Pub Date : 2024-06-11DOI: 10.1007/s12257-024-00116-3
Byongson Yi, Byung Wook Lee, Kyungjae Yu, Hyun Gi Koh, Yung-Hun Yang, Kwon-Young Choi, Byung-Gee Kim, Jung-Oh Ahn, Kyungmoon Park, See-Hyoung Park
{"title":"Production of halogenated indigo by Escherichia coli whole-cell conversion system with novel halogenase derived from Pseudoalteromonas nigrifaciens","authors":"Byongson Yi, Byung Wook Lee, Kyungjae Yu, Hyun Gi Koh, Yung-Hun Yang, Kwon-Young Choi, Byung-Gee Kim, Jung-Oh Ahn, Kyungmoon Park, See-Hyoung Park","doi":"10.1007/s12257-024-00116-3","DOIUrl":"https://doi.org/10.1007/s12257-024-00116-3","url":null,"abstract":"","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1007/s12257-024-00028-2
Jae Hoon Moon, Jong Kwan Park, Bu-Young Park, Hyung Jin Jeon, Gi Sub Choi, Gyun Min Lee
{"title":"Extraction of the outer membrane protein pertactin from Bordetella pertussis with urea for the production of acellular pertussis vaccine","authors":"Jae Hoon Moon, Jong Kwan Park, Bu-Young Park, Hyung Jin Jeon, Gi Sub Choi, Gyun Min Lee","doi":"10.1007/s12257-024-00028-2","DOIUrl":"https://doi.org/10.1007/s12257-024-00028-2","url":null,"abstract":"","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141362944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1007/s12257-024-00114-5
Long Hoang Dang Bui, Keitaro Aoki, Tomonari Tanaka, Yuji Aso
{"title":"Erratum: Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride","authors":"Long Hoang Dang Bui, Keitaro Aoki, Tomonari Tanaka, Yuji Aso","doi":"10.1007/s12257-024-00114-5","DOIUrl":"https://doi.org/10.1007/s12257-024-00114-5","url":null,"abstract":"","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1007/s12257-024-00113-6
Shreya Chandrakant Desai, A. Dannie Macrin, T. Senthilvelan, Rames C. Panda
The present review has mainly focused on a systematic investigation of the genes responsible for biological ageing. Ageing has been defined as a successive decline in biological functions, leading to age-associated disorders, which have caused death. Cell homeostasis has been disturbed due to multiple factors such as accumulation of DNA damage, decrease in telomeres, replicative senescence, cell division, metabolism, respiration, autophagy, calorie management, and genetic integrity. This imbalance in cell homeostasis has a major impact on the accelerated biological ageing process. Increased risk of age-associated disorders and mortality rates makes it necessary to know the cellular and molecular mechanisms behind it. This current study provides an overview of genes and their functions associated with dysregulation in core cellular functions such as replication, genetic stability, metabolism, respiration, and autophagy. The genes associated with these biological processes have been identified through a comprehensive literature survey and additional genes were included based on the outcome of STRING analysis. These genes were functionally enriched using gene ontology. Finally, a selected set of genes was mapped with 74 biological functions. Then, a correlation map was plotted to bring out genes with maximum impact on the biological processes involved in ageing. This study not only observed the most commonly known players such as mTOR and SIRT1 but also noticed less-reported genes such as ATM, LRRK2, ERCC1, ATG5, and BECN1 which were also found to be highly impacting the process of biological ageing. Additionally, the gerontology of these top five less-reported genes also has been explored.
{"title":"Identification of genes associated with accelerated biological ageing through computational analysis: a systematic review","authors":"Shreya Chandrakant Desai, A. Dannie Macrin, T. Senthilvelan, Rames C. Panda","doi":"10.1007/s12257-024-00113-6","DOIUrl":"https://doi.org/10.1007/s12257-024-00113-6","url":null,"abstract":"<p>The present review has mainly focused on a systematic investigation of the genes responsible for biological ageing. Ageing has been defined as a successive decline in biological functions, leading to age-associated disorders, which have caused death. Cell homeostasis has been disturbed due to multiple factors such as accumulation of DNA damage, decrease in telomeres, replicative senescence, cell division, metabolism, respiration, autophagy, calorie management, and genetic integrity. This imbalance in cell homeostasis has a major impact on the accelerated biological ageing process. Increased risk of age-associated disorders and mortality rates makes it necessary to know the cellular and molecular mechanisms behind it. This current study provides an overview of genes and their functions associated with dysregulation in core cellular functions such as replication, genetic stability, metabolism, respiration, and autophagy. The genes associated with these biological processes have been identified through a comprehensive literature survey and additional genes were included based on the outcome of STRING analysis. These genes were functionally enriched using gene ontology. Finally, a selected set of genes was mapped with 74 biological functions. Then, a correlation map was plotted to bring out genes with maximum impact on the biological processes involved in ageing. This study not only observed the most commonly known players such as <i>mTOR</i> and <i>SIRT1</i> but also noticed less-reported genes such as <i>ATM, LRRK2, ERCC1, ATG5,</i> and <i>BECN1</i> which were also found to be highly impacting the process of biological ageing. Additionally, the gerontology of these top five less-reported genes also has been explored.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1007/s12257-024-00118-1
Ying Xu, Huimin Zhou, Fangyuan Song, Huayou Chen, Zhong Ni
With the development of modern molecular biotechnology and the continuous deepening of research on gene function, Tn5 transposase has received more and more attention due to its characteristics of randomness and high efficiency in transposition. It has now been widely used as an important tool in the field of molecular biology and genetic engineering. Known for its "cut-and-paste" mechanism that allows for the integration or mobilization of DNA sequences within genomes, making it good at library construction of high-throughput sequencing. However, the weakness still exists in Tn5 transposase that hinders its further application. This article primarily reviews the architecture, catalytic mechanism, and functional modification of Tn5 transposase, as well as its application in advanced transgenic editing and library construction of sequencing. Furthermore, it provides prospects for future research in this field.
随着现代分子生物技术的发展和对基因功能研究的不断深入,Tn5转座酶因其随机性强、转座效率高的特点受到越来越多的关注。目前,它已作为分子生物学和基因工程领域的重要工具得到广泛应用。它以其 "剪切-粘贴 "机制而著称,可在基因组内整合或调动 DNA 序列,是构建高通量测序文库的好帮手。然而,Tn5 转座酶仍然存在弱点,阻碍了它的进一步应用。本文主要综述了 Tn5 转座酶的结构、催化机理和功能修饰,以及它在高级转基因编辑和测序文库构建中的应用。此外,文章还对该领域的未来研究进行了展望。
{"title":"Tn5 transposase: a key tool to decrypt random transposition","authors":"Ying Xu, Huimin Zhou, Fangyuan Song, Huayou Chen, Zhong Ni","doi":"10.1007/s12257-024-00118-1","DOIUrl":"https://doi.org/10.1007/s12257-024-00118-1","url":null,"abstract":"<p>With the development of modern molecular biotechnology and the continuous deepening of research on gene function, Tn5 transposase has received more and more attention due to its characteristics of randomness and high efficiency in transposition. It has now been widely used as an important tool in the field of molecular biology and genetic engineering. Known for its \"cut-and-paste\" mechanism that allows for the integration or mobilization of DNA sequences within genomes, making it good at library construction of high-throughput sequencing. However, the weakness still exists in Tn5 transposase that hinders its further application. This article primarily reviews the architecture, catalytic mechanism, and functional modification of Tn5 transposase, as well as its application in advanced transgenic editing and library construction of sequencing. Furthermore, it provides prospects for future research in this field.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1007/s12257-024-00112-7
Sanghee Cho, Yun Jin Park, Jinhee Lee, Jong-Sup Bae
Sepsis is a life-threatening condition triggered by the body’s extreme response to an infection, leading to widespread inflammation, organ dysfunction, and potentially fatal complications. While lupeol, a significant phytosterol found in various herbal plants, has been considered as a potential anti-cancer agent, its anti-septic activities and underlying molecular mechanisms remain unclear. The aim of this study is to investigate the effects of lupeol on a cecal ligation and puncture (CLP)-induced septic mouse model. Animals were categorized into six groups: control, CLP-operated, CLP plus maslinic acid, and CLP plus lupeol (0.5, 1, or 2 mg/kg). The assessment included survival rate, body weight changes, inflammatory cytokines, and histological analyses. Additionally, human endothelial cells were stimulated with high mobility group box1 (HMGB1) protein and lupeol, with cell viability determined. Inflammatory markers and gene expression were evaluated through enzymelinked immunosorbent assay and Western blot analysis, respectively. After CLP surgery, the group treated with lupeol showed improved survival rates and body weight compared to the untreated control group. Lupeol treatment also decreased levels of tumor necrosis factor (TNF)-α, interleukin-1β, nitric oxide, and cytokines associated with kidney inflammation. When administered to HMGB1-activated cells, lupeol reduced the expression of Toll-like receptor 4 and TNF-α, while simultaneously activating phosphoinositide 3-kinase/AKT signaling to enhance cell survival. In conclusion, lupeol demonstrated anti-inflammatory properties and conferred protective effects against CLP-induced sepsis, reinforcing cell survival in the face of septic responses.
{"title":"Suppressive activities of lupeol on sepsis mouse model","authors":"Sanghee Cho, Yun Jin Park, Jinhee Lee, Jong-Sup Bae","doi":"10.1007/s12257-024-00112-7","DOIUrl":"https://doi.org/10.1007/s12257-024-00112-7","url":null,"abstract":"<p>Sepsis is a life-threatening condition triggered by the body’s extreme response to an infection, leading to widespread inflammation, organ dysfunction, and potentially fatal complications. While lupeol, a significant phytosterol found in various herbal plants, has been considered as a potential anti-cancer agent, its anti-septic activities and underlying molecular mechanisms remain unclear. The aim of this study is to investigate the effects of lupeol on a cecal ligation and puncture (CLP)-induced septic mouse model. Animals were categorized into six groups: control, CLP-operated, CLP plus maslinic acid, and CLP plus lupeol (0.5, 1, or 2 mg/kg). The assessment included survival rate, body weight changes, inflammatory cytokines, and histological analyses. Additionally, human endothelial cells were stimulated with high mobility group box1 (HMGB1) protein and lupeol, with cell viability determined. Inflammatory markers and gene expression were evaluated through enzymelinked immunosorbent assay and Western blot analysis, respectively. After CLP surgery, the group treated with lupeol showed improved survival rates and body weight compared to the untreated control group. Lupeol treatment also decreased levels of tumor necrosis factor (TNF)-α, interleukin-1β, nitric oxide, and cytokines associated with kidney inflammation. When administered to HMGB1-activated cells, lupeol reduced the expression of Toll-like receptor 4 and TNF-α, while simultaneously activating phosphoinositide 3-kinase/AKT signaling to enhance cell survival. In conclusion, lupeol demonstrated anti-inflammatory properties and conferred protective effects against CLP-induced sepsis, reinforcing cell survival in the face of septic responses.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1007/s12257-024-00111-8
Young Hwan Goh, Ye Chan Kim, Sang Hun Jeong, Sangwoo Joo, You Kyoung Kwon, Hyunseok Yoon, Seohee Jung, Taresh P. Khobragade, Pritam Giri, Seonga Lim, Subin Yun, Sunga Cho, Sang Hyun Lee, Woo-Jae Chung, Jae Eun Lim, Taek Jin Kang, Hyungdon Yun
Lycopene is a compound classified as carotenoid, also known as tetraterpenoids, and its high antioxidative capabilities make demand in pharmaceutical and nutrient fields. For these reasons, much research on microbial production of lycopene has been developed and reported for more than two decades. Nevertheless, a standardized in vitro biosynthesis method for lycopene synthesis has not been reported to date. The major reasons of the absence of this method lie on the poor solubility of hydrophobic intermediates (geranylgeranyl pyrophosphate [GGPP] and phytoene), and the difficulty of employing membrane-binding enzyme, phytoene desaturase (CrtI) into in vitro reactions. In this study, we developed a standard method of in vitro biosynthesis of lycopene from geranyl pyrophosphate using four enzymes, namely farnesyl pyrophosphate synthase (IspA), GGPP synthase (CrtE), phytoene synthase (CrtB), phytoene desaturase (CrtI), and liposome-the key material, which can provide both hydrophobic area and a lipid membrane for the membrane-binding enzyme CrtI. Moreover, we performed a screening of the in vitro lycopene synthetic pathway using cell-free protein synthesis system, which verifies the applicability of our system as a tool for screening the lycopene synthesis pathway.
{"title":"Development of in vitro lycopene biosynthesis from geranyl pyrophosphate employing cell-free protein synthesis","authors":"Young Hwan Goh, Ye Chan Kim, Sang Hun Jeong, Sangwoo Joo, You Kyoung Kwon, Hyunseok Yoon, Seohee Jung, Taresh P. Khobragade, Pritam Giri, Seonga Lim, Subin Yun, Sunga Cho, Sang Hyun Lee, Woo-Jae Chung, Jae Eun Lim, Taek Jin Kang, Hyungdon Yun","doi":"10.1007/s12257-024-00111-8","DOIUrl":"https://doi.org/10.1007/s12257-024-00111-8","url":null,"abstract":"<p>Lycopene is a compound classified as carotenoid, also known as tetraterpenoids, and its high antioxidative capabilities make demand in pharmaceutical and nutrient fields. For these reasons, much research on microbial production of lycopene has been developed and reported for more than two decades. Nevertheless, a standardized in vitro biosynthesis method for lycopene synthesis has not been reported to date. The major reasons of the absence of this method lie on the poor solubility of hydrophobic intermediates (geranylgeranyl pyrophosphate [GGPP] and phytoene), and the difficulty of employing membrane-binding enzyme, phytoene desaturase (CrtI) into in vitro reactions. In this study, we developed a standard method of in vitro biosynthesis of lycopene from geranyl pyrophosphate using four enzymes, namely farnesyl pyrophosphate synthase (IspA), GGPP synthase (CrtE), phytoene synthase (CrtB), phytoene desaturase (CrtI), and liposome-the key material, which can provide both hydrophobic area and a lipid membrane for the membrane-binding enzyme CrtI. Moreover, we performed a screening of the in vitro lycopene synthetic pathway using cell-free protein synthesis system, which verifies the applicability of our system as a tool for screening the lycopene synthesis pathway.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1007/s12257-024-00107-4
Toan Minh Vo, Sunghoon Park
β-Alanine is a versatile amino acid with wide-range industrial applications, but its production from glucose has been limited by a low yield. This study addresses this challenge by developing efficient Escherichia coli strains with modified carbon metabolism as microbial cell factories and implementing a two-stage fermentation strategy. The introduction of aspartate decarboxylase (PanDE56S/I88M) facilitates the conversion of aspartate to β-alanine, while the overexpression of key enzymes such as phosphoenolpyruvate carboxylase and aspartate dehydrogenase increases the carbon flow from phosphoenolpyruvate to aspartate. To mitigate oxidative stress, the glutathione cycle was enhanced by overexpressing BtuE and Gor. In a bioreactor, the optimized strain achieved β-alanine production of 71.7 g/L with a yield of 1.0 mol/mol glucose, reaching a peak of 1.29 mol/mol. Notably, the utilization of acetate as a carbon feedstock enabled the production of 50 g/L of β-alanine with a 0.33 mol/mol acetate yield, showcasing the potential for sustainable production. This research offers valuable insights into improving the carbon yield in β-alanine production, which is of great importance for industrial applications.
{"title":"High-yield β-alanine production from glucose and acetate in Escherichia coli","authors":"Toan Minh Vo, Sunghoon Park","doi":"10.1007/s12257-024-00107-4","DOIUrl":"https://doi.org/10.1007/s12257-024-00107-4","url":null,"abstract":"<p><i>β</i>-Alanine is a versatile amino acid with wide-range industrial applications, but its production from glucose has been limited by a low yield. This study addresses this challenge by developing efficient <i>Escherichia coli</i> strains with modified carbon metabolism as microbial cell factories and implementing a two-stage fermentation strategy. The introduction of aspartate decarboxylase (PanD<sup>E56S/I88M</sup>) facilitates the conversion of aspartate to <i>β</i>-alanine, while the overexpression of key enzymes such as phosphoenolpyruvate carboxylase and aspartate dehydrogenase increases the carbon flow from phosphoenolpyruvate to aspartate. To mitigate oxidative stress, the glutathione cycle was enhanced by overexpressing BtuE and Gor. In a bioreactor, the optimized strain achieved <i>β</i>-alanine production of 71.7 g/L with a yield of 1.0 mol/mol glucose, reaching a peak of 1.29 mol/mol. Notably, the utilization of acetate as a carbon feedstock enabled the production of 50 g/L of <i>β</i>-alanine with a 0.33 mol/mol acetate yield, showcasing the potential for sustainable production. This research offers valuable insights into improving the carbon yield in <i>β</i>-alanine production, which is of great importance for industrial applications.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1007/s12257-024-00109-2
In Seop Yoon, Hye Jeong Nam, Cheol Am Hong
Nucleic acids (DNA and RNA) have been recognized as promising building blocks to fabricate a variety of well-defined two- and three-dimensional architectures through the programmable molecular self-assembly of multiple oligomeric strands. Y-shaped oligonucleotides are currently among the most widely employed nanostructures in the field of nucleic acid nanotechnology due to their unique features, including high structural stability, excellent biocompatibility, simplicity and ease of synthesis, and precisely controlled sizes. To functionalize biological activity, Y-shaped oligonucleotides can be incorporated with therapeutic genes such as small interfering RNA (siRNA) for target gene-specific silencing and CpG oligonucleotides (CpG ODN) for the activation of innate immune responses. Compared to the linear structures of siRNA and CpG ODN, Y-shaped siRNA and CpG ODN structures have demonstrated significant potential in the treatment of various diseases due to improved serum stability and intracellular uptake. Here, we review a broad spectrum of related topics, including the design, construction, and characteristics of Y-shaped oligonucleotides with a specific focus on their potential as a promising platform for enhancing the therapeutic efficacy of siRNA and CpG ODN.
{"title":"Y-shaped oligonucleotides: a promising platform for enhanced therapy with siRNA and CpG Oligodeoxyribonucleotides","authors":"In Seop Yoon, Hye Jeong Nam, Cheol Am Hong","doi":"10.1007/s12257-024-00109-2","DOIUrl":"https://doi.org/10.1007/s12257-024-00109-2","url":null,"abstract":"<p>Nucleic acids (DNA and RNA) have been recognized as promising building blocks to fabricate a variety of well-defined two- and three-dimensional architectures through the programmable molecular self-assembly of multiple oligomeric strands. Y-shaped oligonucleotides are currently among the most widely employed nanostructures in the field of nucleic acid nanotechnology due to their unique features, including high structural stability, excellent biocompatibility, simplicity and ease of synthesis, and precisely controlled sizes. To functionalize biological activity, Y-shaped oligonucleotides can be incorporated with therapeutic genes such as small interfering RNA (siRNA) for target gene-specific silencing and CpG oligonucleotides (CpG ODN) for the activation of innate immune responses. Compared to the linear structures of siRNA and CpG ODN, Y-shaped siRNA and CpG ODN structures have demonstrated significant potential in the treatment of various diseases due to improved serum stability and intracellular uptake. Here, we review a broad spectrum of related topics, including the design, construction, and characteristics of Y-shaped oligonucleotides with a specific focus on their potential as a promising platform for enhancing the therapeutic efficacy of siRNA and CpG ODN.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s12257-024-00110-9
Long Hoang Dang Bui, Keitaro Aoki, Tomonari Tanaka, Yuji Aso
Glyceric acid (GA), a carboxylic group-containing diol, is obtained from bioresources via microbial processes. In this study, we aimed to develop a reactive extraction method to separate GA from aqueous solutions using 2-naphthaleneboronic acid (2NB) and tri-octyl methyl ammonium chloride (TOMAC). Different feed molar amounts of 2NB (0–25 µmol), TOMAC (0–500 µmol), and NaOH (0–250 µmol) were used for GA (2.5 µmol) separation. A combination of 25 µmol 2NB, 100 µmol TOMAC, and 25 µmol NaOH was determined to be optimal for GA separation, providing 66.8 ± 3.2% GA yield at pH 11. GA was extracted by 2NB and TOMAC in a coordinated manner. Moreover, effects of various carboxylic acids (acetic, lactic, succinic, malic, tartaric, and citric acids) on GA separation from aqueous solutions were investigated. Interestingly, no significant effect on GA yeild (60.3 ± 1.2–65.2 ± 2.5%) was observed regardless of the type of carboxylic acid. The optimized protocol was subsequently applied to separate GA from crude GA solution prepared by incubating glycerol with the cells of the acetic acid bacterium, Acetobacter tropicalis NBRC 16470. GA separation was achieved at a comparable level (yield: 70.6 ± 4.6% and purity: 76.1 ± 4.1%) as that achieved using a GA reagent. This study demonstrated the efficiency of the repeated use of the organic phase for GA separation, with no significant changes in GA yield. Query Text="Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct."
甘油酸(GA)是一种含羧基的二元醇,可通过微生物过程从生物资源中获得。在这项研究中,我们旨在开发一种反应萃取法,利用 2-萘硼酸(2NB)和三辛基甲基氯化铵(TOMAC)从水溶液中分离出甘油酸。在分离 GA(2.5 µmol)时,使用了不同进料摩尔量的 2NB(0-25 µmol)、TOMAC(0-500 µmol)和 NaOH(0-250 µmol)。25微摩尔2NB、100微摩尔TOMAC和25微摩尔NaOH的组合被确定为分离GA的最佳组合,在pH值为11时,GA的产率为66.8 ± 3.2%。2NB 和 TOMAC 以协调的方式提取了 GA。此外,还研究了各种羧酸(乙酸、乳酸、琥珀酸、苹果酸、酒石酸和柠檬酸)对从水溶液中分离 GA 的影响。有趣的是,无论使用哪种羧酸,对 GA 的酵母率(60.3 ± 1.2-65.2 ± 2.5%)都没有明显影响。优化后的方案随后被用于从通过甘油与醋酸细菌(Acetobacter tropicalis NBRC 16470)细胞培养制备的粗 GA 溶液中分离 GA。GA 的分离率(产率:70.6 ± 4.6%,纯度:76.1 ± 4.1%)与使用 GA 试剂的分离率相当。这项研究证明了重复使用有机相分离 GA 的效率,GA 产率没有显著变化。Query Text="请确认作者姓名是否准确,顺序是否正确(名字、中间名/首字母、姓氏)。作者 1 姓:[请注明作者姓名]。另外,请确认元数据中的细节是否正确"。
{"title":"Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride","authors":"Long Hoang Dang Bui, Keitaro Aoki, Tomonari Tanaka, Yuji Aso","doi":"10.1007/s12257-024-00110-9","DOIUrl":"https://doi.org/10.1007/s12257-024-00110-9","url":null,"abstract":"<p>Glyceric acid (GA), a carboxylic group-containing diol, is obtained from bioresources via microbial processes. In this study, we aimed to develop a reactive extraction method to separate GA from aqueous solutions using 2-naphthaleneboronic acid (2NB) and tri-octyl methyl ammonium chloride (TOMAC). Different feed molar amounts of 2NB (0–25 µmol), TOMAC (0–500 µmol), and NaOH (0–250 µmol) were used for GA (2.5 µmol) separation. A combination of 25 µmol 2NB, 100 µmol TOMAC, and 25 µmol NaOH was determined to be optimal for GA separation, providing 66.8 ± 3.2% GA yield at pH 11. GA was extracted by 2NB and TOMAC in a coordinated manner. Moreover, effects of various carboxylic acids (acetic, lactic, succinic, malic, tartaric, and citric acids) on GA separation from aqueous solutions were investigated. Interestingly, no significant effect on GA yeild (60.3 ± 1.2–65.2 ± 2.5%) was observed regardless of the type of carboxylic acid. The optimized protocol was subsequently applied to separate GA from crude GA solution prepared by incubating glycerol with the cells of the acetic acid bacterium, <i>Acetobacter tropicalis</i> NBRC 16470. GA separation was achieved at a comparable level (yield: 70.6 ± 4.6% and purity: 76.1 ± 4.1%) as that achieved using a GA reagent. This study demonstrated the efficiency of the repeated use of the organic phase for GA separation, with no significant changes in GA yield. Query Text=\"Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct.\"</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}