Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.