The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material—from molecular to organismal scales—reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
{"title":"The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine","authors":"Michael Levin","doi":"10.1002/bies.202400196","DOIUrl":"10.1002/bies.202400196","url":null,"abstract":"<p>The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material—from molecular to organismal scales—reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>We are now on the cusp of realizing the promise of Pluripotent Stem Cells (PSCs) as powerful tools for exploring disease mechanisms, facilitating the discovery of new drugs and replacing diseased or damaged tissues, just 26 years since Jamie Thomson first described the long-term culture of human embryonic stem (ES) cells,<sup>[</sup><span><sup>1</sup></span><sup>]</sup> and 18 years since Shinya Yamanaka discovered how to reprogram somatic cells to produce induced pluripotent stem (iPS) cells with a state equivalent to that of ES cells.<sup>[</sup><span><sup>2</sup></span><sup>]</sup> But this field has a much longer experimental history, stretching back to 1954 when Leroy Stevens first described the propensity of male laboratory mice of the 129 inbred strain to develop testicular teratomas.<sup>[</sup><span><sup>3</sup></span><sup>]</sup> In many ways, the PSC field provides a striking example of how science develops through a labyrinth of pathways–some successful, some not so successful, sometimes leading in unexpected directions and arriving in places far removed from those originally envisaged.</p><p>So much of modern life depends on technology that we often take for granted and, consequently, we pay little attention to how the underlying science developed–who did it, and why? A case in point is our recent experience of the Covid pandemic. As that fades in our collective memory, we forget how remarkable it was that within a year of the first cases being identified in China, the virus had been isolated, its genome sequenced, rapid assays based upon PCR developed and innovative vaccines produced. However, the knowledge that made possible that rapid response to Covid came from diverse research stretching back over the past century or more–the identification of DNA and later RNA as carriers of genetic information, the deciphering of the genetic code, and recognition of its universality to all living organisms, the understanding of the mechanisms that protect some bacteria from infection with some viruses, leading to the discovery of restriction enzymes used as tools for DNA sequencing, or the discovery of heat stable Taq polymerase in bacteria growing in hot volcanic springs that allowed the development of PCR. Yet none of this research was remotely driven by thoughts of solving the problems of a novel viral pandemic. It was mostly impelled by the curiosity of individual scientists, with funding often provided through peer-reviewed grants focused on increasing basic knowledge, not trying to solve specific practical problems. It was also supported by teamwork and widespread open communication between the different research groups involved, many in different countries, an atmosphere well captured by Horace Judson in his book, “<i>The Eighth Day of Creation</i>,” about the development of molecular biology.<sup>[</sup><span><sup>4</sup></span><sup>]</sup> Yet it often seems that we are in danger of ignoring these lessons as governments, funding ag
在第一篇文章中,Ginny Papaioannou 回顾了胚胎癌(EC)细胞--与畸胎瘤相关的癌症干细胞--与胚泡阶段早期胚胎的多能细胞非常相似的事实,讨论了她和其他人如何通过将EC细胞转移到小鼠胚泡中并让其发育至足月(https://doi.org/10.1002/bies.202400061)来证明这种关系。这为马丁-埃文斯和盖尔-马丁从小鼠胚泡中提取 ES 细胞提供了证据。[8, 9]大约在同一时期,弗朗索瓦-雅各布(François Jacob)是研究多能性欧共体细胞系的重要小组之一,他在巴黎巴斯德研究所决定从发现基因调控基本原理的细菌遗传学转向研究哺乳动物发育的基因控制。[10] 在接下来的文章中,鲍勃-埃里克森(Bob Erickson)讨论了巴斯德研究小组是如何被当时盛行的关于实验鼠 T-焦点的观点所吸引的,这种观点认为 T-焦点包括一组主基因,这些主基因编码一系列细胞表面抗原,这些抗原反过来又控制着早期胚胎发育 (https://doi.org/10.1002/bies.202400021) 。).不幸的是,这被证明是一个盲点,说明了当成熟的研究人员进入新的不熟悉领域时,以及将技术扩展到超出当时可用技术能力所固有的危险,在这种情况下,在单克隆抗体出现之前的血清学。在下一篇文章中,我将介绍从弗朗索瓦-雅各布小组转到费城威斯塔研究所的芭芭拉-诺尔斯和达沃-索尔特小组后,我们如何利用巴斯德小组无法获得的单克隆抗体技术,确定新的细胞表面标志物,从而使我们能够描述多能人类EC细胞的特征,并证明它们与小鼠EC细胞的不同之处。马丁-埃文斯(Martin Evans)、马里奥-卡佩基(Mario Capecchi)和奥利弗-史密斯(Oliver Smithies)因此获得了诺贝尔奖。然而,特性良好的人类EC细胞系的存在激发了人类ES细胞也可能有助于了解人类胚胎学的想法。在接下来的文章中,马丁-佩拉(Martin Pera)将讨论人类ES细胞系的产生之路,以及这些细胞系不仅可用于人类胚胎学,还可用于开发人类医疗保健的新方法,包括再生医学的想法(https://doi.org/10.1002/bies.202400092)。小鼠ES细胞和后来的人类ES细胞的最初衍生都依赖于使用有丝分裂失活的成纤维细胞饲养细胞和包括胎牛血清在内的复杂培养基。在这些未确定的条件下,我们无法破译维持这些细胞自我更新能力的分子机制,即它们在无限增殖的同时保持多能性的能力,也无法理解为什么ES细胞可以很容易地从一些小鼠品系的胚胎中衍生出来,而其他品系的胚胎却不行,某些物种如大鼠的胚胎也不行。在下一篇文章中,应启龙和珍妮-尼科尔斯讨论了ES细胞与早期胚胎的关系以及控制分化的信号通路,从而为小鼠ES细胞开发出了定义培养基(https://doi.org/10.1002/bies.202400077)。除其他后果外,这还促进了从许多品系的小鼠和大鼠中提取 ES 细胞。奥斯汀-史密斯(Austin Smith)在他的文章中继续探讨了这一主题,讨论了调控多能性的遗传机制和多能性状态在早期发育过程中的变化如何有助于解释为什么这种状态在胚胎中是短暂的,但在体外却能无限期地维持,以及为什么从小鼠和人类胚胎中提取的 ES 细胞之间存在着巨大差异 (https://doi.org/10.1002/bies.202400108)。在杰米-汤姆森(Jamie Thomson)衍生出 ES 细胞和山中伸弥(Shinya Yamanaka)发现将体细胞重编程为 iPS 细胞的方法后,应用这些细胞解决人类健康相关问题的机会变得显而易见,但潜在的问题也随之而来。Christine Mummery在她的文章中讨论了她的职业生涯是如何从早期的小鼠ES细胞研究发展到开发使用人类造血干细胞生成心肌细胞的工具,这些心肌细胞反过来又可用于探索不同药物在一系列病理条件下与心肌细胞的相互作用(https://doi.org/10.1002/bies.202400078)。
{"title":"From cancer to pluripotent stem cells–A long and winding road","authors":"Peter W. Andrews","doi":"10.1002/bies.202400192","DOIUrl":"10.1002/bies.202400192","url":null,"abstract":"<p>We are now on the cusp of realizing the promise of Pluripotent Stem Cells (PSCs) as powerful tools for exploring disease mechanisms, facilitating the discovery of new drugs and replacing diseased or damaged tissues, just 26 years since Jamie Thomson first described the long-term culture of human embryonic stem (ES) cells,<sup>[</sup><span><sup>1</sup></span><sup>]</sup> and 18 years since Shinya Yamanaka discovered how to reprogram somatic cells to produce induced pluripotent stem (iPS) cells with a state equivalent to that of ES cells.<sup>[</sup><span><sup>2</sup></span><sup>]</sup> But this field has a much longer experimental history, stretching back to 1954 when Leroy Stevens first described the propensity of male laboratory mice of the 129 inbred strain to develop testicular teratomas.<sup>[</sup><span><sup>3</sup></span><sup>]</sup> In many ways, the PSC field provides a striking example of how science develops through a labyrinth of pathways–some successful, some not so successful, sometimes leading in unexpected directions and arriving in places far removed from those originally envisaged.</p><p>So much of modern life depends on technology that we often take for granted and, consequently, we pay little attention to how the underlying science developed–who did it, and why? A case in point is our recent experience of the Covid pandemic. As that fades in our collective memory, we forget how remarkable it was that within a year of the first cases being identified in China, the virus had been isolated, its genome sequenced, rapid assays based upon PCR developed and innovative vaccines produced. However, the knowledge that made possible that rapid response to Covid came from diverse research stretching back over the past century or more–the identification of DNA and later RNA as carriers of genetic information, the deciphering of the genetic code, and recognition of its universality to all living organisms, the understanding of the mechanisms that protect some bacteria from infection with some viruses, leading to the discovery of restriction enzymes used as tools for DNA sequencing, or the discovery of heat stable Taq polymerase in bacteria growing in hot volcanic springs that allowed the development of PCR. Yet none of this research was remotely driven by thoughts of solving the problems of a novel viral pandemic. It was mostly impelled by the curiosity of individual scientists, with funding often provided through peer-reviewed grants focused on increasing basic knowledge, not trying to solve specific practical problems. It was also supported by teamwork and widespread open communication between the different research groups involved, many in different countries, an atmosphere well captured by Horace Judson in his book, “<i>The Eighth Day of Creation</i>,” about the development of molecular biology.<sup>[</sup><span><sup>4</sup></span><sup>]</sup> Yet it often seems that we are in danger of ignoring these lessons as governments, funding ag","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.
The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.
{"title":"BioEssays 12/2024","authors":"","doi":"10.1002/bies.202470019","DOIUrl":"https://doi.org/10.1002/bies.202470019","url":null,"abstract":"<p>Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.</p><p>The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to various intracellular and external cues, cellular organelles are frequently stressed in both physiological and pathological conditions. Sensing these stresses initiates various signaling pathways which may lead to adaptation of the stressed cells or trigger its their death. At the unicellular level, this stress signaling involves a crosstalk between different organelles. At the multicellular level, such pathways can contribute to indicate the presence of a stressed cell to its neighboring cells. Here, we highlight the crucial and diverse roles played by Ubiquitin and Ubiquitin-like modification in organelle stress signaling.
{"title":"Ubiquitin and Ubiquitin-Like Modifications in Organelle Stress Signaling: Ub, Ub, Ub, Ub, Stayin’ Alive, Stayin’ Alive","authors":"Elodie Lafont, Eric Chevet","doi":"10.1002/bies.202400230","DOIUrl":"10.1002/bies.202400230","url":null,"abstract":"<p>Due to various intracellular and external cues, cellular organelles are frequently stressed in both physiological and pathological conditions. Sensing these stresses initiates various signaling pathways which may lead to adaptation of the stressed cells or trigger <span>its</span> their death. At the unicellular level, this stress signaling involves a crosstalk between different organelles. At the multicellular level, such pathways can contribute to indicate the presence of a stressed cell to its neighboring cells. Here, we highlight the crucial and diverse roles played by Ubiquitin and Ubiquitin-like modification in organelle stress signaling.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human pluripotent stem cells acquire mutations in culture. The resulting genetically variant cells that possess advantageous phenotypes are selected in culture over time, eventually leading to their overtake. In article 2400062, John Vales and Ivana Barbaric highlight a collection of genetic variations that are recurrently found in stem cell culture. The authors also recollect how our understanding of genetically variant human pluripotent stem cells has grown over the past 20 years since the discovery of these aberrant cells in 2004, particularly bringing attention to the phenotypes associated with specific recurrent variants, how these are similar to those found in cancer cells, and how they might affect the applications of human pluripotent stem cells in both clinical and research settings.
{"title":"BioEssays 12/2024","authors":"","doi":"10.1002/bies.202470021","DOIUrl":"https://doi.org/10.1002/bies.202470021","url":null,"abstract":"<p>Human pluripotent stem cells acquire mutations in culture. The resulting genetically variant cells that possess advantageous phenotypes are selected in culture over time, eventually leading to their overtake. In article 2400062, John Vales and Ivana Barbaric highlight a collection of genetic variations that are recurrently found in stem cell culture. The authors also recollect how our understanding of genetically variant human pluripotent stem cells has grown over the past 20 years since the discovery of these aberrant cells in 2004, particularly bringing attention to the phenotypes associated with specific recurrent variants, how these are similar to those found in cancer cells, and how they might affect the applications of human pluripotent stem cells in both clinical and research settings.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
At the end of the year, we would like once again to express our deep thanks to the members of our Editorial Board listed below for their valuable input. We are grateful for their involvement in various aspects of the journal.
After 10 years of service, we say goodbye to Matt Kaeberlein, Bernd Schierwater, Michael Shen, and Reiner Veitia, and wish them all the best for their research.
{"title":"In grateful recognition of our Editorial Board","authors":"","doi":"10.1002/bies.202400239","DOIUrl":"10.1002/bies.202400239","url":null,"abstract":"<p>At the end of the year, we would like once again to express our deep thanks to the members of our Editorial Board listed below for their valuable input. We are grateful for their involvement in various aspects of the journal.</p><p>After 10 years of service, we say goodbye to Matt Kaeberlein, Bernd Schierwater, Michael Shen, and Reiner Veitia, and wish them all the best for their research.</p><p> \u0000 </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Targeted protein degradation (TPD) has emerged as a highly promising approach for eliminating disease-associated proteins in the field of drug discovery. Among the most advanced TPD technologies, PROteolysis TArgeting Chimera (PROTAC), functions by bringing a protein of interest (POI) into proximity with an E3 ubiquitin ligase, leading to ubiquitin (Ub)-dependent proteasomal degradation. However, the designs of most PROTACs are based on the utilization of a limited number of available E3 ligases, which significantly restricts their potential. Recent studies have shown that phytoplasmas, a group of bacterial plant pathogens, have developed several E3- and ubiquitin-independent proteasomal degradation (UbInPD) mechanisms for breaking down host targets. This suggests an alternative approach for substrate recruitment and TPD. Here, we present existing evidence that supports the feasibility of UbInPD in eukaryotic cells and propose candidate proteins that can serve as docking sites for the development of E3-independent PROTACs.
{"title":"Ubiquitin-Independent Degradation: An Emerging PROTAC Approach?","authors":"Tiantian Li, Saskia A. Hogenhout, Weijie Huang","doi":"10.1002/bies.202400161","DOIUrl":"10.1002/bies.202400161","url":null,"abstract":"<p>Targeted protein degradation (TPD) has emerged as a highly promising approach for eliminating disease-associated proteins in the field of drug discovery. Among the most advanced TPD technologies, PROteolysis TArgeting Chimera (PROTAC), functions by bringing a protein of interest (POI) into proximity with an E3 ubiquitin ligase, leading to ubiquitin (Ub)-dependent proteasomal degradation. However, the designs of most PROTACs are based on the utilization of a limited number of available E3 ligases, which significantly restricts their potential. Recent studies have shown that phytoplasmas, a group of bacterial plant pathogens, have developed several E3- and ubiquitin-independent proteasomal degradation (UbInPD) mechanisms for breaking down host targets. This suggests an alternative approach for substrate recruitment and TPD. Here, we present existing evidence that supports the feasibility of UbInPD in eukaryotic cells and propose candidate proteins that can serve as docking sites for the development of E3-independent PROTACs.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position. In eukaryotes, queuosine is synthesized by the tRNA-guanine trans-glycosylase (TGT) complex, which incorporates the nucleobase queuine (or Qbase) into guanine of the GUN anticodons. Queuine is sourced from gut bacteria and dietary intake. Q was recently shown to be critical for cellular responses to oxidative and mitochondrial stresses, as well as its potential role in neurodegenerative diseases and brain health. These unique features of Q provide an interesting insight into the regulation of mRNA translation by gut bacteria, and the potential health implications. In this review, Q biology is examined in the light of recent literature and nearly 4 decades of research. Q's role in neuropsychiatric diseases and cancer is highlighted and discussed. Given the recent interest in Q, and the new findings, more research is needed to fully comprehend its biological function and disease relevance, especially in neurobiology.
{"title":"Queuosine tRNA Modification: Connecting the Microbiome to the Translatome","authors":"Sherif Rashad","doi":"10.1002/bies.202400213","DOIUrl":"10.1002/bies.202400213","url":null,"abstract":"<p>Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position. In eukaryotes, queuosine is synthesized by the tRNA-guanine <i>trans</i>-glycosylase (TGT) complex, which incorporates the nucleobase queuine (or Qbase) into guanine of the GUN anticodons. Queuine is sourced from gut bacteria and dietary intake. Q was recently shown to be critical for cellular responses to oxidative and mitochondrial stresses, as well as its potential role in neurodegenerative diseases and brain health. These unique features of Q provide an interesting insight into the regulation of mRNA translation by gut bacteria, and the potential health implications. In this review, Q biology is examined in the light of recent literature and nearly 4 decades of research. Q's role in neuropsychiatric diseases and cancer is highlighted and discussed. Given the recent interest in Q, and the new findings, more research is needed to fully comprehend its biological function and disease relevance, especially in neurobiology.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"47 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}