Pub Date : 2024-07-02DOI: 10.1007/s12257-024-00126-1
Jeong Uk Jang, Alfin Mohammad Abdillah, So Young Bu, Jong Won Yun
Emerging findings suggest that non-shivering thermogenesis in brown and beige adipocytes may effectively stimulate energy expenditure, thereby contributing to body weight reduction. Our previous report demonstrated that chrysin, a flavone found in honey and propolis, activates uncoupling protein 1 (UCP1)-dependent thermogenesis in brown fat and induces beige adipocytes. However, the effect of chrysin on UCP1-independent thermogenesis remains unexplored. In this study, we examined the effects of chrysin on UCP1-independent thermogenesis in the 3T3-L1 adipocytes and mouse model. This study showed that chrysin elevates the expression of calcium regulatory proteins, including sarcoendoplasmic reticulum Ca2+-ATPase, ryanodine receptor 2, voltage-dependent anion channel, mitochondrial calcium uniporter, and Ca2+/calmodulin-dependent protein kinase 2 in 3T3-L1 adipocytes as well as in inguinal and epididymal white adipose tissues of mice. Furthermore, our results also showed chrysin increased Ca2+ levels in 3T3-L1 adipocytes in a dose-dependent manner. In addition, our study showed chrysin upregulated creatine-mediated thermogenic markers (creatine kinase B and creatine kinase mitochondrial 2) in both in vitro and in vivo models. Mechanistically, we found that chrysin induces UCP1-independent thermogenesis by stimulating creatine- and calcium-mediated ATP-consuming futile cycle through the activation of the α1-adrenergic receptor. Combining the current and previous studies, it can be proposed that chrysin induces both UCP1-dependent and -independent thermogenesis in beige adipocytes, suggesting its possible use for effective intervention for obesity and metabolic disorders.
{"title":"Chrysin stimulates UCP1-independent thermogenesis in 3T3-L1 adipocytes and mouse model","authors":"Jeong Uk Jang, Alfin Mohammad Abdillah, So Young Bu, Jong Won Yun","doi":"10.1007/s12257-024-00126-1","DOIUrl":"https://doi.org/10.1007/s12257-024-00126-1","url":null,"abstract":"<p>Emerging findings suggest that non-shivering thermogenesis in brown and beige adipocytes may effectively stimulate energy expenditure, thereby contributing to body weight reduction. Our previous report demonstrated that chrysin, a flavone found in honey and propolis, activates uncoupling protein 1 (UCP1)-dependent thermogenesis in brown fat and induces beige adipocytes. However, the effect of chrysin on UCP1-independent thermogenesis remains unexplored. In this study, we examined the effects of chrysin on UCP1-independent thermogenesis in the 3T3-L1 adipocytes and mouse model. This study showed that chrysin elevates the expression of calcium regulatory proteins, including sarcoendoplasmic reticulum Ca<sup>2+</sup>-ATPase, ryanodine receptor 2, voltage-dependent anion channel, mitochondrial calcium uniporter, and Ca<sup>2+</sup>/calmodulin-dependent protein kinase 2 in 3T3-L1 adipocytes as well as in inguinal and epididymal white adipose tissues of mice. Furthermore, our results also showed chrysin increased Ca<sup>2+</sup> levels in 3T3-L1 adipocytes in a dose-dependent manner. In addition, our study showed chrysin upregulated creatine-mediated thermogenic markers (creatine kinase B and creatine kinase mitochondrial 2) in both in vitro and in vivo models. Mechanistically, we found that chrysin induces UCP1-independent thermogenesis by stimulating creatine- and calcium-mediated ATP-consuming futile cycle through the activation of the α1-adrenergic receptor. Combining the current and previous studies, it can be proposed that chrysin induces both UCP1-dependent and -independent thermogenesis in beige adipocytes, suggesting its possible use for effective intervention for obesity and metabolic disorders.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s12257-024-00121-6
Aporva Gupta, Seung-Goo Lee, Bong-Hyun Sung, Dae-Hee Lee, Byung-Kwan Cho, Dong-Myung Kim, Haseong Kim
This study explores the development of biofoundries, emphasizing the integration of synthetic biology with artificial intelligence (AI) and robotics. It outlines critical challenges such as the necessity for interdisciplinary collaboration and the development of hardware, software, and AI specific to biofoundry operations. To address these challenges, we recommend strategies like rapid prototyping, soft integration, and the strategic implementation of AI. We underscore the vital role of synthetic biology researchers in advancing biofoundry capabilities and advocate for collaborative, multidisciplinary efforts to optimize the development and functionality of biofoundries.
{"title":"Advancing biofoundry development: strategies and challenges","authors":"Aporva Gupta, Seung-Goo Lee, Bong-Hyun Sung, Dae-Hee Lee, Byung-Kwan Cho, Dong-Myung Kim, Haseong Kim","doi":"10.1007/s12257-024-00121-6","DOIUrl":"https://doi.org/10.1007/s12257-024-00121-6","url":null,"abstract":"<p>This study explores the development of biofoundries, emphasizing the integration of synthetic biology with artificial intelligence (AI) and robotics. It outlines critical challenges such as the necessity for interdisciplinary collaboration and the development of hardware, software, and AI specific to biofoundry operations. To address these challenges, we recommend strategies like rapid prototyping, soft integration, and the strategic implementation of AI. We underscore the vital role of synthetic biology researchers in advancing biofoundry capabilities and advocate for collaborative, multidisciplinary efforts to optimize the development and functionality of biofoundries.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s12257-024-00124-3
S. Krake, C. Conzelmann, S. Heuer, M. Dyballa, S. Zibek, T. Hahn
The chitosan production process from fishery waste is already established in industrial scale, whereby fungal chitosan is produced in lower amounts. Since fungal chitosan could be isolated from under-valorized vegan streams while exhibiting slightly different characteristics, it has also potential for other applications. Within this publication, we focus on the chitosan production from Aspergillus niger. This study provides a detailed determination of the biomass composition, adapting and comparing different analytical tools, with special focus on the chitin and chitosan content. The major content of the dried biomass is composed of glucans (48.6 ± 1.4%), followed by proteins with an amount of 22.2 ± 0.7%. Chitin and chitosan provide 16.0 ± 0.8% of the biomass. Within our chitosan production studies, we compared the effect of different process strategies including steps as deproteinization (DP), acid extraction (AE), deacetylation (DA), as well as purification. Initially, we obtained poor values (lower than 73.6%) for the chitosan purity. A direct DA step followed by purification resulted in a chitosan purity of up to 89.6%, a recovery of 30.5% and a yield with regard to the biomass of 5.5%. The DA degree of the resulting chitosan is similar to chitosan derived from fishery waste, whereas the molecular weight is lower. The results achieved so far are consistent with the literature, extending beyond, the data emphasized that a chitosan production from residual fungal biomass after fermentation is suitable by direct DA and purification. However, further adaption is necessary so that other matrix compounds could be also obtained.
利用渔业废料生产壳聚糖的工艺已经形成了工业规模,而真菌壳聚糖的产量较低。由于真菌壳聚糖可以从价值较低的素食流中分离出来,同时表现出略微不同的特性,因此也具有其他应用的潜力。在本刊物中,我们重点介绍了黑曲霉生产壳聚糖的情况。这项研究通过调整和比较不同的分析工具,详细测定了生物质的成分,并特别关注甲壳素和壳聚糖的含量。干燥生物质的主要成分是葡聚糖(48.6 ± 1.4%),其次是蛋白质,含量为 22.2 ± 0.7%。甲壳素和壳聚糖占生物质的 16.0 ± 0.8%。在壳聚糖生产研究中,我们比较了不同工艺策略的效果,包括脱蛋白(DP)、酸提取(AE)、去乙酰化(DA)和纯化等步骤。最初,我们得到的壳聚糖纯度值较低(低于 73.6%)。直接进行脱乙酰化步骤,然后进行纯化,结果壳聚糖纯度高达 89.6%,回收率为 30.5%,相对于生物质的产率为 5.5%。所得壳聚糖的 DA 值与从渔业废料中提取的壳聚糖相似,但分子量较低。目前所取得的结果与文献报道一致,数据强调,利用发酵后的残余真菌生物质直接进行 DA 和纯化生产壳聚糖是合适的。不过,还需要进一步调整,以便获得其他基质化合物。
{"title":"Production of chitosan from Aspergillus niger and quantitative evaluation of the process using adapted analytical tools","authors":"S. Krake, C. Conzelmann, S. Heuer, M. Dyballa, S. Zibek, T. Hahn","doi":"10.1007/s12257-024-00124-3","DOIUrl":"https://doi.org/10.1007/s12257-024-00124-3","url":null,"abstract":"<p>The chitosan production process from fishery waste is already established in industrial scale, whereby fungal chitosan is produced in lower amounts. Since fungal chitosan could be isolated from under-valorized vegan streams while exhibiting slightly different characteristics, it has also potential for other applications. Within this publication, we focus on the chitosan production from <i>Aspergillus niger</i>. This study provides a detailed determination of the biomass composition, adapting and comparing different analytical tools, with special focus on the chitin and chitosan content. The major content of the dried biomass is composed of glucans (48.6 ± 1.4%), followed by proteins with an amount of 22.2 ± 0.7%. Chitin and chitosan provide 16.0 ± 0.8% of the biomass. Within our chitosan production studies, we compared the effect of different process strategies including steps as deproteinization (DP), acid extraction (AE), deacetylation (DA), as well as purification. Initially, we obtained poor values (lower than 73.6%) for the chitosan purity. A direct DA step followed by purification resulted in a chitosan purity of up to 89.6%, a recovery of 30.5% and a yield with regard to the biomass of 5.5%. The DA degree of the resulting chitosan is similar to chitosan derived from fishery waste, whereas the molecular weight is lower. The results achieved so far are consistent with the literature, extending beyond, the data emphasized that a chitosan production from residual fungal biomass after fermentation is suitable by direct DA and purification. However, further adaption is necessary so that other matrix compounds could be also obtained.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1007/s12257-024-00128-z
Junkyu Lee, Byung Tae Lee, Mun Su Kwon, Hyun Uk Kim
Anaerobic digestion (AD) is a biological process where bacteria digest various types of organic matter under anaerobic conditions. AD has been particularly used for generating biogas from organic wastes, such as food waste. Despite its practical applications, the mechanistic understanding of the AD process remains elusive, especially complex interactions within a microbial community, and between the organic waste and microbial community. One systematic approach to address this challenge is to deploy genome-scale metabolic models (GEMs) of microorganisms involved in AD. GEM is a computational model that describes an entire metabolic network of a cell, and can be simulated under various conditions of interest. In this review, we discuss recent metabolic studies of AD-related microorganisms by using their GEMs across the four major stages of AD. We also suggest future directions in this field that need to be addressed to further optimize the GEMs and the AD process.
厌氧消化(AD)是细菌在厌氧条件下消化各类有机物的生物过程。厌氧消化尤其用于从食物垃圾等有机废物中产生沼气。尽管有实际应用,但对厌氧消化(AD)过程的机理仍然难以理解,尤其是微生物群落内部以及有机废物与微生物群落之间复杂的相互作用。应对这一挑战的一种系统方法是建立参与厌氧消化的微生物的基因组尺度代谢模型(GEM)。GEM 是一种描述细胞整个代谢网络的计算模型,可以在各种相关条件下进行模拟。在这篇综述中,我们将讨论最近通过使用 AD 相关微生物的 GEM 对 AD 的四个主要阶段进行的代谢研究。我们还提出了该领域未来需要解决的方向,以进一步优化 GEM 和 AD 过程。
{"title":"Metabolic modeling of microorganisms involved in anaerobic digestion","authors":"Junkyu Lee, Byung Tae Lee, Mun Su Kwon, Hyun Uk Kim","doi":"10.1007/s12257-024-00128-z","DOIUrl":"https://doi.org/10.1007/s12257-024-00128-z","url":null,"abstract":"<p>Anaerobic digestion (AD) is a biological process where bacteria digest various types of organic matter under anaerobic conditions. AD has been particularly used for generating biogas from organic wastes, such as food waste. Despite its practical applications, the mechanistic understanding of the AD process remains elusive, especially complex interactions within a microbial community, and between the organic waste and microbial community. One systematic approach to address this challenge is to deploy genome-scale metabolic models (GEMs) of microorganisms involved in AD. GEM is a computational model that describes an entire metabolic network of a cell, and can be simulated under various conditions of interest. In this review, we discuss recent metabolic studies of AD-related microorganisms by using their GEMs across the four major stages of AD. We also suggest future directions in this field that need to be addressed to further optimize the GEMs and the AD process.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s12257-024-00117-2
Eun-Jin Jang, Tai-Yong Kim, Jeong-A. Lim, Min-Ah Woo
With advancements in DNA amplification research, isothermal amplification technology has emerged as an attractive method for detecting target DNA. Here, we describe primer generation-rolling circle amplification (PG-RCA) as an isothermal amplification method for detecting Escherichia coli O157:H7, Salmonella Typhimurium, Bacillus cereus, and Listeria monocytogenes. To improve PG-RCA sensitivity, the concentrations of the reaction components, dNTPs, phi29 DNA polymerase, and circular probes were optimized; the optimized conditions were applied to detect each target bacterium. A pair of forward and reverse circular probes that hybridized to the sense and anti-sense target genes was used in PG-RCA, exhibiting target selectivity. PG-RCA, which generated additional primers simultaneously with linear RCA and comprised multiple reaction cycles, resulted in higher accumulation of amplified DNA products than did linear RCA within the same reaction period. The threshold time (Tt) for each target gene concentration was determined based on the threshold value set in the amplification plot for PG-RCA, and a linear correlation between the Tt value and genomic DNA concentration was proven for each of the four bacteria. The PG-RCA-based assay could be applied to gene-based detection of various microorganisms and may be a useful isothermal amplification method for replacing traditional PCR methods.
随着 DNA 扩增研究的发展,等温扩增技术已成为检测目标 DNA 的一种极具吸引力的方法。本文介绍了引物生成-滚圆扩增(PG-RCA)作为一种等温扩增方法,用于检测大肠杆菌 O157:H7、鼠伤寒沙门氏菌、蜡样芽孢杆菌和单核细胞增生李斯特菌。为了提高 PG-RCA 的灵敏度,对反应成分、dNTPs、phi29 DNA 聚合酶和环状探针的浓度进行了优化;优化后的条件用于检测每种目标细菌。在 PG-RCA 中使用了一对与正义和反义目标基因杂交的正反圆探针,表现出目标选择性。PG-RCA 与线性 RCA 同时产生额外的引物,包括多个反应循环,在相同的反应时间内,扩增 DNA 产物的累积量高于线性 RCA。根据 PG-RCA 扩增图中设定的阈值,确定了每种目标基因浓度的阈值时间(Tt),并证明四种细菌的 Tt 值与基因组 DNA 浓度呈线性相关。基于 PG-RCA 的检测方法可应用于基于基因的各种微生物检测,可能是替代传统 PCR 方法的一种有用的等温扩增方法。
{"title":"Primer generation-rolling circle amplification method optimized for the detection of pathogenic bacteria","authors":"Eun-Jin Jang, Tai-Yong Kim, Jeong-A. Lim, Min-Ah Woo","doi":"10.1007/s12257-024-00117-2","DOIUrl":"https://doi.org/10.1007/s12257-024-00117-2","url":null,"abstract":"<p>With advancements in DNA amplification research, isothermal amplification technology has emerged as an attractive method for detecting target DNA. Here, we describe primer generation-rolling circle amplification (PG-RCA) as an isothermal amplification method for detecting <i>Escherichia coli</i> O157:H7, <i>Salmonella</i> Typhimurium, <i>Bacillus cereus</i>, and <i>Listeria monocytogenes</i>. To improve PG-RCA sensitivity, the concentrations of the reaction components, dNTPs, phi29 DNA polymerase, and circular probes were optimized; the optimized conditions were applied to detect each target bacterium. A pair of forward and reverse circular probes that hybridized to the sense and anti-sense target genes was used in PG-RCA, exhibiting target selectivity. PG-RCA, which generated additional primers simultaneously with linear RCA and comprised multiple reaction cycles, resulted in higher accumulation of amplified DNA products than did linear RCA within the same reaction period. The threshold time (Tt) for each target gene concentration was determined based on the threshold value set in the amplification plot for PG-RCA, and a linear correlation between the Tt value and genomic DNA concentration was proven for each of the four bacteria. The PG-RCA-based assay could be applied to gene-based detection of various microorganisms and may be a useful isothermal amplification method for replacing traditional PCR methods.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1007/s12257-024-00030-8
Jiawei Huang, Jiaying Lou, Jing Cao, Da Wu, Jiale Wang
C13-apocarotenoids are volatile organic compounds naturally derived from the oxidative cleavage of carotenoids. These small molecules form unique aromas in flowers, fruits, and plants. They are highly valued compounds in the flavor and fragrance industry. The microbial production of C13-apocarotenoids, such as β-ionone, α-ionone, and pseudoionone, is an emerging and promising approach with inherent advantageousness of scalable output to reach the goals as stated in the United Nations Sustainable Development Goals. Many engineering efforts have been implemented continuously but very few of them proved to be successful in achieving product titer at the grams-per-liter level with the least accumulated amount of precursor carotenoids and byproducts. The efficiency of oxidative cleavage of carotenoids conducted by carotenoid cleavage dioxygenases is suggested to be the critical metabolic node to reconstruct an economically viable C13-apocarotenoids biosynthetic pathway. In this regard, we review recent advances in improving microbial biosynthesis of C13-apocarotenoids by protein and metabolic engineering. The potential strategies that could be implemented further to achieve efficient C13-apocarotenoid production are also discussed.
{"title":"C13-apocarotenoids biosynthesis with engineered microbes","authors":"Jiawei Huang, Jiaying Lou, Jing Cao, Da Wu, Jiale Wang","doi":"10.1007/s12257-024-00030-8","DOIUrl":"https://doi.org/10.1007/s12257-024-00030-8","url":null,"abstract":"<p>C13-apocarotenoids are volatile organic compounds naturally derived from the oxidative cleavage of carotenoids. These small molecules form unique aromas in flowers, fruits, and plants. They are highly valued compounds in the flavor and fragrance industry. The microbial production of C13-apocarotenoids, such as β-ionone, α-ionone, and pseudoionone, is an emerging and promising approach with inherent advantageousness of scalable output to reach the goals as stated in the United Nations Sustainable Development Goals. Many engineering efforts have been implemented continuously but very few of them proved to be successful in achieving product titer at the grams-per-liter level with the least accumulated amount of precursor carotenoids and byproducts. The efficiency of oxidative cleavage of carotenoids conducted by carotenoid cleavage dioxygenases is suggested to be the critical metabolic node to reconstruct an economically viable C13-apocarotenoids biosynthetic pathway. In this regard, we review recent advances in improving microbial biosynthesis of C13-apocarotenoids by protein and metabolic engineering. The potential strategies that could be implemented further to achieve efficient C13-apocarotenoid production are also discussed.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1007/s12257-024-00125-2
Yunhee Hwang, Myung Hyun Noh, Gyoo Yeol Jung
Flavonoids are a class of polyphenolic compounds found in plants that offer extensive health benefits and have applications in the pharmaceutical, cosmetic, and food industries. Currently, flavonoid production largely depends on plant extraction methods, which face limitations owing to low yields and seasonal and environmental impacts. To address these issues, the potential of microbial fermentation, which leverages advances in metabolic engineering and genetic tools, has been discussed as an innovative alternative to overcome these challenges, thus offering an environmentally friendly and sustainable approach to flavonoid production. However, the integration of complex biosynthesis pathways into microbial systems presents challenges such as the inefficient expression of plant-derived genes, metabolic conflicts, and toxicity or feedback inhibition by accumulated flavonoids within the microbial cells. This comprehensive review highlights recent advancements in engineering strategies to address these challenges, focusing on biotransformation, single-strain fermentation, and co-culture systems, each with its own unique characteristics and potential for optimizing flavonoid production in a cost-effective and scalable manner.
{"title":"Recent advancements in flavonoid production through engineering microbial systems","authors":"Yunhee Hwang, Myung Hyun Noh, Gyoo Yeol Jung","doi":"10.1007/s12257-024-00125-2","DOIUrl":"https://doi.org/10.1007/s12257-024-00125-2","url":null,"abstract":"<p>Flavonoids are a class of polyphenolic compounds found in plants that offer extensive health benefits and have applications in the pharmaceutical, cosmetic, and food industries. Currently, flavonoid production largely depends on plant extraction methods, which face limitations owing to low yields and seasonal and environmental impacts. To address these issues, the potential of microbial fermentation, which leverages advances in metabolic engineering and genetic tools, has been discussed as an innovative alternative to overcome these challenges, thus offering an environmentally friendly and sustainable approach to flavonoid production. However, the integration of complex biosynthesis pathways into microbial systems presents challenges such as the inefficient expression of plant-derived genes, metabolic conflicts, and toxicity or feedback inhibition by accumulated flavonoids within the microbial cells. This comprehensive review highlights recent advancements in engineering strategies to address these challenges, focusing on biotransformation, single-strain fermentation, and co-culture systems, each with its own unique characteristics and potential for optimizing flavonoid production in a cost-effective and scalable manner.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s12257-024-00120-7
Manuel Siegl, Dominik Geier, Björn Andreeßen, Sebastian Max, Esther Mose, Michael Zavrel, Thomas Becker
Innovative soft sensor concepts can recalibrate automatically when the prediction performance decreases due to variations in raw materials, biological variability, and changes in process strategies. For automatic recalibration, data sets are selected from a data pool based on distance-based similarity criteria and then used for calibration. Nevertheless, the most appropriate data sets often are not reliably selected due to variances in the location of landmarks and process length of the bioprocesses. This can be overcome by synchronization methods that align the historical data sets with the current process and increase the accuracy of automatic selection and recalibration. This study investigated two different synchronization methods (dynamic time warping and curve registration) as preprocessing for the automatic selection of data sets using a distance-based similarity criterion for soft sensor recalibration. The prediction performance of the two soft sensors without synchronization was compared to the variants with synchronization and evaluated by comparing the normalized root mean squared errors. Curve registration improved the prediction performance on average by 24% (Pichia pastoris) and 9% (Bacillus subtilis). Using dynamic time warping, no substantial improvement in prediction performance could be achieved. A major factor behind this was the loss of information due to singularities caused by the changing process characteristics. The evaluation was performed on two target variables of real bioprocesses: biomass concentration prediction in P. pastoris and product concentration prediction in B. subtilis.
创新的软传感器概念可在预测性能因原材料变化、生物变异和工艺策略变化而下降时自动重新校准。为实现自动重新校准,可根据基于距离的相似性标准从数据池中选择数据集,然后用于校准。然而,由于地标位置和生物过程的过程长度存在差异,通常无法可靠地选择最合适的数据集。同步方法可以克服这一问题,使历史数据集与当前流程保持一致,提高自动选择和重新校准的准确性。本研究调查了两种不同的同步方法(动态时间扭曲和曲线配准),作为使用基于距离的相似性标准自动选择数据集进行软传感器重新校准的预处理。通过比较归一化均方根误差,比较了两种无同步软传感器和有同步变体的预测性能。曲线注册使预测性能平均提高了 24%(Pichia pastoris)和 9%(枯草芽孢杆菌)。使用动态时间扭曲法,预测性能没有得到实质性提高。这背后的一个主要因素是由于过程特性变化造成的奇异性导致的信息损失。评估是在实际生物过程的两个目标变量上进行的:P. pastoris 的生物量浓度预测和 B. subtilis 的产物浓度预测。
{"title":"Data synchronization techniques and their impact on the prediction performance of automated recalibrated soft sensors in bioprocesses","authors":"Manuel Siegl, Dominik Geier, Björn Andreeßen, Sebastian Max, Esther Mose, Michael Zavrel, Thomas Becker","doi":"10.1007/s12257-024-00120-7","DOIUrl":"https://doi.org/10.1007/s12257-024-00120-7","url":null,"abstract":"<p>Innovative soft sensor concepts can recalibrate automatically when the prediction performance decreases due to variations in raw materials, biological variability, and changes in process strategies. For automatic recalibration, data sets are selected from a data pool based on distance-based similarity criteria and then used for calibration. Nevertheless, the most appropriate data sets often are not reliably selected due to variances in the location of landmarks and process length of the bioprocesses. This can be overcome by synchronization methods that align the historical data sets with the current process and increase the accuracy of automatic selection and recalibration. This study investigated two different synchronization methods (dynamic time warping and curve registration) as preprocessing for the automatic selection of data sets using a distance-based similarity criterion for soft sensor recalibration. The prediction performance of the two soft sensors without synchronization was compared to the variants with synchronization and evaluated by comparing the normalized root mean squared errors. Curve registration improved the prediction performance on average by 24% (<i>Pichia pastoris</i>) and 9% (<i>Bacillus subtilis</i>). Using dynamic time warping, no substantial improvement in prediction performance could be achieved. A major factor behind this was the loss of information due to singularities caused by the changing process characteristics. The evaluation was performed on two target variables of real bioprocesses: biomass concentration prediction in <i>P. pastoris</i> and product concentration prediction in <i>B. subtilis</i>.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1007/s12257-024-00123-4
Bomin Kim, Soonjo Kwon
Cisplatin is a widely used, highly effective chemotherapy drug that has a critical nephrotoxic side effect associated with acute kidney injury. Hypoxia pre-treatment is one of the methods used to reduce cisplatin-induced renal toxicity, but the exact cellular process associated with this protective effect is not clearly understood. Hypoxia-inducible factor 1 alpha (HIF-1α), the main transcription factor under hypoxia, may play a crucial role in this protective effect. To verify this, the degree of HIF-1α activation was investigated. Renal proximal tubular epithelial cells (HK-2) were treated with cisplatin following exposure to FG-4592 and CoCl2, prolyl hydroxylase domain (PHD) inhibitors that stabilize HIF-1α. Roxadustat (FG-4592) is a PHD inhibitor recently approved by the European medicines agency (EMA) for the treatment of anemia. Hypoxia pre-treatment with PHD inhibitors presented a protective effect against cisplatin-induced kidney injury. In addition, hypoxia pre-treatment relieved oxidative stress by hypoxia response genes sufficiently expressed under hypoxic pre-conditions. In conclusion, we investigated the correlation between the degree of HIF-1α pre-activation and the reduction in cisplatin-induced nephrotoxicity using PHD inhibitors. This study extends the applicability of PHD inhibitors as palliators of cisplatin-induced nephrotoxicity and provides valuable insights into overcoming the limitations of cisplatin use.
{"title":"Pre-activation of hypoxia-inducible factor 1-α using prolyl hydroxylase domain inhibitors reduces cisplatin-induced nephrotoxicity","authors":"Bomin Kim, Soonjo Kwon","doi":"10.1007/s12257-024-00123-4","DOIUrl":"https://doi.org/10.1007/s12257-024-00123-4","url":null,"abstract":"<p>Cisplatin is a widely used, highly effective chemotherapy drug that has a critical nephrotoxic side effect associated with acute kidney injury. Hypoxia pre-treatment is one of the methods used to reduce cisplatin-induced renal toxicity, but the exact cellular process associated with this protective effect is not clearly understood. Hypoxia-inducible factor 1 alpha (HIF-1α), the main transcription factor under hypoxia, may play a crucial role in this protective effect. To verify this, the degree of HIF-1α activation was investigated. Renal proximal tubular epithelial cells (HK-2) were treated with cisplatin following exposure to FG-4592 and CoCl<sub>2</sub>, prolyl hydroxylase domain (PHD) inhibitors that stabilize HIF-1α. Roxadustat (FG-4592) is a PHD inhibitor recently approved by the European medicines agency (EMA) for the treatment of anemia. Hypoxia pre-treatment with PHD inhibitors presented a protective effect against cisplatin-induced kidney injury. In addition, hypoxia pre-treatment relieved oxidative stress by hypoxia response genes sufficiently expressed under hypoxic pre-conditions. In conclusion, we investigated the correlation between the degree of HIF-1α pre-activation and the reduction in cisplatin-induced nephrotoxicity using PHD inhibitors. This study extends the applicability of PHD inhibitors as palliators of cisplatin-induced nephrotoxicity and provides valuable insights into overcoming the limitations of cisplatin use.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s12257-024-00122-5
Raghavan Srimathi, Tesalonika Sondak, Kwang-sun Kim
The use of nanoparticles (NPs) as an alternative to the current generation of conventional antibiotics has exploded in the research community in recent years, as evidence of the superiority of NPs over antibiotics in the treatment of pathogens has been steadily presented. However, therapy with NPs may result in the removal of both multidrug-resistant (MDR) pathogens and commensal bacteria due to the broad-spectrum activity of NPs and the non-specificity of target bacteria. Therefore, the fabrication of MDR-pathogen-targeting NPs is necessary. In this study, biogenic silver nanoparticles (Bio-AgNPs) were synthesized using bacterial cell-free supernatant from three communicating gram-negative bacteria. The size, physical features, and morphology of the AgNPs were characterized by dynamic light scattering (an average size of 158–168 nm), X-ray diffraction (co-ordinate patterns), and transmission electron microscopy (spherical structure). The antibacterial activity of the Bio-AgNPs as minimum inhibitory concentration values was obtained between 0.8 and > 6.4 μg mL−1 for bacterial strains. Mechanistic studies of Bio-AgNPs have revealed that biofilm inhibition, protein leakage, hyperproduction of reactive oxygen species, and physical cell damage are plausible mechanisms underlying the activity of Bio-AgNPs against gram-negative pathogens. Overall, the Bio-AgNPs synthesized in this study may bolster the potential use of Bio-AgNPs as a stand-in for traditional antibiotics, and offer potential specificity against bacterial targets.