Inflammatory bowel disease (IBD) is a chronic and unspecific inflammatory disorder of the gastrointestinal tract, and current treatment options often fail to maintain long-term remission. Studies have shown that propionate level is reduced in fecal samples from patients with IBD. Propionate can ameliorate IBD through intestinal epithelial cells and immune regulation, but its effects on the inflammatory microenvironment and macrophage differentiation have not been widely studied. To address this, we constructed an engineered propionate-producing probiotic (EcNP3) to achieve sustained restoration of propionate levels in the gut and increase its bioavailability. DSS-induced experimental intestinal inflammation model was used to evaluate the effect of EcNP3 on improving the intestinal mucosal barrier and increasing the proportion of anti-inflammatory macrophages. It was found that EcNP3 exhibited a restorative effect on the depletion of peritoneal anti-inflammatory macrophages (F4/80hiCD11bhi) and significantly improved the expression level of IL-10. Simultaneously, the expression of IL-1β, IL-6, and CXCL1 was downregulated while inhibiting apoptosis of tissue-resident macrophages ex vivo. Further investigation revealed that EcNP3 regulates IL-10 expression through G protein-coupled receptor 43 and histone deacetylase. Furthermore, EcNP3 significantly inhibited the protein expression of HDAC1 and promoted the histone acetylation level of cells. Finally, EcNP3 significantly improved DSS-induced colitis in mice by increasing mucus production and reducing inflammatory infiltration. Our results suggest that the engineered live biotherapeutic product EcNP3 is a safe and potently efficacious treatment for IBD, which defines a novel strategy in IBD therapy through macrophage IL-10 signaling.
{"title":"Propionate-producing engineered probiotics ameliorated murine ulcerative colitis by restoring anti-inflammatory macrophage via the GPR43/HDAC1/IL-10 axis","authors":"Guangbo Kang, Xiaoli Wang, Mengxue Gao, Lina Wang, Zelin Feng, Shuxian Meng, Jiahao Wu, Zhixin Zhu, Xinran Gao, Xiaocang Cao, He Huang","doi":"10.1002/btm2.10682","DOIUrl":"10.1002/btm2.10682","url":null,"abstract":"<p>Inflammatory bowel disease (IBD) is a chronic and unspecific inflammatory disorder of the gastrointestinal tract, and current treatment options often fail to maintain long-term remission. Studies have shown that propionate level is reduced in fecal samples from patients with IBD. Propionate can ameliorate IBD through intestinal epithelial cells and immune regulation, but its effects on the inflammatory microenvironment and macrophage differentiation have not been widely studied. To address this, we constructed an engineered propionate-producing probiotic (EcNP3) to achieve sustained restoration of propionate levels in the gut and increase its bioavailability. DSS-induced experimental intestinal inflammation model was used to evaluate the effect of EcNP3 on improving the intestinal mucosal barrier and increasing the proportion of anti-inflammatory macrophages. It was found that EcNP3 exhibited a restorative effect on the depletion of peritoneal anti-inflammatory macrophages (F4/80hiCD11bhi) and significantly improved the expression level of IL-10. Simultaneously, the expression of IL-1β, IL-6, and CXCL1 was downregulated while inhibiting apoptosis of tissue-resident macrophages ex vivo. Further investigation revealed that EcNP3 regulates IL-10 expression through G protein-coupled receptor 43 and histone deacetylase. Furthermore, EcNP3 significantly inhibited the protein expression of HDAC1 and promoted the histone acetylation level of cells. Finally, EcNP3 significantly improved DSS-induced colitis in mice by increasing mucus production and reducing inflammatory infiltration. Our results suggest that the engineered live biotherapeutic product EcNP3 is a safe and potently efficacious treatment for IBD, which defines a novel strategy in IBD therapy through macrophage IL-10 signaling.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>The Spring of 2022 coincided with a long-awaited return of the conference series on Nanotechnology in Medicine (Calabria, Italy), chaired on this occasion by Dr Milica Radisic (University of Toronto) and Dr Victor Shahin (University of Münster) under the auspices of Engineering Conference International (ECI). To celebrate the main highlights of such event, the special issue of <i>Bioengineering & Translational Medicine</i> (Volume X, Issue X) brings together a curated collection of stimulating contributions from plenary, keynote, and invited speakers of the conference under the unifying theme of “enabling next-generation therapies.”</p><p>The third edition of this conference provided an intimate yet lively scientific forum whose purpose expanded upon the scope of the past two previous editions of the conference series (see, e.g., <i>Bioengineering & Translational Medicine</i> Vol. 4, Issues 2 & 3, 2019) in discussing recent research developments in the aforementioned field. Among the leading topics emphasized in this 2022 edition of the conference were (i) a deepening of the mechanistic understanding of biodistribution of systematically targeted nanoparticles (NPs), (ii) exploring the effects of mechanical environments of tissues and cells, (iii) the use of tissue and <i>organ-on-chip</i> (OoC) models in the studies of NP distribution and toxicity, (iv) generating an improved mechanistic understanding of the factors necessary to control in vivo NP targeting; and (v) exploiting such understanding to generate highly effective nanotechnologies for the early detection, imaging, and treatment of human diseases.</p><p>In this short editorial, we briefly take the opportunity to highlight a few contributions of interest that mark the special issue. Resonating with the timeliness of the COVID-19 pandemic, Lu et al. (https://doi.org/10.1002/btm2.10581) discuss recent advances in <i>heart-on-a-chip</i> platforms for elucidating SARS-CoV-2 pathogenesis, including the potential mechanisms that drive heart failure whereby viral infection induces myocardial dysfunction, with an outlook toward more advanced models for disease modeling and pharmacological discovery. Continuing in the area of OoC, Spitz et al. (https://doi.org/10.1002/btm2.10604) provide an overview of recent OoC advances in the field of neurodegenerative diseases (NDDs) directed toward non-invasive sensing strategies encompassing electrical, electrochemical and optical sensors. Motivated by the lack of insufficient predictive validity of animal-based disease models for clinical trials, the authors discuss promising on- and integrable off-chip sensing OoC strategies applicable to NDD research to advance the translational value of microphysiological systems in preclinical settings.</p><p>In parallel, Ramezani et al. (https://doi.org/10.1002/btm2.10652) discuss the potential of dye supramolecular assemblies for broad applications such as photoacoustic and fluorescence imaging, as well
{"title":"Enabling next-generation therapies: A foreword to a special issue on nanotechnology in medicine","authors":"Josué Sznitman","doi":"10.1002/btm2.10678","DOIUrl":"10.1002/btm2.10678","url":null,"abstract":"<p>The Spring of 2022 coincided with a long-awaited return of the conference series on Nanotechnology in Medicine (Calabria, Italy), chaired on this occasion by Dr Milica Radisic (University of Toronto) and Dr Victor Shahin (University of Münster) under the auspices of Engineering Conference International (ECI). To celebrate the main highlights of such event, the special issue of <i>Bioengineering & Translational Medicine</i> (Volume X, Issue X) brings together a curated collection of stimulating contributions from plenary, keynote, and invited speakers of the conference under the unifying theme of “enabling next-generation therapies.”</p><p>The third edition of this conference provided an intimate yet lively scientific forum whose purpose expanded upon the scope of the past two previous editions of the conference series (see, e.g., <i>Bioengineering & Translational Medicine</i> Vol. 4, Issues 2 & 3, 2019) in discussing recent research developments in the aforementioned field. Among the leading topics emphasized in this 2022 edition of the conference were (i) a deepening of the mechanistic understanding of biodistribution of systematically targeted nanoparticles (NPs), (ii) exploring the effects of mechanical environments of tissues and cells, (iii) the use of tissue and <i>organ-on-chip</i> (OoC) models in the studies of NP distribution and toxicity, (iv) generating an improved mechanistic understanding of the factors necessary to control in vivo NP targeting; and (v) exploiting such understanding to generate highly effective nanotechnologies for the early detection, imaging, and treatment of human diseases.</p><p>In this short editorial, we briefly take the opportunity to highlight a few contributions of interest that mark the special issue. Resonating with the timeliness of the COVID-19 pandemic, Lu et al. (https://doi.org/10.1002/btm2.10581) discuss recent advances in <i>heart-on-a-chip</i> platforms for elucidating SARS-CoV-2 pathogenesis, including the potential mechanisms that drive heart failure whereby viral infection induces myocardial dysfunction, with an outlook toward more advanced models for disease modeling and pharmacological discovery. Continuing in the area of OoC, Spitz et al. (https://doi.org/10.1002/btm2.10604) provide an overview of recent OoC advances in the field of neurodegenerative diseases (NDDs) directed toward non-invasive sensing strategies encompassing electrical, electrochemical and optical sensors. Motivated by the lack of insufficient predictive validity of animal-based disease models for clinical trials, the authors discuss promising on- and integrable off-chip sensing OoC strategies applicable to NDD research to advance the translational value of microphysiological systems in preclinical settings.</p><p>In parallel, Ramezani et al. (https://doi.org/10.1002/btm2.10652) discuss the potential of dye supramolecular assemblies for broad applications such as photoacoustic and fluorescence imaging, as well","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 3","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10678","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John R. Clegg, Kolade Adebowale, Zongmin Zhao, Samir Mitragotri
Hydrogels have been used in the clinic since the late 1980s with broad applications in drug delivery, cosmetics, tissue regeneration, among many other areas. The past three decades have witnessed rapid advances in the fields of polymer chemistry, crosslinking approaches, and hydrogel fabrication methods, which have collectively brought many new hydrogel products, either injectable or non-injectable, to clinical studies. In an article published in 2020 entitled “Hydrogels in the clinic”, we reviewed the clinical landscape and translational challenges of injectable hydrogels. Here, we provide an update on the advances in the field and also extend the scope to include non-injectable hydrogels. We highlight recently approved hydrogel products, provide an update on the clinical trials of injectable hydrogels, and discuss active clinical trials of topically applied and implantable hydrogels.
{"title":"Hydrogels in the clinic: An update","authors":"John R. Clegg, Kolade Adebowale, Zongmin Zhao, Samir Mitragotri","doi":"10.1002/btm2.10680","DOIUrl":"10.1002/btm2.10680","url":null,"abstract":"<p>Hydrogels have been used in the clinic since the late 1980s with broad applications in drug delivery, cosmetics, tissue regeneration, among many other areas. The past three decades have witnessed rapid advances in the fields of polymer chemistry, crosslinking approaches, and hydrogel fabrication methods, which have collectively brought many new hydrogel products, either injectable or non-injectable, to clinical studies. In an article published in 2020 entitled “Hydrogels in the clinic”, we reviewed the clinical landscape and translational challenges of injectable hydrogels. Here, we provide an update on the advances in the field and also extend the scope to include non-injectable hydrogels. We highlight recently approved hydrogel products, provide an update on the clinical trials of injectable hydrogels, and discuss active clinical trials of topically applied and implantable hydrogels.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10680","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel P. Howsmon, Matthew F. Mikulski, Nikhil Kabra, Joyce Northrup, Daniel Stromberg, Charles D. Fraser Jr, Carlos M. Mery, Richard P. Lion
Postoperative critical care management of congenital heart disease patients requires prompt intervention when the patient deviates significantly from clinician-determined vital sign and hemodynamic goals. Current monitoring systems only allow for static thresholds to be set on individual variables, despite the expectations that these signals change as the patient recovers and that variables interact. To address this incongruency, we have employed statistical process monitoring (SPM) techniques originally developed to monitor batch industrial processes to monitor high-frequency vital sign and hemodynamic data to establish multivariate trajectory maps for patients with d-transposition of the great arteries following the arterial switch operation. In addition to providing multivariate trajectory maps, the multivariate control charts produced by the SPM framework allow for assessment of adherence to the desired trajectory at each time point as the data is collected. Control charts based on slow feature analysis were compared with those based on principal component analysis. Alarms generated by the multivariate control charts are discussed in the context of the available clinical documentation.
{"title":"Statistical process monitoring creates a hemodynamic trajectory map after pediatric cardiac surgery: A case study of the arterial switch operation","authors":"Daniel P. Howsmon, Matthew F. Mikulski, Nikhil Kabra, Joyce Northrup, Daniel Stromberg, Charles D. Fraser Jr, Carlos M. Mery, Richard P. Lion","doi":"10.1002/btm2.10679","DOIUrl":"10.1002/btm2.10679","url":null,"abstract":"<p>Postoperative critical care management of congenital heart disease patients requires prompt intervention when the patient deviates significantly from clinician-determined vital sign and hemodynamic goals. Current monitoring systems only allow for static thresholds to be set on individual variables, despite the expectations that these signals change as the patient recovers and that variables interact. To address this incongruency, we have employed statistical process monitoring (SPM) techniques originally developed to monitor batch industrial processes to monitor high-frequency vital sign and hemodynamic data to establish multivariate trajectory maps for patients with d-transposition of the great arteries following the arterial switch operation. In addition to providing multivariate trajectory maps, the multivariate control charts produced by the SPM framework allow for assessment of adherence to the desired trajectory at each time point as the data is collected. Control charts based on slow feature analysis were compared with those based on principal component analysis. Alarms generated by the multivariate control charts are discussed in the context of the available clinical documentation.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molly K. Grun, Praveen Honhar, Yazhe Wang, Samantha Rossano, Minsoo Khang, Hee Won Suh, Krista Fowles, Harvey J. Kliman, Alessandra Cavaliere, Richard E. Carson, Bernadette Marquez-Nostra, W. Mark Saltzman
Long-lasting vaginal dosage forms could improve the therapeutic efficacy of vaginal microbicides, but achieving long-term delivery to the vaginal canal has been a significant challenge. To advance understanding of vaginal dosage retention and biodistribution, we describe a method of noninvasive imaging with 89Zr-labeled bioadhesive nanoparticles (BNPs) in non-human primates. We additionally examined the safety of repeated BNP application. BNPs administered vaginally to cynomolgus monkeys were still detected after 24 h (1.7% retention) and 120 h (0.1% retention). BNPs did not translocate to the uterus or into systemic circulation. Analysis of inflammatory biomarkers in the vaginal fluid and plasma suggest that BNPs are safe and biocompatible, even after multiple doses. BNPs are a promising delivery vehicle for vaginally administered therapeutics. Further studies using the non-human primate imaging materials and methods developed here could help advance clinical translation of BNPs and other long-lasting vaginal dosage forms.
{"title":"Pilot PET study of vaginally administered bioadhesive nanoparticles in cynomolgus monkeys: Kinetics and safety evaluation","authors":"Molly K. Grun, Praveen Honhar, Yazhe Wang, Samantha Rossano, Minsoo Khang, Hee Won Suh, Krista Fowles, Harvey J. Kliman, Alessandra Cavaliere, Richard E. Carson, Bernadette Marquez-Nostra, W. Mark Saltzman","doi":"10.1002/btm2.10661","DOIUrl":"10.1002/btm2.10661","url":null,"abstract":"<p>Long-lasting vaginal dosage forms could improve the therapeutic efficacy of vaginal microbicides, but achieving long-term delivery to the vaginal canal has been a significant challenge. To advance understanding of vaginal dosage retention and biodistribution, we describe a method of noninvasive imaging with <sup>89</sup>Zr-labeled bioadhesive nanoparticles (BNPs) in non-human primates. We additionally examined the safety of repeated BNP application. BNPs administered vaginally to cynomolgus monkeys were still detected after 24 h (1.7% retention) and 120 h (0.1% retention). BNPs did not translocate to the uterus or into systemic circulation. Analysis of inflammatory biomarkers in the vaginal fluid and plasma suggest that BNPs are safe and biocompatible, even after multiple doses. BNPs are a promising delivery vehicle for vaginally administered therapeutics. Further studies using the non-human primate imaging materials and methods developed here could help advance clinical translation of BNPs and other long-lasting vaginal dosage forms.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10661","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rawan Al-Kharboosh, Alex Bechtle, Stephany Y. Tzeng, Jiaying Zheng, Sujan Kumar Mondal, David R. Wilson, Carlos Perez-Vega, Jordan J. Green, Alfredo Quiñones-Hinojosa
Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non-viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein-4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem-like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti-glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti-proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient-derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.
{"title":"Therapeutic potential and impact of nanoengineered patient-derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma","authors":"Rawan Al-Kharboosh, Alex Bechtle, Stephany Y. Tzeng, Jiaying Zheng, Sujan Kumar Mondal, David R. Wilson, Carlos Perez-Vega, Jordan J. Green, Alfredo Quiñones-Hinojosa","doi":"10.1002/btm2.10675","DOIUrl":"10.1002/btm2.10675","url":null,"abstract":"<p>Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non-viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein-4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem-like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti-glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti-proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient-derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
{"title":"Antibody drug conjugates in the clinic","authors":"Edidiong Udofa, Disha Sankholkar, Samir Mitragotri, Zongmin Zhao","doi":"10.1002/btm2.10677","DOIUrl":"10.1002/btm2.10677","url":null,"abstract":"<p>Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Successful nerve repair using bioadhesive hydrogels demands minimizing tissue–material interfacial mechanical mismatch to reduce immune responses and scar tissue formation. Furthermore, it is crucial to maintain the bioelectrical stimulation-mediated cell-signaling mechanism to overcome communication barriers within injured nerve tissues. Therefore, engineering bioadhesives for neural tissue regeneration necessitates the integration of electroconductive properties with tissue-like biomechanics. In this study, we propose a stretchable bioadhesive based on a custom-designed chemically modified elastin-like polypeptides (ELPs) and a choline-based bioionic liquid (Bio-IL), providing an electroconductive microenvironment to reconnect damaged nerve tissue. The stretchability akin to native neural tissue was achieved by incorporating hydrophobic ELP pockets, and a robust tissue adhesion was obtained due to multi-mode tissue–material interactions through covalent and noncovalent bonding at the tissue interface. Adhesion tests revealed adhesive strength ~10 times higher than commercially available tissue adhesive, Evicel®. Furthermore, the engineered hydrogel supported in vitro viability and proliferation of human glial cells. We also evaluated the biodegradability and biocompatibility of the engineered bioadhesive in vivo using a rat subcutaneous implantation model, which demonstrated facile tissue infiltration and minimal immune response. The outlined functionalities empower the engineered elastic and electroconductive adhesive hydrogel to effectively enable sutureless surgical sealing of neural injuries and promote tissue regeneration.
{"title":"A stretchable, electroconductive tissue adhesive for the treatment of neural injury","authors":"Jharana Dhal, Mahsa Ghovvati, Avijit Baidya, Ronak Afshari, Curtis L. Cetrulo Jr, Reza Abdi, Nasim Annabi","doi":"10.1002/btm2.10667","DOIUrl":"10.1002/btm2.10667","url":null,"abstract":"<p>Successful nerve repair using bioadhesive hydrogels demands minimizing tissue–material interfacial mechanical mismatch to reduce immune responses and scar tissue formation. Furthermore, it is crucial to maintain the bioelectrical stimulation-mediated cell-signaling mechanism to overcome communication barriers within injured nerve tissues. Therefore, engineering bioadhesives for neural tissue regeneration necessitates the integration of electroconductive properties with tissue-like biomechanics. In this study, we propose a stretchable bioadhesive based on a custom-designed chemically modified elastin-like polypeptides (ELPs) and a choline-based bioionic liquid (Bio-IL), providing an electroconductive microenvironment to reconnect damaged nerve tissue. The stretchability akin to native neural tissue was achieved by incorporating hydrophobic ELP pockets, and a robust tissue adhesion was obtained due to multi-mode tissue–material interactions through covalent and noncovalent bonding at the tissue interface. Adhesion tests revealed adhesive strength ~10 times higher than commercially available tissue adhesive, Evicel®. Furthermore, the engineered hydrogel supported in vitro viability and proliferation of human glial cells. We also evaluated the biodegradability and biocompatibility of the engineered bioadhesive in vivo using a rat subcutaneous implantation model, which demonstrated facile tissue infiltration and minimal immune response. The outlined functionalities empower the engineered elastic and electroconductive adhesive hydrogel to effectively enable sutureless surgical sealing of neural injuries and promote tissue regeneration.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10667","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given the prevalence of hematological conditions, surgeries, and trauma incidents, hemostats—therapeutics designed to control and arrest bleeding—are an important tool in patient care. The prophylactic and therapeutic use of hemostats markedly enhances survival rates and improves the overall quality of life of patients suffering from these conditions. Since their inception in the 1960s, hemostats have witnessed remarkable progress in terms of the active ingredients utilized, therapeutic outcomes, demonstrated efficacy, and the storage stability. In this review, we provide a comprehensive analysis of commercially available hemostats approved by the FDA, along with newer investigative hemostats currently in active clinical trials. We delve into the modality of active ingredients, route of administration, formulation type, and disease indications of these approved and investigative hemostats. Further, we analyze the trends observed in the hemostat actives for Hemophilia A and B, concluding with insights into the emerging patterns and noteworthy developments to watch for in this dynamic field.
鉴于血液病、手术和创伤事件的普遍性,止血药--用于控制和止血的治疗药物--是病人护理的重要工具。止血钳的预防性和治疗性使用明显提高了患者的存活率,改善了患者的整体生活质量。自 20 世纪 60 年代问世以来,止血药在使用的活性成分、治疗效果、疗效和储存稳定性方面都取得了显著进步。在这篇综述中,我们全面分析了美国食品及药物管理局批准的市售止血剂,以及目前正在进行临床试验的新型研究止血剂。我们深入探讨了这些已获批准的止血药和研究性止血药的活性成分模式、给药途径、制剂类型和疾病适应症。此外,我们还分析了治疗血友病 A 和血友病 B 的止血剂活性成分的发展趋势,最后深入探讨了这一动态领域的新兴模式和值得关注的发展。
{"title":"Hemostats in the clinic","authors":"Maithili Joshi, Zongmin Zhao, Samir Mitragotri","doi":"10.1002/btm2.10673","DOIUrl":"10.1002/btm2.10673","url":null,"abstract":"<p>Given the prevalence of hematological conditions, surgeries, and trauma incidents, hemostats—therapeutics designed to control and arrest bleeding—are an important tool in patient care. The prophylactic and therapeutic use of hemostats markedly enhances survival rates and improves the overall quality of life of patients suffering from these conditions. Since their inception in the 1960s, hemostats have witnessed remarkable progress in terms of the active ingredients utilized, therapeutic outcomes, demonstrated efficacy, and the storage stability. In this review, we provide a comprehensive analysis of commercially available hemostats approved by the FDA, along with newer investigative hemostats currently in active clinical trials. We delve into the modality of active ingredients, route of administration, formulation type, and disease indications of these approved and investigative hemostats. Further, we analyze the trends observed in the hemostat actives for Hemophilia A and B, concluding with insights into the emerging patterns and noteworthy developments to watch for in this dynamic field.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10673","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew R. Stevens, Mohammed Hadis, Alice Phillips, Abhinav Thareja, Michael Milward, Antonio Belli, William Palin, David J. Davies, Zubair Ahmed
Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22 mW/cm2. 11 mW/cm2 for 1 min per day (0.66 J/cm2) increased cell viability by 45% over 5 days (p <0.0001), increasing neurite outgrowth by 25% (p <0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24 mW/cm2 at spinal cord, 1 min per day (1.44 J/cm2) up to 7 days) increased activation of regeneration-associated protein at 3 days after SCI, increasing GAP43+ axons in DRGN from 18.0% (control) to 41.4% ± 10.5 (iPBM) and 45.8% ± 3.4 (tcPBM) (p <0.05). This corresponded to significant improvements at 6 weeks post-injury in functional locomotor and sensory function recovery (p <0.01), axonal regeneration (p <0.01), and reduced lesion size (p <0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients.
{"title":"Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury","authors":"Andrew R. Stevens, Mohammed Hadis, Alice Phillips, Abhinav Thareja, Michael Milward, Antonio Belli, William Palin, David J. Davies, Zubair Ahmed","doi":"10.1002/btm2.10674","DOIUrl":"10.1002/btm2.10674","url":null,"abstract":"<p>Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22 mW/cm<sup>2</sup>. 11 mW/cm<sup>2</sup> for 1 min per day (0.66 J/cm<sup>2</sup>) increased cell viability by 45% over 5 days (<i>p</i> <0.0001), increasing neurite outgrowth by 25% (<i>p</i> <0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24 mW/cm<sup>2</sup> at spinal cord, 1 min per day (1.44 J/cm<sup>2</sup>) up to 7 days) increased activation of regeneration-associated protein at 3 days after SCI, increasing GAP43<sup>+</sup> axons in DRGN from 18.0% (control) to 41.4% ± 10.5 (iPBM) and 45.8% ± 3.4 (tcPBM) (<i>p</i> <0.05). This corresponded to significant improvements at 6 weeks post-injury in functional locomotor and sensory function recovery (<i>p</i> <0.01), axonal regeneration (<i>p</i> <0.01), and reduced lesion size (<i>p</i> <0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}