{"title":"Ancient asexuality: No scandals found with novel data.","authors":"Paulo Hofstatter, Daniel Lahr","doi":"10.1002/bies.202400227","DOIUrl":"https://doi.org/10.1002/bies.202400227","url":null,"abstract":"","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e2400227"},"PeriodicalIF":3.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi-editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi-editor called EvoETR that knocked down Pcsk9 in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi-editors to inform future editor designs.
{"title":"CHARM and EvoETR: Precision epigenetic tools for gene silencing","authors":"Anirudh Pillai, Vasundhara Verma, Sanjeev Galande","doi":"10.1002/bies.202400186","DOIUrl":"10.1002/bies.202400186","url":null,"abstract":"<p>With the advent of gene editing technologies like CRISPR/Cas9, it has become possible to edit genomic regions of interest for research and therapeutic purposes. These technologies have also been adapted to alter gene expression without changing their DNA sequence, allowing epigenetic edits. While genetic editors make edits by cutting the genome at specified regions, epigenetic editors leverage the same targeting mechanism but act based on the epigenetic modifier fused to them, such as a methyltransferase. Here, we discuss two recently employed epigenetic editors (epi-editors) that silenced target genes involved in disease to mitigate their effects. Neumann et al. reported the construction of an epigenetic editor called CHARM that could methylate and silence the prion gene in mouse brains and subsequently switch itself off. Additionally, Capelluti et al. developed an epi-editor called EvoETR that knocked down <i>Pcsk9</i> in the murine liver to reduce LDL levels. We aim to highlight the design principles underlying the design of these epi-editors to inform future editor designs.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andres Barboza Pereira, Matthew Marano, Ramya Bathala, Rigoberto Ayala Zaragoza, Andres Neira, Alex Samano, Adekola Owoyemi, Claudio Casola
The genome sequencing revolution has revealed that all species possess a large number of unique genes critical for trait variation, adaptation, and evolutionary innovation. One widely used approach to identify such genes consists of detecting protein-coding sequences with no homology in other genomes, termed orphan genes. These genes have been extensively studied, under the assumption that they represent valid proxies for species-specific genes. Here, we critically evaluate taxonomic, phylogenetic, and sequence evolution evidence showing that orphan genes belong to a range of evolutionary ages and thus cannot be assigned to a single lineage. Furthermore, we show that the processes generating orphan genes are substantially more diverse than generally thought and include horizontal gene transfer, transposable element domestication, and overprinting. Thus, orphan genes represent a heterogeneous collection of genes rather than a single biological entity, making them unsuitable as a subject for meaningful investigation of gene evolution and phenotypic innovation.
{"title":"Orphan genes are not a distinct biological entity","authors":"Andres Barboza Pereira, Matthew Marano, Ramya Bathala, Rigoberto Ayala Zaragoza, Andres Neira, Alex Samano, Adekola Owoyemi, Claudio Casola","doi":"10.1002/bies.202400146","DOIUrl":"10.1002/bies.202400146","url":null,"abstract":"<p>The genome sequencing revolution has revealed that all species possess a large number of unique genes critical for trait variation, adaptation, and evolutionary innovation. One widely used approach to identify such genes consists of detecting protein-coding sequences with no homology in other genomes, termed orphan genes. These genes have been extensively studied, under the assumption that they represent valid proxies for species-specific genes. Here, we critically evaluate taxonomic, phylogenetic, and sequence evolution evidence showing that orphan genes belong to a range of evolutionary ages and thus cannot be assigned to a single lineage. Furthermore, we show that the processes generating orphan genes are substantially more diverse than generally thought and include horizontal gene transfer, transposable element domestication, and overprinting. Thus, orphan genes represent a heterogeneous collection of genes rather than a single biological entity, making them unsuitable as a subject for meaningful investigation of gene evolution and phenotypic innovation.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
范可尼贫血症(Fanconi anemia,FA)通常被归类为 DNA 修复障碍,具有癌症遗传易感性,并在儿童早期出现明显的骨髓衰竭(BMF)。人类和小鼠的确证研究表明,在复制压力下,造血干细胞(HSC)的损耗起源于胎儿。最近,人们对 FA 蛋白的非典型作用和特异域功能有了更深入的了解,这些研究提出了不依赖于 DNA 修复的 BMF 病因学的可能性。然而,更深入的机理研究至关重要,因为目前异体干细胞移植和新兴基因疗法的治疗方案资格有限,副作用大,而且涉及复杂的程序,仅限于资源丰富的环境。要为FA患者开发合理且可广泛使用的疗法,该领域将需要更可靠的疾病模型,以克服患者样本稀缺的问题,充分利用技术进步,并采用专为罕见病量身定制的临床试验设计。
{"title":"Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models","authors":"Suying Liu, ES Vivona, Peter Kurre","doi":"10.1002/bies.202400191","DOIUrl":"10.1002/bies.202400191","url":null,"abstract":"<p>Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plants are in intimate association with taxonomically structured microbial communities called the plant microbiota. There is growing evidence that the plant microbiota contributes to the holistic performance and general health of plants, especially under unfavorable situations. Despite the attached benefits, surprisingly, the plant microbiota in nature also includes potentially pathogenic strains, signifying that the plant hosts have tight control over these microbes. Despite the conceivable role of plant immunity in regulating its microbiota, we lack a complete understanding of its role in governing the assembly, maintenance, and function of the plant microbiota. Here, we highlight the recent progress on the mechanistic relevance of host immunity in orchestrating plant-microbiota dialogues and discuss the pluses and perils of these microbial assemblies.
{"title":"Taming of the microbial beasts: Plant immunity tethers potentially pathogenic microbiota members","authors":"Frederickson Entila, Kenichi Tsuda","doi":"10.1002/bies.202400171","DOIUrl":"10.1002/bies.202400171","url":null,"abstract":"<p>Plants are in intimate association with taxonomically structured microbial communities called the plant microbiota. There is growing evidence that the plant microbiota contributes to the holistic performance and general health of plants, especially under unfavorable situations. Despite the attached benefits, surprisingly, the plant microbiota in nature also includes potentially pathogenic strains, signifying that the plant hosts have tight control over these microbes. Despite the conceivable role of plant immunity in regulating its microbiota, we lack a complete understanding of its role in governing the assembly, maintenance, and function of the plant microbiota. Here, we highlight the recent progress on the mechanistic relevance of host immunity in orchestrating plant-microbiota dialogues and discuss the pluses and perils of these microbial assemblies.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The performance of deep Neural Networks (NNs) in the text (ChatGPT) and image (DALL-E2) domains has attracted worldwide attention. Convolutional NNs (CNNs), Large Language Models (LLMs), Denoising Diffusion Probabilistic Models (DDPMs)/Noise Conditional Score Networks (NCSNs), and Graph NNs (GNNs) have impacted computer vision, language editing and translation, automated conversation, image generation, and social network management. Proteins can be viewed as texts written with the alphabet of amino acids, as images, or as graphs of interacting residues. Each of these perspectives suggests the use of tools from a different area of deep learning for protein structural biology. Here, I review how CNNs, LLMs, DDPMs/NCSNs, and GNNs have led to major advances in protein structure prediction, inverse folding, protein design, and small molecule design. This review is primarily intended as a deep learning primer for practicing experimental structural biologists. However, extensive references to the deep learning literature should also make it relevant to readers who have a background in machine learning, physics or statistics, and an interest in protein structural biology.
{"title":"How the technologies behind self-driving cars, social networks, ChatGPT, and DALL-E2 are changing structural biology","authors":"Matthias Bochtler","doi":"10.1002/bies.202400155","DOIUrl":"10.1002/bies.202400155","url":null,"abstract":"<p>The performance of deep Neural Networks (NNs) in the text (ChatGPT) and image (DALL-E2) domains has attracted worldwide attention. Convolutional NNs (CNNs), Large Language Models (LLMs), Denoising Diffusion Probabilistic Models (DDPMs)/Noise Conditional Score Networks (NCSNs), and Graph NNs (GNNs) have impacted computer vision, language editing and translation, automated conversation, image generation, and social network management. Proteins can be viewed as texts written with the alphabet of amino acids, as images, or as graphs of interacting residues. Each of these perspectives suggests the use of tools from a different area of deep learning for protein structural biology. Here, I review how CNNs, LLMs, DDPMs/NCSNs, and GNNs have led to major advances in protein structure prediction, inverse folding, protein design, and small molecule design. This review is primarily intended as a deep learning primer for practicing experimental structural biologists. However, extensive references to the deep learning literature should also make it relevant to readers who have a background in machine learning, physics or statistics, and an interest in protein structural biology.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.
{"title":"The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life","authors":"Éric Bapteste","doi":"10.1002/bies.202400099","DOIUrl":"10.1002/bies.202400099","url":null,"abstract":"<p>A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}