Leptospirosis is a globally distributed infectious disease caused by pathogenic spirochetes of the Leptospira genus, often overlooked. It is estimated that the disease affects approximately one million people annually, resulting in more than 58,900 deaths. The gold standard for serodiagnosis of leptospirosis is the Microscopic Agglutination Test (MAT). However, the limitations of this technique necessitate the exploration of alternative diagnostic methods. In this study, we evaluated the ErpY-like recombinant protein (rErpY-like) in the development of a serologic diagnostic assay for human leptospirosis. Eighty-six human sera samples, characterized by MAT, underwent evaluation through indirect IgM-ELISA and IgG-ELISA. The sensitivity and specificity values obtained from IgM-ELISA were 60% and 76%, respectively, while those from IgG-ELISA were 96.4% and 100%, respectively. The use of the rErpY-like protein in both IgM-ELISA and IgG-ELISA proves to be a sensitive and specific method for antibody detection. This could potentially serve as a valuable alternative tool in the diagnosis of human leptospirosis.
{"title":"Advancing serologic diagnosis: assessing the efficacy of rErpY-like protein in human leptospirosis detection.","authors":"Thayná Laner Cardoso, Stella Buchhorn de Freitas, Amilton Clair Pinto Seixas Neto, Ilana Teruszkin Balassiano, Daiane Drawanz Hartwig","doi":"10.1007/s42770-024-01364-4","DOIUrl":"10.1007/s42770-024-01364-4","url":null,"abstract":"<p><p>Leptospirosis is a globally distributed infectious disease caused by pathogenic spirochetes of the Leptospira genus, often overlooked. It is estimated that the disease affects approximately one million people annually, resulting in more than 58,900 deaths. The gold standard for serodiagnosis of leptospirosis is the Microscopic Agglutination Test (MAT). However, the limitations of this technique necessitate the exploration of alternative diagnostic methods. In this study, we evaluated the ErpY-like recombinant protein (rErpY-like) in the development of a serologic diagnostic assay for human leptospirosis. Eighty-six human sera samples, characterized by MAT, underwent evaluation through indirect IgM-ELISA and IgG-ELISA. The sensitivity and specificity values obtained from IgM-ELISA were 60% and 76%, respectively, while those from IgG-ELISA were 96.4% and 100%, respectively. The use of the rErpY-like protein in both IgM-ELISA and IgG-ELISA proves to be a sensitive and specific method for antibody detection. This could potentially serve as a valuable alternative tool in the diagnosis of human leptospirosis.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2279-2284"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-28DOI: 10.1007/s42770-024-01380-4
Thaynara Millena de Oliveira Bezerra, Keyla Vitória Marques Xavier, Ana Carolina de Oliveira Luz, Isabella Macário Ferro Cavalcanti, Carlos Alexandre Antunes de Brito, Tereza Cristina Leal- Balbino
Helicobacter pylori is a major cause of gastrointestinal disorders such as chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. It is estimated that around half of the world's population is infected with this pathogen, with underdeveloped countries reporting the highest frequencies. The genes cagA, cagM, vacA, and oipA are some of the most important virulence factors of H. pylori; however, there are no recent studies from Recife-PE demonstrating their frequency, and their relationship with severe gastric modifications. This work aims to use qualitative PCR to detect the virulence genes cagA, cagM, vacA, and oipA in H. pylori isolates obtained from patients in a public hospital in Recife (PE). We collected samples from the stomach's body and antrum of 147 patients, from which 71 (48%) tested positive for H. pylori. Among positive samples, the most frequently infected gender was female (44/71, 62%), and the most frequently infected age group was those above the age of 46 (31/71, 44%). Histological examination of H. pylori-positive samples revealed alterations other than chronic gastritis, including metaplasia and atrophy. The frequency of cagA, cagM, and oipA genes were identified in 84%, 56%, and 69% of the samples tested, respectively, as well as the vacA-s1m1 allelic combination (77%). However, there was no statistically significant variation in the occurrence of these genes, therefore they cannot be considered unique markers of severity in our setting. New research with larger samples and investigations of other genetic markers can aid uncover local risk factors and lead to a better understanding of H. pylori's pathogenesis.
{"title":"Prevalence of cagA, cagM, vacA and oipA genes in isolates of Helicobacter pylori obtained from hospital patients in Northeast Brazil.","authors":"Thaynara Millena de Oliveira Bezerra, Keyla Vitória Marques Xavier, Ana Carolina de Oliveira Luz, Isabella Macário Ferro Cavalcanti, Carlos Alexandre Antunes de Brito, Tereza Cristina Leal- Balbino","doi":"10.1007/s42770-024-01380-4","DOIUrl":"10.1007/s42770-024-01380-4","url":null,"abstract":"<p><p>Helicobacter pylori is a major cause of gastrointestinal disorders such as chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. It is estimated that around half of the world's population is infected with this pathogen, with underdeveloped countries reporting the highest frequencies. The genes cagA, cagM, vacA, and oipA are some of the most important virulence factors of H. pylori; however, there are no recent studies from Recife-PE demonstrating their frequency, and their relationship with severe gastric modifications. This work aims to use qualitative PCR to detect the virulence genes cagA, cagM, vacA, and oipA in H. pylori isolates obtained from patients in a public hospital in Recife (PE). We collected samples from the stomach's body and antrum of 147 patients, from which 71 (48%) tested positive for H. pylori. Among positive samples, the most frequently infected gender was female (44/71, 62%), and the most frequently infected age group was those above the age of 46 (31/71, 44%). Histological examination of H. pylori-positive samples revealed alterations other than chronic gastritis, including metaplasia and atrophy. The frequency of cagA, cagM, and oipA genes were identified in 84%, 56%, and 69% of the samples tested, respectively, as well as the vacA-s1m1 allelic combination (77%). However, there was no statistically significant variation in the occurrence of these genes, therefore they cannot be considered unique markers of severity in our setting. New research with larger samples and investigations of other genetic markers can aid uncover local risk factors and lead to a better understanding of H. pylori's pathogenesis.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2631-2641"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-31DOI: 10.1007/s42770-024-01397-9
Samriddh Srivastava, Garima Mathur
Bacterial Cellulose (BC) offers a wide range of applications across various industries, including food, biomedical, and textiles, owing to its distinctive properties. Its unique 3D reticulated network of cellulose nanofibers, imparts excellent mechanical qualities, a high water-holding capacity, and thermal stability. Additionally, it possesses remarkable biocompatibility, biodegradability, high crystallinity, and purity. These attributes have offered significant interest in BC within both academic and industrial sectors. However, BC production is associated with high costs due to the use of expensive growth media and low yields. The study reports the potential of our indigenous isolate, Komagataeibacter saccharivorans BC-G1, as BC producer. Statistical optimization of BC production was carried out using Placket-Burman design and Central composite design, by selecting different parameters. Eight significant factors such as temperature, pH, glucose, yeast, peptone, acetic acid, incubation time and % inoculum were studies using ANOVA-based response surface methodology. Results showed that BC yield (8.5 g/L) with 1.8-fold after optimization of parameters. Maximum cellulose production (8.5 ± 1.8 g/L) was obtained using 2% glucose, 0.3% yeast extract, 0.3% peptone, 0.75% (v/v) acetic acid at pH 7.0 for 10 days of incubation with 4% inoculum at 25 °C under static culture. Main effect graph showed incubation time and acetic acid concentration as the most significant parameters affecting BC production in our study. The physicochemical characterization of produced BC was done using FTIR, XRD and SEM techniques.
细菌纤维素(Bacterial Cellulose,BC)因其独特的性能,在食品、生物医学和纺织品等各行各业都有广泛的应用。其独特的三维网状纤维素纳米纤维网具有出色的机械性能、高保水能力和热稳定性。此外,它还具有出色的生物相容性、生物可降解性、高结晶度和纯度。这些特性引起了学术界和工业界对 BC 的极大兴趣。然而,由于使用昂贵的生长介质和产量较低,萃取物的生产成本较高。本研究报告了本地分离菌 Komagataeibacter saccharivorans BC-G1 作为 BC 生产者的潜力。通过选择不同的参数,采用褶皱-伯曼设计(Placket-Burman design)和中央复合设计(Central composite design)对 BC 生产进行了统计优化。采用基于方差分析的响应面方法对温度、pH 值、葡萄糖、酵母、蛋白胨、醋酸、培养时间和接种物百分比等八个重要因素进行了研究。结果表明,参数优化后 BC 产量(8.5 克/升)提高了 1.8 倍。在 pH 值为 7.0 的条件下,使用 2%葡萄糖、0.3%酵母提取物、0.3%蛋白胨、0.75%(v/v)乙酸,在 25 °C、4%接种物条件下培养 10 天,纤维素产量最高(8.5 ± 1.8 g/L)。主效应图显示,在我们的研究中,培养时间和醋酸浓度是影响 BC 产量的最重要参数。利用傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)技术对所生产的萃取物进行了物理化学表征。
{"title":"Statistical optimization of bioprocess parameters for enhanced production of bacterial cellulose from K. saccharivorans BC-G1.","authors":"Samriddh Srivastava, Garima Mathur","doi":"10.1007/s42770-024-01397-9","DOIUrl":"10.1007/s42770-024-01397-9","url":null,"abstract":"<p><p>Bacterial Cellulose (BC) offers a wide range of applications across various industries, including food, biomedical, and textiles, owing to its distinctive properties. Its unique 3D reticulated network of cellulose nanofibers, imparts excellent mechanical qualities, a high water-holding capacity, and thermal stability. Additionally, it possesses remarkable biocompatibility, biodegradability, high crystallinity, and purity. These attributes have offered significant interest in BC within both academic and industrial sectors. However, BC production is associated with high costs due to the use of expensive growth media and low yields. The study reports the potential of our indigenous isolate, Komagataeibacter saccharivorans BC-G1, as BC producer. Statistical optimization of BC production was carried out using Placket-Burman design and Central composite design, by selecting different parameters. Eight significant factors such as temperature, pH, glucose, yeast, peptone, acetic acid, incubation time and % inoculum were studies using ANOVA-based response surface methodology. Results showed that BC yield (8.5 g/L) with 1.8-fold after optimization of parameters. Maximum cellulose production (8.5 ± 1.8 g/L) was obtained using 2% glucose, 0.3% yeast extract, 0.3% peptone, 0.75% (v/v) acetic acid at pH 7.0 for 10 days of incubation with 4% inoculum at 25 °C under static culture. Main effect graph showed incubation time and acetic acid concentration as the most significant parameters affecting BC production in our study. The physicochemical characterization of produced BC was done using FTIR, XRD and SEM techniques.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2199-2210"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-18DOI: 10.1007/s42770-024-01406-x
Andressa Santana Santos, Vinícius Alexandre Fiaia Costa, Vivianny Aparecida Queiroz Freitas, Laura Raniere Borges Dos Anjos, Eder Soares de Almeida Santos, Thales Domingos Arantes, Carolina Rodrigues Costa, Ana Laura de Sene Amâncio Zara, Maria do Rosário Rodrigues Silva, Bruno Junior Neves
Sporotrichosis is recognized as the predominant subcutaneous mycosis in South America, attributed to pathogenic species within the Sporothrix genus. Notably, in Brazil, Sporothrix brasiliensis emerges as the principal species, exhibiting significant sapronotic, zoonotic and enzootic epidemic potential. Consequently, the discovery of novel therapeutic agents for the treatment of sporotrichosis is imperative. The present study is dedicated to the repositioning of pharmaceuticals for sporotrichosis therapy. To achieve this goal, we designed a pipeline with the following steps: (a) compilation and preparation of Sporothrix genome data; (b) identification of orthologous proteins among the species; (c) identification of homologous proteins in publicly available drug-target databases; (d) selection of Sporothrix essential targets using validated genes from Saccharomyces cerevisiae; (e) molecular modeling studies; and (f) experimental validation of selected candidates. Based on this approach, we were able to prioritize eight drugs for in vitro experimental validation. Among the evaluated compounds, everolimus and bifonazole demonstrated minimum inhibitory concentration (MIC) values of 0.5 µg/mL and 4.0 µg/mL, respectively. Subsequently, molecular docking studies suggest that bifonazole and everolimus may target specific proteins within S. brasiliensis- namely, sterol 14-α-demethylase and serine/threonine-protein kinase TOR, respectively. These findings shed light on the potential binding affinities and binding modes of bifonazole and everolimus with their probable targets, providing a preliminary understanding of the antifungal mechanism of action of these compounds. In conclusion, our research advances the understanding of the therapeutic potential of bifonazole and everolimus, supporting their further investigation as antifungal agents for sporotrichosis in prospective hit-to-lead and preclinical investigations.
{"title":"Drug to genome to drug: a computational large-scale chemogenomics screening for novel drug candidates against sporotrichosis.","authors":"Andressa Santana Santos, Vinícius Alexandre Fiaia Costa, Vivianny Aparecida Queiroz Freitas, Laura Raniere Borges Dos Anjos, Eder Soares de Almeida Santos, Thales Domingos Arantes, Carolina Rodrigues Costa, Ana Laura de Sene Amâncio Zara, Maria do Rosário Rodrigues Silva, Bruno Junior Neves","doi":"10.1007/s42770-024-01406-x","DOIUrl":"10.1007/s42770-024-01406-x","url":null,"abstract":"<p><p>Sporotrichosis is recognized as the predominant subcutaneous mycosis in South America, attributed to pathogenic species within the Sporothrix genus. Notably, in Brazil, Sporothrix brasiliensis emerges as the principal species, exhibiting significant sapronotic, zoonotic and enzootic epidemic potential. Consequently, the discovery of novel therapeutic agents for the treatment of sporotrichosis is imperative. The present study is dedicated to the repositioning of pharmaceuticals for sporotrichosis therapy. To achieve this goal, we designed a pipeline with the following steps: (a) compilation and preparation of Sporothrix genome data; (b) identification of orthologous proteins among the species; (c) identification of homologous proteins in publicly available drug-target databases; (d) selection of Sporothrix essential targets using validated genes from Saccharomyces cerevisiae; (e) molecular modeling studies; and (f) experimental validation of selected candidates. Based on this approach, we were able to prioritize eight drugs for in vitro experimental validation. Among the evaluated compounds, everolimus and bifonazole demonstrated minimum inhibitory concentration (MIC) values of 0.5 µg/mL and 4.0 µg/mL, respectively. Subsequently, molecular docking studies suggest that bifonazole and everolimus may target specific proteins within S. brasiliensis- namely, sterol 14-α-demethylase and serine/threonine-protein kinase TOR, respectively. These findings shed light on the potential binding affinities and binding modes of bifonazole and everolimus with their probable targets, providing a preliminary understanding of the antifungal mechanism of action of these compounds. In conclusion, our research advances the understanding of the therapeutic potential of bifonazole and everolimus, supporting their further investigation as antifungal agents for sporotrichosis in prospective hit-to-lead and preclinical investigations.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2655-2667"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-01DOI: 10.1007/s42770-024-01434-7
Rajal Dave, Debashis Banerjee
The worldwide prevalence of antimicrobial resistance coupled with the unavailability of newer antibiotics, has brought the sharp focus back among the scientific community, towards the discovery of novel alternative therapeutics to tackle the menace. Consequently, in the current post-antibiotic era, 'Bacteriophage Therapy' has emerged as one of the most promising option to address this problem. Bacteriophages, actually discovered long back, has shown greater potential to kill various bacterial pathogens, including the resistant clinical ones. Some of the other advantages for the use of bacteriophage therapy to treat infectious diseases include, wider availability of these microorganisms in nature, host-specific action, absence of any significant side-effects in humans and most often also exhibiting a broader anti-bacterial potential. In the recent times, the potential of phage therapy has been demonstrated in various treatments, clinical trials and infection models across the globe, where even antibiotics have completely failed. To address the global threat of AMR, WHO and UN have jointly illustrated "One Health" approach, recently extending the context to bacteriophage therapy. Many pharmaceutical companies have also recently started employing bacteriophages for developing different kinds of formulations for catering to medical and other industries. It has even shown great effect as combinatorial therapy along with antibiotics, to treat or manage various critical antibiotic resistant clinical infections. This continuously expanding potential of the bacteriophages holds great promise in the future, in the fight against the rising threat of AMR globally.
抗菌素耐药性在全球范围内的普遍存在,再加上新型抗生素的匮乏,使得科学界重新开始关注新型替代疗法的发现,以应对这一威胁。因此,在当前的后抗生素时代,"噬菌体疗法 "已成为解决这一问题的最有前途的选择之一。噬菌体其实很早就被发现了,它在杀灭各种细菌病原体(包括临床上的抗药性病原体)方面显示出更大的潜力。利用噬菌体疗法治疗传染病的其他一些优势包括:这些微生物在自然界中的可获得性更广、对宿主具有特异性作用、对人体没有任何明显的副作用,而且通常还具有更广泛的抗菌潜力。近来,噬菌体疗法的潜力已在全球范围内的各种治疗、临床试验和感染模型中得到证实,甚至抗生素也完全无法奏效。为了应对 AMR 的全球威胁,世界卫生组织和联合国共同提出了 "一个健康 "方法,最近又将其扩展到了噬菌体疗法。许多制药公司最近也开始利用噬菌体来开发不同的配方,以满足医疗和其他行业的需要。它甚至与抗生素一起作为组合疗法,在治疗或控制各种严重的抗生素耐药性临床感染方面显示出巨大的效果。噬菌体的这种不断扩大的潜力为未来对抗全球不断上升的 AMR 威胁带来了巨大希望。
{"title":"Bacteriophage therapy- a refurbished age-old potential strategy to treat antibiotic and multidrug resistant bacterial infections in future.","authors":"Rajal Dave, Debashis Banerjee","doi":"10.1007/s42770-024-01434-7","DOIUrl":"10.1007/s42770-024-01434-7","url":null,"abstract":"<p><p>The worldwide prevalence of antimicrobial resistance coupled with the unavailability of newer antibiotics, has brought the sharp focus back among the scientific community, towards the discovery of novel alternative therapeutics to tackle the menace. Consequently, in the current post-antibiotic era, 'Bacteriophage Therapy' has emerged as one of the most promising option to address this problem. Bacteriophages, actually discovered long back, has shown greater potential to kill various bacterial pathogens, including the resistant clinical ones. Some of the other advantages for the use of bacteriophage therapy to treat infectious diseases include, wider availability of these microorganisms in nature, host-specific action, absence of any significant side-effects in humans and most often also exhibiting a broader anti-bacterial potential. In the recent times, the potential of phage therapy has been demonstrated in various treatments, clinical trials and infection models across the globe, where even antibiotics have completely failed. To address the global threat of AMR, WHO and UN have jointly illustrated \"One Health\" approach, recently extending the context to bacteriophage therapy. Many pharmaceutical companies have also recently started employing bacteriophages for developing different kinds of formulations for catering to medical and other industries. It has even shown great effect as combinatorial therapy along with antibiotics, to treat or manage various critical antibiotic resistant clinical infections. This continuously expanding potential of the bacteriophages holds great promise in the future, in the fight against the rising threat of AMR globally.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"3043-3049"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-09DOI: 10.1007/s42770-024-01437-4
Marwan Abu-Halaweh, Eman Al-Bsoul
Campylobacter is gram-negative bacteria considered the predominant genera isolated from poultry samples and associated with gastroenteritis. Due to the problems in conventional cultural methods of time-consuming and technically demanding requirements, a rapid and feasible method for their identification and discrimination of the closely related spp. Including Campylobacter coli, Campylobacter fetus, and Campylobacter jejuni is needed. This study analyzes the chicken and sheep meats samples (n = 125) using culture and pre-enrichment-based Quadraplex real-time PCR by targeting OrfA, CstA, HipO, and 16 S rRNA genes of C. coli, C. fetus, C. jejuni and Campylobacter spp. Respectively. The analysis of 125 chicken and sheep meat samples by culture and real-time PCR showed high concordance between the results of the two methods. The present study show high prevalence of Campylobacter species (35% and 32% from chicken and meat respectively) of which C. jejuni were the most abundant. Reaction efficiencies were between 90 and 110%, and detect as low as 8.9 fg in C. jejuni. The need for quick detection and discrimination methods in sheep and chicken meat can be met using the described Quadraplex real-time PCR methodology.
{"title":"Quadruplex qPCR for detection and discrimination of C. Coli,C. fetus, and C. Jejuni from other Campylobacter species in chicken and sheep meat.","authors":"Marwan Abu-Halaweh, Eman Al-Bsoul","doi":"10.1007/s42770-024-01437-4","DOIUrl":"10.1007/s42770-024-01437-4","url":null,"abstract":"<p><p>Campylobacter is gram-negative bacteria considered the predominant genera isolated from poultry samples and associated with gastroenteritis. Due to the problems in conventional cultural methods of time-consuming and technically demanding requirements, a rapid and feasible method for their identification and discrimination of the closely related spp. Including Campylobacter coli, Campylobacter fetus, and Campylobacter jejuni is needed. This study analyzes the chicken and sheep meats samples (n = 125) using culture and pre-enrichment-based Quadraplex real-time PCR by targeting OrfA, CstA, HipO, and 16 S rRNA genes of C. coli, C. fetus, C. jejuni and Campylobacter spp. Respectively. The analysis of 125 chicken and sheep meat samples by culture and real-time PCR showed high concordance between the results of the two methods. The present study show high prevalence of Campylobacter species (35% and 32% from chicken and meat respectively) of which C. jejuni were the most abundant. Reaction efficiencies were between 90 and 110%, and detect as low as 8.9 fg in C. jejuni. The need for quick detection and discrimination methods in sheep and chicken meat can be met using the described Quadraplex real-time PCR methodology.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2547-2556"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-20DOI: 10.1007/s42770-024-01390-2
Edenilson Meyer, Shantau Camargo Gomes Stoffel, Anna Flávia Neri de Almeida, Juliana do Amaral Scarsanella, André Steiner Vieira, Barbara Santos Ventura, Andressa Danielli Canei, Juliana Gress Bortolini, Sergio Miana de Faria, Cláudio Roberto Fonseca Sousa Soares, Paulo Emílio Lovato
We assessed, in a field experiment, the effects of arbuscular mycorrhizal fungi (Rhizophagus intraradices) and plant growth-promoting bacteria (Azospirillum brasilense) on the soil biological activity and the growth of key pioneer species used in the revegetation of coal-mining areas undergoing recovery. We applied four inoculation treatments to the pioneer plant species (Lablab purpureus, Paspalum notatum, Crotalaria juncea, Neonotonia wightii, Stylosanthes guianensis, Andropogon gayanus and Trifolium repens) used in the recovery process: NI (Control - Non-inoculated), AZO (A. brasilense), AMF (R. intraradices), and co-inoculation of AZO and AMF. On the 75th and 180th days, we measured plant dry mass, mycorrhizal colonization, N and P concentration, and accumulation in plant tissue. We collected soil to quantify glomalin content and soil enzyme activity. After 180 days, we did a phytosociological characterization of the remaining spontaneous plants.The both microorganisms, singly or co-inoculated, promoted increases in different fractions of soil glomalin, acid phosphatase activity, and fluorescein diacetate activity at 75 and 180 days. The inoculation was linked to higher plant biomass production (62-89%) and increased plant P and N accumulation by 34-75% and 70-85% at 180 days, compared with the non-inoculated treatment. Among the pioneer species sown Crotalaria juncea produced the highest biomass at the 75th and 180th days (67% and 76% of all biomass), followed by Lablab purpureus (3% and 0.5%), while the other species failed to establish. At 180 days, we observed twenty spontaneous plant species growing in the area, primarily from the Poaceae family (74%). That suggests that the pioneer species present in the area do not hinder the ecological succession process. Inoculation of R. intraradices and A. brasilense, isolated or combined, increases soil biological activity, growth, and nutrient accumulation in key pioneer plant species, indicating the potential of that technique for the recovery of lands degraded by coal mining.
{"title":"Rhizophagus intraradices and Azospirillum brasilense improve growth of herbaceous plants and soil biological activity in revegetation of a recovering coal-mining area.","authors":"Edenilson Meyer, Shantau Camargo Gomes Stoffel, Anna Flávia Neri de Almeida, Juliana do Amaral Scarsanella, André Steiner Vieira, Barbara Santos Ventura, Andressa Danielli Canei, Juliana Gress Bortolini, Sergio Miana de Faria, Cláudio Roberto Fonseca Sousa Soares, Paulo Emílio Lovato","doi":"10.1007/s42770-024-01390-2","DOIUrl":"10.1007/s42770-024-01390-2","url":null,"abstract":"<p><p>We assessed, in a field experiment, the effects of arbuscular mycorrhizal fungi (Rhizophagus intraradices) and plant growth-promoting bacteria (Azospirillum brasilense) on the soil biological activity and the growth of key pioneer species used in the revegetation of coal-mining areas undergoing recovery. We applied four inoculation treatments to the pioneer plant species (Lablab purpureus, Paspalum notatum, Crotalaria juncea, Neonotonia wightii, Stylosanthes guianensis, Andropogon gayanus and Trifolium repens) used in the recovery process: NI (Control - Non-inoculated), AZO (A. brasilense), AMF (R. intraradices), and co-inoculation of AZO and AMF. On the 75th and 180th days, we measured plant dry mass, mycorrhizal colonization, N and P concentration, and accumulation in plant tissue. We collected soil to quantify glomalin content and soil enzyme activity. After 180 days, we did a phytosociological characterization of the remaining spontaneous plants.The both microorganisms, singly or co-inoculated, promoted increases in different fractions of soil glomalin, acid phosphatase activity, and fluorescein diacetate activity at 75 and 180 days. The inoculation was linked to higher plant biomass production (62-89%) and increased plant P and N accumulation by 34-75% and 70-85% at 180 days, compared with the non-inoculated treatment. Among the pioneer species sown Crotalaria juncea produced the highest biomass at the 75th and 180th days (67% and 76% of all biomass), followed by Lablab purpureus (3% and 0.5%), while the other species failed to establish. At 180 days, we observed twenty spontaneous plant species growing in the area, primarily from the Poaceae family (74%). That suggests that the pioneer species present in the area do not hinder the ecological succession process. Inoculation of R. intraradices and A. brasilense, isolated or combined, increases soil biological activity, growth, and nutrient accumulation in key pioneer plant species, indicating the potential of that technique for the recovery of lands degraded by coal mining.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2827-2837"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-29DOI: 10.1007/s42770-024-01395-x
Felipe Pinheiro Vilela, Amanda Akemi Kakumoto, Carolina Nogueira Gomes, Tábata Larissa Santos Pólvora, Átila Vinícius Vítor Nobre, Alan Grupioni Lourenço, Ana Carolina Fragoso Motta, Juliana Pfrimer Falcão
Stenotrophomonas maltophilia (S. maltophilia) is an intrinsically drug-resistant and biofilm-forming bacteria causing infections in immunocompromised humans. This study reports the isolation of five S. maltophilia strains from saliva and gingival crevicular fluid (GCF) of AIDS patients with periodontitis in São Paulo, Brazil, showing resistance to ceftazidime, strong biofilm formation capacity and a close genetic relationship. The presence of S. maltophilia strains in saliva and CGF of patients with AIDS and periodontitis is a concern for the presence and persistence of intrinsically resistant bacteria in the oral environment, enhancing the risk for the development of severe infections in immunocompromised patients.
{"title":"ST88 ceftazidime-resistant Stenotrophomonas maltophilia is present in the saliva and gingival crevicular fluid of patients with periodontitis and AIDS from São Paulo State, Brazil.","authors":"Felipe Pinheiro Vilela, Amanda Akemi Kakumoto, Carolina Nogueira Gomes, Tábata Larissa Santos Pólvora, Átila Vinícius Vítor Nobre, Alan Grupioni Lourenço, Ana Carolina Fragoso Motta, Juliana Pfrimer Falcão","doi":"10.1007/s42770-024-01395-x","DOIUrl":"10.1007/s42770-024-01395-x","url":null,"abstract":"<p><p>Stenotrophomonas maltophilia (S. maltophilia) is an intrinsically drug-resistant and biofilm-forming bacteria causing infections in immunocompromised humans. This study reports the isolation of five S. maltophilia strains from saliva and gingival crevicular fluid (GCF) of AIDS patients with periodontitis in São Paulo, Brazil, showing resistance to ceftazidime, strong biofilm formation capacity and a close genetic relationship. The presence of S. maltophilia strains in saliva and CGF of patients with AIDS and periodontitis is a concern for the presence and persistence of intrinsically resistant bacteria in the oral environment, enhancing the risk for the development of severe infections in immunocompromised patients.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"3031-3035"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-31DOI: 10.1007/s42770-024-01400-3
José Diniz de Souto Sobrinho, Ana Karolione de Valença Silva, Katianny Bezerra de Medeiros, Maria Luana Cristiny Rodrigues Silva, Ana Beatriz Monteiro de Medeiros, Débora Luise Canuto de Sousa, Sérgio Santos de Azevedo, Carolina de Sousa Américo Batista Santos
The Caatinga biome occurs only in Brazil and offers epidemiological conditions that should be assessed differently from other regions of Brazil and the world. Thus, the aim of this survey was to identify antimicrobial resistance, enterotoxin and biofilm production genes in Staphylococcus spp. isolated from facilities and fomites in a veterinary hospital in Caatinga biome. Samples were collected from surfaces of small animal clinical care tables (n =8), cages in the dog and cat hospitalisation sector and animals with infectious diseases (n = 21), small animal surgical centre (n =8), sterilisation sector (n =7) and stethoscopes (n = 32) by using sterile swabs. Bacterial isolation and identification, antimicrobial resistance phenotypic test and molecular detection of antimicrobial resistance, biofilm formation and enterotoxin genes were carried out. Ninety-five bacterial isolates were obtained, and 29 (30.5%) were identified as Staphylococcus spp. Overall, 13 isolates (44.8%) of six species of Staphylococcus spp. showed antimicrobial resistance profile, as well as S. haemolyticus expressed phenotypic profile of multidrug resistance. The antimicrobials with the highest resistance rates were penicillin and tetracycline. The most frequent resistance genes were blaZ and tetM, both detected in 10 (76.9%) isolates. The mecA, tetL and tetK genes had frequencies of 38.5% (5/13), 23.1% (3/13) and 15.4% (2/13), respectively. The biofilm production marker, icaD gene, was detected in one S. sciuri strain. SEE gene, which encodes enterotoxins, was detected in 15.4% (2/13) of the strains (S. pseudintermedius and S. intermedius). The occurrence of Staphylococcus spp. carrying resistance genes to diferent classes of antimicrobials, presenting MDR phenotypic pattern and carrying enterotoxins and biofim encoding genes recovered from veterinary hospital facilities and fomites in the Caatinga biome reinforce the need to implement prevention cares in veterinary practices to avoid One Health-concerning conditions.
{"title":"Antimicrobial resistance, enterotoxin and biofilm production genes in Staphylococcus spp. isolated from facilities and fomites in veterinary hospital in the Caatinga biome.","authors":"José Diniz de Souto Sobrinho, Ana Karolione de Valença Silva, Katianny Bezerra de Medeiros, Maria Luana Cristiny Rodrigues Silva, Ana Beatriz Monteiro de Medeiros, Débora Luise Canuto de Sousa, Sérgio Santos de Azevedo, Carolina de Sousa Américo Batista Santos","doi":"10.1007/s42770-024-01400-3","DOIUrl":"10.1007/s42770-024-01400-3","url":null,"abstract":"<p><p>The Caatinga biome occurs only in Brazil and offers epidemiological conditions that should be assessed differently from other regions of Brazil and the world. Thus, the aim of this survey was to identify antimicrobial resistance, enterotoxin and biofilm production genes in Staphylococcus spp. isolated from facilities and fomites in a veterinary hospital in Caatinga biome. Samples were collected from surfaces of small animal clinical care tables (n =8), cages in the dog and cat hospitalisation sector and animals with infectious diseases (n = 21), small animal surgical centre (n =8), sterilisation sector (n =7) and stethoscopes (n = 32) by using sterile swabs. Bacterial isolation and identification, antimicrobial resistance phenotypic test and molecular detection of antimicrobial resistance, biofilm formation and enterotoxin genes were carried out. Ninety-five bacterial isolates were obtained, and 29 (30.5%) were identified as Staphylococcus spp. Overall, 13 isolates (44.8%) of six species of Staphylococcus spp. showed antimicrobial resistance profile, as well as S. haemolyticus expressed phenotypic profile of multidrug resistance. The antimicrobials with the highest resistance rates were penicillin and tetracycline. The most frequent resistance genes were blaZ and tetM, both detected in 10 (76.9%) isolates. The mecA, tetL and tetK genes had frequencies of 38.5% (5/13), 23.1% (3/13) and 15.4% (2/13), respectively. The biofilm production marker, icaD gene, was detected in one S. sciuri strain. SEE gene, which encodes enterotoxins, was detected in 15.4% (2/13) of the strains (S. pseudintermedius and S. intermedius). The occurrence of Staphylococcus spp. carrying resistance genes to diferent classes of antimicrobials, presenting MDR phenotypic pattern and carrying enterotoxins and biofim encoding genes recovered from veterinary hospital facilities and fomites in the Caatinga biome reinforce the need to implement prevention cares in veterinary practices to avoid One Health-concerning conditions.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2885-2892"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-04DOI: 10.1007/s42770-024-01404-z
Gopika Sivan, Hridya V K, Divya P Sukumaran, Mohamed Hatha Abdulla
Multidrug-resistant pathogenic vibrios are a crisis of concern as they cause multiple illnesses, including gastroenteritis in humans and acute hepatopancreatic necrosis in aquaculture. In the current study, we investigated the prevalence of the beta-lactamase gene CTX-M-group 1 in Vibrio spp. (Vibrio cholerae and Vibrio parahaemolyticus) from the water and sediment of urban tropical mangrove ecosystems of Kerala, southwest India. A total of 120 isolates of Vibrio spp. were tested for antibiotic susceptibility to 14 antibiotics. In water, ampicillin resistance was very high in isolates of V. cholerae (94.1%, n = 17) and V. parahaemolyticus (89.1%, n = 46). 26.9% of V. parahaemolyticus and 14.2% of V. cholerae harbored the CTX-M-group 1 gene in water samples. Compared to V. cholerae, the CTX-M-group 1 gene was exclusively hosted by V. parahaemolyticus (49%) in sediment samples. A significant difference in the prevalence of the CTX-M-group 1 gene was observed among Vibrio spp. in both water and sediment samples (p < 0.05). The results revealed the presence of multidrug-resistant and beta-lactamase harboring Vibrio spp. in mangrove ecosystems, which may have evolved as a consequence of the misuse and abuse of broad-spectrum antibiotics as prophylaxis in human health care and aquaculture.
{"title":"Exploring extended-spectrum beta lactamase resistance in Vibrio parahaemolyticus and Vibrio cholerae within the tropical mangrove ecosystem of southwest India.","authors":"Gopika Sivan, Hridya V K, Divya P Sukumaran, Mohamed Hatha Abdulla","doi":"10.1007/s42770-024-01404-z","DOIUrl":"10.1007/s42770-024-01404-z","url":null,"abstract":"<p><p>Multidrug-resistant pathogenic vibrios are a crisis of concern as they cause multiple illnesses, including gastroenteritis in humans and acute hepatopancreatic necrosis in aquaculture. In the current study, we investigated the prevalence of the beta-lactamase gene CTX-M-group 1 in Vibrio spp. (Vibrio cholerae and Vibrio parahaemolyticus) from the water and sediment of urban tropical mangrove ecosystems of Kerala, southwest India. A total of 120 isolates of Vibrio spp. were tested for antibiotic susceptibility to 14 antibiotics. In water, ampicillin resistance was very high in isolates of V. cholerae (94.1%, n = 17) and V. parahaemolyticus (89.1%, n = 46). 26.9% of V. parahaemolyticus and 14.2% of V. cholerae harbored the CTX-M-group 1 gene in water samples. Compared to V. cholerae, the CTX-M-group 1 gene was exclusively hosted by V. parahaemolyticus (49%) in sediment samples. A significant difference in the prevalence of the CTX-M-group 1 gene was observed among Vibrio spp. in both water and sediment samples (p < 0.05). The results revealed the presence of multidrug-resistant and beta-lactamase harboring Vibrio spp. in mangrove ecosystems, which may have evolved as a consequence of the misuse and abuse of broad-spectrum antibiotics as prophylaxis in human health care and aquaculture.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2335-2343"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}