E. coli (14.333 ± 0.47 mm) were found in the DBD-treated nanoparticles. TEM tests confirmed that spherical nanoparticles attacked the E. coli bacterial membrane, causing cell membrane destruction and cell death. The GC-MS results showed that compounds like 2-methylfuran, 3-methylbutanal, 2-methylbutanal, 3-hydroxy-2-butanone, benzaldehyde, 2-phenylethanol, and 3-octen-2-ol were much higher in the samples that were treated with DBD compared to the samples that were treated with GA plasma.</p><p><strong>Conclusion: </strong>The research indicated that DBD plasma was more efficient than GA plasma in boosting the antimicrobial characteristics of nanoparticles. These results might be a cornerstone for future advancements in utilizing cold plasma to create nanoparticles with enhanced antimicrobial properties.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"75"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1186/s12896-024-00899-6
Aml A Hegazy, Samah H Abu-Hussien, Neima K Elsenosy, Salwa M El-Sayed, Mohamed Y Abo El-Naga
This study aimed to optimize the production of carotenoid pigments from Micrococcus luteus (ATCC 9341) through the statistical screening of media components and the characterization of antimicrobial, antioxidant, cytogenetic and cytotoxic activities. A BOX-Behnken design was used to assess the effects of whey concentration, inoculum size, pH, temperature, and agitation speed on carotenoid yield. The optimum combination increased production to 2.19 g/L, with a productivity of 0.045 g L-1 h-1 and a productivity yield of 0.644 g/g, as confirmed by an observed carotene production of 2.19 g/L. The final response surface model fitting the data had an R2 of 0.9461. High-performance liquid chromatography (HPLC) analysis identified 12 carotenoid pigment compounds produced by M. luteus. The extracts displayed moderate antimicrobial efficacy against Gram-positive bacteria such as Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 6538), and E. faecalis (ATCC 19433), with inhibition zone diameters (IZD) of 29.0, 14.0, and 37.0 mm, respectively, at 1000 μg/mL. However, its effectiveness against Gram-negative bacteria is limited. In comparison, tetracycline exhibited greater antimicrobial potency. The IC50 value of carotenoids was used to indicate the antioxidant activity. IC50 value from the DPPH assay was 152.80 mg/100mL. An IC50 cytotoxicity value greater than 300 μg/mL was found against normal mouse liver cells, with over 68% cell viability even at 300 μg/mL, indicating low toxicity. Histological structure studies revealed normal myocardial muscle tissue, lung tissue, and kidney tissue sections, whereas liver tissue sections revealed ballooning degeneration of hepatocytes and disorganization of hepatic cords. Cytogenetic parameters revealed that the carotene treatment group had a mitotic index (70%) lower than that of the control but higher than that of the positive control, mitomycin, and did not substantially increase numerical (1.2%) or structural aberrations compared with those of the control, suggesting a lack of genotoxic effects under the experimental conditions. In conclusion, optimized culture conditions enhanced carotenoid yields from M. luteus, and the extracts displayed promising bioactivity as moderate antibiotics against certain gram-positive bacteria and as antioxidants. The high IC50 values demonstrate biosafety. Overall, this bioprocess for enhanced carotenoid production coupled with bioactivity profiling and low cytotoxicity support the application of M. luteus carotenoids.
{"title":"Optimization, characterization and biosafety of carotenoids produced from whey using Micrococcus luteus.","authors":"Aml A Hegazy, Samah H Abu-Hussien, Neima K Elsenosy, Salwa M El-Sayed, Mohamed Y Abo El-Naga","doi":"10.1186/s12896-024-00899-6","DOIUrl":"https://doi.org/10.1186/s12896-024-00899-6","url":null,"abstract":"<p><p>This study aimed to optimize the production of carotenoid pigments from Micrococcus luteus (ATCC 9341) through the statistical screening of media components and the characterization of antimicrobial, antioxidant, cytogenetic and cytotoxic activities. A BOX-Behnken design was used to assess the effects of whey concentration, inoculum size, pH, temperature, and agitation speed on carotenoid yield. The optimum combination increased production to 2.19 g/L, with a productivity of 0.045 g L<sup>-1</sup> h<sup>-1</sup> and a productivity yield of 0.644 g/g, as confirmed by an observed carotene production of 2.19 g/L. The final response surface model fitting the data had an R<sup>2</sup> of 0.9461. High-performance liquid chromatography (HPLC) analysis identified 12 carotenoid pigment compounds produced by M. luteus. The extracts displayed moderate antimicrobial efficacy against Gram-positive bacteria such as Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 6538), and E. faecalis (ATCC 19433), with inhibition zone diameters (IZD) of 29.0, 14.0, and 37.0 mm, respectively, at 1000 μg/mL. However, its effectiveness against Gram-negative bacteria is limited. In comparison, tetracycline exhibited greater antimicrobial potency. The IC<sub>50</sub> value of carotenoids was used to indicate the antioxidant activity. IC<sub>50</sub> value from the DPPH assay was 152.80 mg/100mL. An IC<sub>50</sub> cytotoxicity value greater than 300 μg/mL was found against normal mouse liver cells, with over 68% cell viability even at 300 μg/mL, indicating low toxicity. Histological structure studies revealed normal myocardial muscle tissue, lung tissue, and kidney tissue sections, whereas liver tissue sections revealed ballooning degeneration of hepatocytes and disorganization of hepatic cords. Cytogenetic parameters revealed that the carotene treatment group had a mitotic index (70%) lower than that of the control but higher than that of the positive control, mitomycin, and did not substantially increase numerical (1.2%) or structural aberrations compared with those of the control, suggesting a lack of genotoxic effects under the experimental conditions. In conclusion, optimized culture conditions enhanced carotenoid yields from M. luteus, and the extracts displayed promising bioactivity as moderate antibiotics against certain gram-positive bacteria and as antioxidants. The high IC<sub>50</sub> values demonstrate biosafety. Overall, this bioprocess for enhanced carotenoid production coupled with bioactivity profiling and low cytotoxicity support the application of M. luteus carotenoids.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"74"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1186/s12896-024-00896-9
Marwa M Abdel-Kareem, Abdel-Nasser A Zohri, Abdel-Hamied M Rasmey, Heba Hawary
Background: Biotransformation of steroid compounds into therapeutic products using microorganisms offers an eco-friendly and economically sustainable approach to the pharmaceutical industry rather than a chemical synthesis way. The biotransformation efficiency of progesterone into the anticancer compound testololactone using Penicillium chrysogenum Ras3009 has been investigated. Besides, maximization of testololactone formation was achieved by studying the kinetic modelling and impact of some fermentation conditions on the biotransformation process.
Results: The fungal strain Ras3009 was selected among twelve fungal strains as the most runner for the transformation of 81.18% of progesterone into testololactone. Ras3009 was identified phenotypically and genotypically as Penicillium chrysogenum, its 18 S rRNA nucleotide sequence was deposited in the GenBank database by the accession number OR480104. Studying the impact of fermentation conditions on biotransformation efficiency indicated a positive correlation between substrate concentration and testololactone formation until reaching the maximum velocity vmax. Kinetic studies revealed that vmax was [Formula: see text] gL- 1hr- 1 with high accuracy, giving R2 of 0.977. The progesterone transformation efficiency generally increased with time, reaching a maximum of 100% at 42 h with testololactone yield (Ypt/s) 0.8700 mg/mg. Moreover, the study indicated that the enzymatic conversion by P. chrysogenum Ras3009 showed high affinity to the substrate, intracellularly expressed, and released during cell disruption, leading to higher efficiency when using whole microbial cell extract.
Conclusions: Fungi can be promising biocatalysts for steroid transformation into valuable chemicals and pharmaceutical compounds. The study revealed that the new fungal isolate P. chrysogenum Ras3009 possesses a great catalytic ability to convert progesterone into testololactone. Kinetic modelling analysis and optimization of the fermentation conditions lead to higher transformation efficiency and provide a better understanding of the transformation processes.
{"title":"Enhancing the biotransformation of progesterone to the anticancer compound testololactone by Penicillium chrysogenum Ras3009: kinetic modelling and efficiency maximization.","authors":"Marwa M Abdel-Kareem, Abdel-Nasser A Zohri, Abdel-Hamied M Rasmey, Heba Hawary","doi":"10.1186/s12896-024-00896-9","DOIUrl":"10.1186/s12896-024-00896-9","url":null,"abstract":"<p><strong>Background: </strong>Biotransformation of steroid compounds into therapeutic products using microorganisms offers an eco-friendly and economically sustainable approach to the pharmaceutical industry rather than a chemical synthesis way. The biotransformation efficiency of progesterone into the anticancer compound testololactone using Penicillium chrysogenum Ras3009 has been investigated. Besides, maximization of testololactone formation was achieved by studying the kinetic modelling and impact of some fermentation conditions on the biotransformation process.</p><p><strong>Results: </strong>The fungal strain Ras3009 was selected among twelve fungal strains as the most runner for the transformation of 81.18% of progesterone into testololactone. Ras3009 was identified phenotypically and genotypically as Penicillium chrysogenum, its 18 S rRNA nucleotide sequence was deposited in the GenBank database by the accession number OR480104. Studying the impact of fermentation conditions on biotransformation efficiency indicated a positive correlation between substrate concentration and testololactone formation until reaching the maximum velocity v<sub>max</sub>. Kinetic studies revealed that v<sub>max</sub> was [Formula: see text] gL<sup>- 1</sup>hr<sup>- 1</sup> with high accuracy, giving R<sup>2</sup> of 0.977. The progesterone transformation efficiency generally increased with time, reaching a maximum of 100% at 42 h with testololactone yield (Y<sub>pt/s</sub>) 0.8700 mg/mg. Moreover, the study indicated that the enzymatic conversion by P. chrysogenum Ras3009 showed high affinity to the substrate, intracellularly expressed, and released during cell disruption, leading to higher efficiency when using whole microbial cell extract.</p><p><strong>Conclusions: </strong>Fungi can be promising biocatalysts for steroid transformation into valuable chemicals and pharmaceutical compounds. The study revealed that the new fungal isolate P. chrysogenum Ras3009 possesses a great catalytic ability to convert progesterone into testololactone. Kinetic modelling analysis and optimization of the fermentation conditions lead to higher transformation efficiency and provide a better understanding of the transformation processes.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"73"},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1186/s12896-024-00902-0
Laimis Silimavicius, Lieve Tchebotarev, Mindaugas Zaveckas, Raimundas Razanskas, Laima Cepulyte, Karolina Bielske, Indre Kucinskaite-Kodze, Linas Griguola, Kotryna Linauskiene, Rasa Petraityte-Burneikiene
Background: Timothy grass (Phleum pratense) is a significant source of allergens, and recombinant allergens are increasingly used for diagnostic purposes. However, the performance of different recombinant allergen production systems in diagnostic assays needs further investigation to optimize their use in clinical settings.
Objective: The main objective of this study was to analyze and compare the diagnostic performance of recombinant timothy grass allergens produced in E. coli and N. benthamiana using a custom-made microarray chip.
Methods: Recombinant timothy grass allergens Phl p 1, Phl p 2, Phl p 5, Phl p 6, Phl p 11, and Phl p 12 were produced in E. coli and/or N. benthamiana. A total of 113 patient serum samples were tested to evaluate the diagnostic sensitivity, specificity, inter-assay variability, and correlation of allergen-specific IgE detection compared to commercial multiplex tests (ALEX and ISAC). Additionally, the prevalence of sIgE to these allergens was assessed.
Results: Phl p 1, Phl p 2, Phl p 5, Phl p 6 and Phl p 11 showed high or very high positive correlation in immunoreactivity with other commercial multiplex tests. Notably, Phl p 11 fused with maltose-binding protein (MBP) demonstrated high diagnostic specificity and sensitivity, with a 0.3 arbitrary cut-off value. However, a high intra-assay variation was observed. The study also assessed specific IgE prevalence to timothy grass allergens within the tested patient cohort.
Conclusions: Recombinant allergens from both E. coli and N. benthamiana demonstrated strong diagnostic potential on the microarray platform, with Phl p 11 (MBP-fused) showing particularly high performance. High intra-assay variation highlights the need for further optimization in allergen formulation and microarray storage conditions. These results highlight the potential of recombinant allergens for diagnostic applications, despite challenges with allergen stability in microarray formats. Specific IgE prevalence to timothy allergens revealed a sensitization profile consistent with findings from multiple studies.
背景:提摩西草(Phleum pratense)是一种重要的过敏原来源,重组过敏原越来越多地被用于诊断目的。然而,不同重组过敏原生产系统在诊断测定中的表现需要进一步研究,以优化其在临床环境中的应用:本研究的主要目的是使用定制的微阵列芯片分析和比较在大肠杆菌和N.benthamiana中生产的重组梯牧草过敏原的诊断性能:方法:重组梯牧草过敏原 Phl p 1、Phl p 2、Phl p 5、Phl p 6、Phl p 11 和 Phl p 12 是在大肠杆菌和/或 N. benthamiana 中产生的。共检测了 113 份患者血清样本,以评估过敏原特异性 IgE 检测与商业多重检测(ALEX 和 ISAC)相比的诊断灵敏度、特异性、检测间变异性和相关性。此外,还评估了这些过敏原特异性 IgE 的流行率:结果:Phl p 1、Phl p 2、Phl p 5、Phl p 6 和 Phl p 11 与其他商用多重检测方法的免疫反应呈高度或极高度正相关。值得注意的是,与麦芽糖结合蛋白(MBP)融合的 Phl p 11 显示出较高的诊断特异性和灵敏度,任意临界值为 0.3。然而,在检测中也发现了很大的差异。该研究还评估了接受测试的患者群中对梯牧草过敏原的特异性 IgE 患病率:结论:来自大肠杆菌和N. benthamiana的重组过敏原在微阵列平台上表现出很强的诊断潜力,其中Phl p 11(MBP融合)表现尤为突出。测定内的高度差异突出表明需要进一步优化过敏原配方和微阵列储存条件。这些结果凸显了重组过敏原在诊断应用中的潜力,尽管在微阵列格式中过敏原的稳定性面临挑战。貓尾草過敏原的特異性 IgE 發現與多項研究結果一致。
{"title":"Microarray-based evaluation of selected recombinant timothy grass allergens expressed in E. Coli and N. Benthamiana.","authors":"Laimis Silimavicius, Lieve Tchebotarev, Mindaugas Zaveckas, Raimundas Razanskas, Laima Cepulyte, Karolina Bielske, Indre Kucinskaite-Kodze, Linas Griguola, Kotryna Linauskiene, Rasa Petraityte-Burneikiene","doi":"10.1186/s12896-024-00902-0","DOIUrl":"10.1186/s12896-024-00902-0","url":null,"abstract":"<p><strong>Background: </strong>Timothy grass (Phleum pratense) is a significant source of allergens, and recombinant allergens are increasingly used for diagnostic purposes. However, the performance of different recombinant allergen production systems in diagnostic assays needs further investigation to optimize their use in clinical settings.</p><p><strong>Objective: </strong>The main objective of this study was to analyze and compare the diagnostic performance of recombinant timothy grass allergens produced in E. coli and N. benthamiana using a custom-made microarray chip.</p><p><strong>Methods: </strong>Recombinant timothy grass allergens Phl p 1, Phl p 2, Phl p 5, Phl p 6, Phl p 11, and Phl p 12 were produced in E. coli and/or N. benthamiana. A total of 113 patient serum samples were tested to evaluate the diagnostic sensitivity, specificity, inter-assay variability, and correlation of allergen-specific IgE detection compared to commercial multiplex tests (ALEX and ISAC). Additionally, the prevalence of sIgE to these allergens was assessed.</p><p><strong>Results: </strong>Phl p 1, Phl p 2, Phl p 5, Phl p 6 and Phl p 11 showed high or very high positive correlation in immunoreactivity with other commercial multiplex tests. Notably, Phl p 11 fused with maltose-binding protein (MBP) demonstrated high diagnostic specificity and sensitivity, with a 0.3 arbitrary cut-off value. However, a high intra-assay variation was observed. The study also assessed specific IgE prevalence to timothy grass allergens within the tested patient cohort.</p><p><strong>Conclusions: </strong>Recombinant allergens from both E. coli and N. benthamiana demonstrated strong diagnostic potential on the microarray platform, with Phl p 11 (MBP-fused) showing particularly high performance. High intra-assay variation highlights the need for further optimization in allergen formulation and microarray storage conditions. These results highlight the potential of recombinant allergens for diagnostic applications, despite challenges with allergen stability in microarray formats. Specific IgE prevalence to timothy allergens revealed a sensitization profile consistent with findings from multiple studies.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"72"},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work aimed to fabricate a Cloisite 30B-incorporated carboxymethyl cellulose graft copolymer of acrylic acid and itaconic acid hydrogel (Hyd) via a free radical polymerization method for controlled release of Sunitinib malate anticancer drug. The synthesized samples were characterized by FTIR, XRD, TEM, and SEM-dot mapping analyses. The encapsulation efficiency of Hyd and Hyd/Cloisite 30B (6 wt%) was 81 and 93%, respectively, showing the effectiveness of Cloisite 30B in drug loading. An in vitro drug release study showed that drug release from all samples in a buffer solution with pH 7.4 was higher than in a buffer solution with pH 5.5. During 240 min, the cumulative drug release from Hyd/Cloisite 30B (94.97% at pH 7.4) is lower than Hyd (53.71% at pH 7.4). Also, drug-loaded Hyd/Cloisite 30B (6 wt%) demonstrated better antibacterial activity towards S. Aureus bacteria and E. Coli. High anticancer activity of Hyd/Cloisite 30B against MCF-7 human breast cancer cells was shown by the MTT assay, with a MCF-7 cell viability of 23.82 ± 1.23% after 72-hour incubation. Our results suggest that Hyd/Cloisite 30B could be used as a pH-controlled carrier to deliver anticancer Sunitinib malate.
{"title":"Oral delivery of Sunitinib malate using carboxymethyl cellulose/poly(acrylic acid-itaconic acid)/Cloisite 30B nanocomposite hydrogel as a pH-responsive carrier.","authors":"Zahra Sayyar, Parisa Mohammadzadeh Pakdel, Seyed Jamaleddin Peighambardoust","doi":"10.1186/s12896-024-00883-0","DOIUrl":"10.1186/s12896-024-00883-0","url":null,"abstract":"<p><p>This work aimed to fabricate a Cloisite 30B-incorporated carboxymethyl cellulose graft copolymer of acrylic acid and itaconic acid hydrogel (Hyd) via a free radical polymerization method for controlled release of Sunitinib malate anticancer drug. The synthesized samples were characterized by FTIR, XRD, TEM, and SEM-dot mapping analyses. The encapsulation efficiency of Hyd and Hyd/Cloisite 30B (6 wt%) was 81 and 93%, respectively, showing the effectiveness of Cloisite 30B in drug loading. An in vitro drug release study showed that drug release from all samples in a buffer solution with pH 7.4 was higher than in a buffer solution with pH 5.5. During 240 min, the cumulative drug release from Hyd/Cloisite 30B (94.97% at pH 7.4) is lower than Hyd (53.71% at pH 7.4). Also, drug-loaded Hyd/Cloisite 30B (6 wt%) demonstrated better antibacterial activity towards S. Aureus bacteria and E. Coli. High anticancer activity of Hyd/Cloisite 30B against MCF-7 human breast cancer cells was shown by the MTT assay, with a MCF-7 cell viability of 23.82 ± 1.23% after 72-hour incubation. Our results suggest that Hyd/Cloisite 30B could be used as a pH-controlled carrier to deliver anticancer Sunitinib malate.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"70"},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model.
Results: Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed.
Conclusions: So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.
{"title":"HPV16 mutant E6/E7 construct is protective in mouse model.","authors":"Maryam Moazami Goodarzi, Ghasem Mosayebi, Ali Ganji, Ehsan Raoufi, Samira Sadelaji, Saeid Babaei, Hamid Abtahi","doi":"10.1186/s12896-024-00893-y","DOIUrl":"10.1186/s12896-024-00893-y","url":null,"abstract":"<p><strong>Background: </strong>Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model.</p><p><strong>Results: </strong>Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed.</p><p><strong>Conclusions: </strong>So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"71"},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}