Alzheimer's disease (AD) is a multifactorial disease in which environmental factors play a role. Among environmental factors, air pollution is a vital issue in modern life. Despite extensive considerations, it remains uncertain how pollution mediates neurodegeneration in AD. Beta-amyloids and hyperphosphorylated tau proteins are the two main pathological markers that have been studied in AD so far. Tau protein is basically a phosphoprotein whose functions are controlled by phosphorylation. The function of tau protein is to be located on the surface of microtubules and stabilize them. Studies have shown that phosphorylated tau protein (p-tau) exists in cis and trans conformations at Thr231, among which cis is highly neurotoxic. The Pin1 enzyme performs the conversion of cis to trans or vice versa. In this study, an experimental mouse model was designed to investigate the formation of cis p-tau by inducing air pollution. In this way, mice were randomly exposed to pollution at 2-week, 1-month, and 2-month intervals. We investigated the formation of phosphorylated cis tau form during air pollution on mouse brains using Western blots and immunofluorescence. The fluorescent imaging results and Western blotting analysis of mouse brains revealed a significant accumulation of cis p-tau in pollution-treated mice models compared to the healthy control mice. According to Western blot results, air pollution induction caused a significant decrease in Pin1 protein. The results clearly show that the tauopathy observed during air pollution is mediated through the formation of cis tau. Our findings unravel tauopathy mysteries upon pollution and would help find a possible therapeutic target to fight the devastating disorder caused by modern life.
阿尔茨海默病(AD)是一种多因素疾病,环境因素在其中扮演着重要角色。在环境因素中,空气污染是现代生活中的一个重要问题。尽管进行了广泛的研究,但仍无法确定污染是如何介导阿尔茨海默病神经变性的。β-淀粉样蛋白和高磷酸化tau蛋白是迄今为止研究的两种主要的AD病理标志物。Tau 蛋白基本上是一种磷蛋白,其功能受磷酸化控制。Tau 蛋白的功能是位于微管表面并稳定微管。研究表明,磷酸化的 tau 蛋白(p-tau)在 Thr231 处存在顺式和反式构象,其中顺式构象具有高度神经毒性。Pin1 酶可将顺式转化为反式,反之亦然。本研究设计了一个实验小鼠模型,通过诱导空气污染来研究顺式 p-tau 的形成。通过这种方法,小鼠在2周、1个月和2个月的时间间隔内随机暴露于污染环境中。我们使用 Western 印迹和免疫荧光技术研究了空气污染期间小鼠大脑中磷酸化顺式 tau 的形成。小鼠大脑的荧光成像结果和 Western 印迹分析表明,与健康对照小鼠相比,污染处理小鼠模型中的顺式 p-tau 有显著积累。Western 印迹结果显示,空气污染诱导导致 Pin1 蛋白明显减少。这些结果清楚地表明,在空气污染过程中观察到的牛头蛋白病是通过顺式牛头蛋白的形成介导的。我们的研究结果揭开了污染导致的牛头蛋白病的神秘面纱,有助于找到可能的治疗靶点,对抗现代生活造成的破坏性疾病。
{"title":"Investigation of the expression of Cis P-tau and Pin1 proteins following air pollution induction in the brain tissue of C57BL/6 mice.","authors":"Sheyda Shahpasand, Seyyed Hossein Khatami, Sajad Ehtiati, Farzaneh Salmani, Tayebe Zarei, Kourosh Shahpasand, Maryam Ghobeh, Saeed Karima","doi":"10.1002/bab.2660","DOIUrl":"https://doi.org/10.1002/bab.2660","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial disease in which environmental factors play a role. Among environmental factors, air pollution is a vital issue in modern life. Despite extensive considerations, it remains uncertain how pollution mediates neurodegeneration in AD. Beta-amyloids and hyperphosphorylated tau proteins are the two main pathological markers that have been studied in AD so far. Tau protein is basically a phosphoprotein whose functions are controlled by phosphorylation. The function of tau protein is to be located on the surface of microtubules and stabilize them. Studies have shown that phosphorylated tau protein (p-tau) exists in cis and trans conformations at Thr231, among which cis is highly neurotoxic. The Pin1 enzyme performs the conversion of cis to trans or vice versa. In this study, an experimental mouse model was designed to investigate the formation of cis p-tau by inducing air pollution. In this way, mice were randomly exposed to pollution at 2-week, 1-month, and 2-month intervals. We investigated the formation of phosphorylated cis tau form during air pollution on mouse brains using Western blots and immunofluorescence. The fluorescent imaging results and Western blotting analysis of mouse brains revealed a significant accumulation of cis p-tau in pollution-treated mice models compared to the healthy control mice. According to Western blot results, air pollution induction caused a significant decrease in Pin1 protein. The results clearly show that the tauopathy observed during air pollution is mediated through the formation of cis tau. Our findings unravel tauopathy mysteries upon pollution and would help find a possible therapeutic target to fight the devastating disorder caused by modern life.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R2 = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.
{"title":"Alginate-derived carbon dots for \"turn off-on\" anti-neoplastic 5-fluorouracil sensing in biological samples.","authors":"Sasan Abbasi Majd, Soheila Kashanian, Mahsa Babaei, Zahra Shekarbeygi","doi":"10.1002/bab.2659","DOIUrl":"https://doi.org/10.1002/bab.2659","url":null,"abstract":"<p><p>As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R<sup>2</sup> = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoping Li, Kai Chen, Shunli Dong, Xiang Wei, Lingyan Zhou, Bin Wang
Lung squamous cell carcinoma (LUSC) is a malignancy with limited therapeutic options. Immunogenic cell death (ICD) has the potential to enhance the efficacy of cancer therapy by triggering immune responses. We aimed to explore the potential of ICD-based classification in predicting prognosis and response to immunotherapy for LUSC. RNA-seq information and clinical data of LUSC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. ICD-related gene expressions in LUSC samples were analyzed by consensus clustering. Subsequently, differentially expressed genes (DEGs) between different ICD-related subsets were analyzed. Tumor mutation burden, immune cell infiltration, and survival analyses were conducted between different ICD subsets. Finally, an ICD-related risk signature was constructed and evaluated in LUSC patients, and the immunotherapy responses based on the gene expressions were also forecasted. ICD-high and ICD-low groups were defined, and 1466 DEGs were identified between the two subtypes. These DEGs were mainly enriched in collagen-containing extracellular matrix, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, and neuroactive ligand-receptor interaction. Furthermore, the ICD-low group exhibited a favorable prognosis, enhanced TTN and MUC16 mutation frequencies, increased infiltrating immune cells, and downregulated immune checkpoint expressions. Furthermore, we demonstrated that an ICD-related model (based on CD4, NLRP3, NT5E, and TLR4 genes) could forecast the prognosis of LUSC, and ICD risk scores were lower in the responder group. In summary, the predicted values of ICD-related genes (CD4, NLRP3, NT5E, and TLR4) for the prognosis and response to immunotherapy in LUSC were verified in the study, which benefits immunotherapy-based interventions for LUSC patients.
{"title":"Immunogenic cell death-related genes predict prognosis and response to immunotherapy in lung squamous cell carcinoma.","authors":"Guoping Li, Kai Chen, Shunli Dong, Xiang Wei, Lingyan Zhou, Bin Wang","doi":"10.1002/bab.2652","DOIUrl":"https://doi.org/10.1002/bab.2652","url":null,"abstract":"<p><p>Lung squamous cell carcinoma (LUSC) is a malignancy with limited therapeutic options. Immunogenic cell death (ICD) has the potential to enhance the efficacy of cancer therapy by triggering immune responses. We aimed to explore the potential of ICD-based classification in predicting prognosis and response to immunotherapy for LUSC. RNA-seq information and clinical data of LUSC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. ICD-related gene expressions in LUSC samples were analyzed by consensus clustering. Subsequently, differentially expressed genes (DEGs) between different ICD-related subsets were analyzed. Tumor mutation burden, immune cell infiltration, and survival analyses were conducted between different ICD subsets. Finally, an ICD-related risk signature was constructed and evaluated in LUSC patients, and the immunotherapy responses based on the gene expressions were also forecasted. ICD-high and ICD-low groups were defined, and 1466 DEGs were identified between the two subtypes. These DEGs were mainly enriched in collagen-containing extracellular matrix, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, and neuroactive ligand-receptor interaction. Furthermore, the ICD-low group exhibited a favorable prognosis, enhanced TTN and MUC16 mutation frequencies, increased infiltrating immune cells, and downregulated immune checkpoint expressions. Furthermore, we demonstrated that an ICD-related model (based on CD4, NLRP3, NT5E, and TLR4 genes) could forecast the prognosis of LUSC, and ICD risk scores were lower in the responder group. In summary, the predicted values of ICD-related genes (CD4, NLRP3, NT5E, and TLR4) for the prognosis and response to immunotherapy in LUSC were verified in the study, which benefits immunotherapy-based interventions for LUSC patients.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miji Thandaserry Vasudevan, Kaviyaprabha Rangaraj, Ragupathi Ramesh, Sridhar Muthusami, Chandramohan Govindasamy, Muhammad Ibrar Khan, Palanisamy Arulselvan, Bharathi Muruganantham
Glioblastoma (GBM), an aggressive primary brain tumor originating from glial cells, poses significant treatment challenges due to its rapid growth and invasiveness. The exact mechanisms of GBM's brain damage remain unclear. This study examines primary molecular markers commonly assessed in GBM patients, including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor receptor A (PDGFRA), O6-methylguanine DNA methyltransferase (MGMT), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA) using computational approaches. The study revealed significant differences (p ≤ 0.05) in PDGFRA, EGFR, and VEGFA expression rates, which are particularly interesting. Additionally, MGMT and VEGFA showed higher hazard ratios. Expression levels of MGMT and VEGFA were visualized in immune and malignant cells using single-cell RNA datasets GSE103224 and GSE148842. From a total of 48 compounds in Gracilaria edulis and 86 in Gracilaria salicornia, we identified 15 compounds capable of crossing the blood-brain barrier. Notably, 2-tridecanone (binding affinity [BA] = -4.2 kcal/mol; root mean square deviation [RMSD] = 1.479 Å) and decanoic acid, ethyl ester (BA = -4.2 kcal/mol; RMSD = 1.702 Å) from G. edulis interacted with MGMT via hydrogen bonds. The compound alpha-terpineol interacted with MGMT (BA = -5.7 kcal/mol; RMSD = 0.501 Å) and VEGFA (BA = -4.7 kcal/mol; RMSD = 2.483 Å). Ethanolic and methanolic extracts from G. edulis and G. salicornia demonstrated mild anti-cell proliferation properties in the GBM LN-229 cell line, suggesting potential therapeutic benefits. This study highlights the significance of molecular markers and natural compounds in understanding and potentially treating GBM.
{"title":"Inhibitory effects of Gracilaria edulis and Gracilaria salicornia against the MGMT and VEGFA biomarkers involved in the onset and advancement of glioblastoma using in silico and in vitro approaches.","authors":"Miji Thandaserry Vasudevan, Kaviyaprabha Rangaraj, Ragupathi Ramesh, Sridhar Muthusami, Chandramohan Govindasamy, Muhammad Ibrar Khan, Palanisamy Arulselvan, Bharathi Muruganantham","doi":"10.1002/bab.2657","DOIUrl":"https://doi.org/10.1002/bab.2657","url":null,"abstract":"<p><p>Glioblastoma (GBM), an aggressive primary brain tumor originating from glial cells, poses significant treatment challenges due to its rapid growth and invasiveness. The exact mechanisms of GBM's brain damage remain unclear. This study examines primary molecular markers commonly assessed in GBM patients, including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor receptor A (PDGFRA), O<sub>6</sub>-methylguanine DNA methyltransferase (MGMT), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA) using computational approaches. The study revealed significant differences (p ≤ 0.05) in PDGFRA, EGFR, and VEGFA expression rates, which are particularly interesting. Additionally, MGMT and VEGFA showed higher hazard ratios. Expression levels of MGMT and VEGFA were visualized in immune and malignant cells using single-cell RNA datasets GSE103224 and GSE148842. From a total of 48 compounds in Gracilaria edulis and 86 in Gracilaria salicornia, we identified 15 compounds capable of crossing the blood-brain barrier. Notably, 2-tridecanone (binding affinity [BA] = -4.2 kcal/mol; root mean square deviation [RMSD] = 1.479 Å) and decanoic acid, ethyl ester (BA = -4.2 kcal/mol; RMSD = 1.702 Å) from G. edulis interacted with MGMT via hydrogen bonds. The compound alpha-terpineol interacted with MGMT (BA = -5.7 kcal/mol; RMSD = 0.501 Å) and VEGFA (BA = -4.7 kcal/mol; RMSD = 2.483 Å). Ethanolic and methanolic extracts from G. edulis and G. salicornia demonstrated mild anti-cell proliferation properties in the GBM LN-229 cell line, suggesting potential therapeutic benefits. This study highlights the significance of molecular markers and natural compounds in understanding and potentially treating GBM.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iasnaia Maria de Carvalho Tavares, Rândilla Regis Cordeiro Dos Santos, Floriatan Santos Costa, Gabriel Lucas Silva de Jesus, Alex-William Sanches, Fabiane Neves Silva, Muhammad Irfan, Rosilene Aparecida de Oliveira, Marcelo Franco
The objective of this work was to optimize the application of an enzymatic blend produced by Aspergillus niger ATCC 1004 on the Pimenta dioica fruits for essential oil extraction. The enzyme blend was obtained from the fermentation of cocoa bean shells, an agro-industrial residue. The effects of the enzymatic pre-treatment on the extraction yield, the chemical composition of the oil through gas chromatography, and the fruit structure through scanning electron microscopy (SEM) were assessed. A Doehlert design was used to optimize the process conditions, resulting in an extraction with 117 mL of enzyme during 77 min, which increased the extraction yield by 387.5%. The chemical composition was not altered, which proves that the enzyme blend preserves the quality of the essential oil extracted. The content of eugenol (70%), the major compound in the P. dioica essential oil, had a great increase in its concentration (560%). The enzyme activity analyses showed the presence of endoglucanase (0.4 U/mL), exoglucanase (0.25 U/mL), β-glucosidase (0.19 U/mL), and invertase (135.08 U/mL). The microscopy analyses revealed changes in the morphology of fruit surface due to the enzymatic action. These results demonstrate the great potential of using enzyme blends produced by filamentous fungi from agro-industrial residues for the essential oils extraction of interest for the pharmaceutical and food industries.
{"title":"Improving the extraction yield of essential oil from Pimenta dioica (L.) Merr. using Aspergillus niger ATCC 1004 enzyme blend.","authors":"Iasnaia Maria de Carvalho Tavares, Rândilla Regis Cordeiro Dos Santos, Floriatan Santos Costa, Gabriel Lucas Silva de Jesus, Alex-William Sanches, Fabiane Neves Silva, Muhammad Irfan, Rosilene Aparecida de Oliveira, Marcelo Franco","doi":"10.1002/bab.2658","DOIUrl":"https://doi.org/10.1002/bab.2658","url":null,"abstract":"<p><p>The objective of this work was to optimize the application of an enzymatic blend produced by Aspergillus niger ATCC 1004 on the Pimenta dioica fruits for essential oil extraction. The enzyme blend was obtained from the fermentation of cocoa bean shells, an agro-industrial residue. The effects of the enzymatic pre-treatment on the extraction yield, the chemical composition of the oil through gas chromatography, and the fruit structure through scanning electron microscopy (SEM) were assessed. A Doehlert design was used to optimize the process conditions, resulting in an extraction with 117 mL of enzyme during 77 min, which increased the extraction yield by 387.5%. The chemical composition was not altered, which proves that the enzyme blend preserves the quality of the essential oil extracted. The content of eugenol (70%), the major compound in the P. dioica essential oil, had a great increase in its concentration (560%). The enzyme activity analyses showed the presence of endoglucanase (0.4 U/mL), exoglucanase (0.25 U/mL), β-glucosidase (0.19 U/mL), and invertase (135.08 U/mL). The microscopy analyses revealed changes in the morphology of fruit surface due to the enzymatic action. These results demonstrate the great potential of using enzyme blends produced by filamentous fungi from agro-industrial residues for the essential oils extraction of interest for the pharmaceutical and food industries.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shirin Mahmoodi, Javad Zamani Amirzakaria, Abdolmajid Ghasemian
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
{"title":"A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico.","authors":"Shirin Mahmoodi, Javad Zamani Amirzakaria, Abdolmajid Ghasemian","doi":"10.1002/bab.2646","DOIUrl":"https://doi.org/10.1002/bab.2646","url":null,"abstract":"<p><p>The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mycobacterium indicus pranii (MIP), a benign saprophyte with potent immunomodulatory attributes, holds a pivotal position in mycobacterial evolution, potentially serving as the precursor to the pathogenic Mycobacterium avium complex (MAC). Despite its established immunotherapeutic efficacy against leprosy and notable outcomes in gram-negative sepsis and COVID-19 cases, the genomic and biochemical features of MIP remain largely elusive. This study explores the uncharted territory of toxin-antitoxin (TA) systems within MIP, hypothesizing their role in mycobacterial pathogenicity regulation. Genome-wide screening, employing diverse databases, unveils putative TA modules in MIP, setting the stage for a comparative analysis with known modules in Mycobacterium tuberculosis, Mycobacterium smegmatis, Escherichia coli, and Vibrio cholerae. The study further delves into the TA network of MAC and Mycobacterium intracellulare, unraveling interactive properties and family characteristics of identified TA modules in MIP. This comprehensive exploration seeks to illuminate the contribution of TA modules in regulating virulence, habitat diversification, and the evolutionary pathogenicity of mycobacteria. The insights garnered from this investigation not only enhance our understanding of MIP's potential as a vaccine candidate but also hold promise in optimizing tuberculosis drug regimens for expedited recovery.
普拉尼分枝杆菌(MIP)是一种具有强大免疫调节特性的良性无机物,在分枝杆菌的进化过程中具有举足轻重的地位,有可能是致病分枝杆菌复合体(MAC)的前身。尽管 MIP 对麻风病具有公认的免疫治疗效果,并在革兰氏阴性败血症和 COVID-19 病例中取得了显著疗效,但 MIP 的基因组和生化特征在很大程度上仍然难以捉摸。本研究探索了 MIP 中毒素-抗毒素(TA)系统的未知领域,假设它们在分枝杆菌致病性调控中的作用。利用各种数据库进行的全基因组筛选揭示了 MIP 中的推定 TA 模块,为与结核分枝杆菌、烟曲霉分枝杆菌、大肠杆菌和霍乱弧菌中的已知模块进行比较分析创造了条件。该研究进一步深入研究了MAC和细胞内分枝杆菌的TA网络,揭示了MIP中已发现的TA模块的交互特性和家族特征。这一全面探索旨在阐明 TA 模块在调节分枝杆菌的毒力、栖息地多样化和进化致病性方面的贡献。这项研究获得的洞察力不仅增强了我们对 MIP 作为候选疫苗潜力的了解,而且有望优化结核病药物治疗方案以加快康复。
{"title":"Genome wide screening to discover novel toxin-antitoxin modules in Mycobacterium indicus pranii; perspective on gene acquisition during mycobacterial evolution.","authors":"Aayush Bahl, Roopshali Rakshit, Saurabh Pandey, Deeksha Tripathi","doi":"10.1002/bab.2651","DOIUrl":"https://doi.org/10.1002/bab.2651","url":null,"abstract":"<p><p>Mycobacterium indicus pranii (MIP), a benign saprophyte with potent immunomodulatory attributes, holds a pivotal position in mycobacterial evolution, potentially serving as the precursor to the pathogenic Mycobacterium avium complex (MAC). Despite its established immunotherapeutic efficacy against leprosy and notable outcomes in gram-negative sepsis and COVID-19 cases, the genomic and biochemical features of MIP remain largely elusive. This study explores the uncharted territory of toxin-antitoxin (TA) systems within MIP, hypothesizing their role in mycobacterial pathogenicity regulation. Genome-wide screening, employing diverse databases, unveils putative TA modules in MIP, setting the stage for a comparative analysis with known modules in Mycobacterium tuberculosis, Mycobacterium smegmatis, Escherichia coli, and Vibrio cholerae. The study further delves into the TA network of MAC and Mycobacterium intracellulare, unraveling interactive properties and family characteristics of identified TA modules in MIP. This comprehensive exploration seeks to illuminate the contribution of TA modules in regulating virulence, habitat diversification, and the evolutionary pathogenicity of mycobacteria. The insights garnered from this investigation not only enhance our understanding of MIP's potential as a vaccine candidate but also hold promise in optimizing tuberculosis drug regimens for expedited recovery.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed M Mahmoud, Mousa Abdullah Alghuthaymi, Mohamed Shaban, Mohamed Rabia
A new and innovative rolled graphene oxide (roll-GO)/poly-m-methylaniline (PmMA) core-shell nanocomposite has been successfully synthesized using an in situ polymerization technique. This eco-friendly and cost-effective material shows great promise due to its antimicrobial properties. The characterization of the nanocomposite involved X-ray diffraction and Fourier transform infrared spectroscopy to analyze its structure and functional groups, whereas scanning electron microscopy and transmission electron microscopy (TEM) were utilized to examine its morphology. TEM analysis revealed the formation of roll-GO, forming multi-walled tubes with inner and outer diameters of 50 and 70 nm, respectively. Optical analysis demonstrated an enhanced bandgap in the nanocomposite, with bandgap values of 2.38 eV for PmMA, 2.67 eV for roll-GO, and 1.65 eV for roll-GO/PmMA. The antibacterial efficacy of the nanocomposite was tested against Gram-positive bacteria, including Bacillus subtilis and Staphylococcus aureus, as well as Gram-negative bacteria such as Escherichia coli and Salmonella sp. The well diffusion method was used to determine the inhibition zones, revealing that the nanocomposite demonstrated broad-spectrum antibacterial activity against all the pathogens tested. The largest inhibition zones were observed for B. subtilis, followed by S. aureus, E. coli, and Salmonella sp. Notably, the inhibition zones increased when the samples were exposed to light compared to dark conditions, with increases of 33 and 18 mm noted for B. subtilis. This enhanced activity under light exposure is attributed to the photocatalytic properties of the nanocomposite. The antibacterial mechanism is based on both adsorption and degradation processes. Moreover, antibacterial activity was found to increase with increasing concentrations of nanoparticles, ranging from 100 to 500 ppm. This suggests that the nanocomposite has potential as an alternative to antibiotics, especially considering the growing issue of bacterial resistance. The promising results obtained from the inhibition zones make these nanocomposites suitable for various applications. Currently, the research team is working on the development of a prototype utilizing these antimicrobial particles within commercial bottles for sterilization purposes in factories and companies.
{"title":"A promising eco-friendly and cost-effective photocatalytic rolled graphene oxide/poly(m-methylaniline) core-shell nanocomposite for antimicrobial action.","authors":"Ahmed M Mahmoud, Mousa Abdullah Alghuthaymi, Mohamed Shaban, Mohamed Rabia","doi":"10.1002/bab.2645","DOIUrl":"https://doi.org/10.1002/bab.2645","url":null,"abstract":"<p><p>A new and innovative rolled graphene oxide (roll-GO)/poly-m-methylaniline (PmMA) core-shell nanocomposite has been successfully synthesized using an in situ polymerization technique. This eco-friendly and cost-effective material shows great promise due to its antimicrobial properties. The characterization of the nanocomposite involved X-ray diffraction and Fourier transform infrared spectroscopy to analyze its structure and functional groups, whereas scanning electron microscopy and transmission electron microscopy (TEM) were utilized to examine its morphology. TEM analysis revealed the formation of roll-GO, forming multi-walled tubes with inner and outer diameters of 50 and 70 nm, respectively. Optical analysis demonstrated an enhanced bandgap in the nanocomposite, with bandgap values of 2.38 eV for PmMA, 2.67 eV for roll-GO, and 1.65 eV for roll-GO/PmMA. The antibacterial efficacy of the nanocomposite was tested against Gram-positive bacteria, including Bacillus subtilis and Staphylococcus aureus, as well as Gram-negative bacteria such as Escherichia coli and Salmonella sp. The well diffusion method was used to determine the inhibition zones, revealing that the nanocomposite demonstrated broad-spectrum antibacterial activity against all the pathogens tested. The largest inhibition zones were observed for B. subtilis, followed by S. aureus, E. coli, and Salmonella sp. Notably, the inhibition zones increased when the samples were exposed to light compared to dark conditions, with increases of 33 and 18 mm noted for B. subtilis. This enhanced activity under light exposure is attributed to the photocatalytic properties of the nanocomposite. The antibacterial mechanism is based on both adsorption and degradation processes. Moreover, antibacterial activity was found to increase with increasing concentrations of nanoparticles, ranging from 100 to 500 ppm. This suggests that the nanocomposite has potential as an alternative to antibiotics, especially considering the growing issue of bacterial resistance. The promising results obtained from the inhibition zones make these nanocomposites suitable for various applications. Currently, the research team is working on the development of a prototype utilizing these antimicrobial particles within commercial bottles for sterilization purposes in factories and companies.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a new amperometric biosensor was developed for glucose determination. For this purpose, polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film was prepared by electropolymerization of aniline and pyrrole with poly(sodium-4-styrenesulfonate) on a platinum plate. The best working conditions of the polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film were determined. The glucose oxidase enzyme was immobilized by the entrapment method in polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Glucose determination was made based on the oxidation of hydrogen peroxide, which is formed as a result of the enzymatic reaction on the surface of the prepared biosensor at +0.40 V. The working range for the glucose determination of the biosensor was determined. The effects of pH and temperature on the response of the glucose biosensor were investigated. The reusability and shelf life of the biosensor were determined. The effects of interference in biological environments on the response of the biosensor were investigated. Glucose determination was made in the biological fluid (blood) with the prepared biosensor. This study has a feature that sheds light on biosensor studies to be developed for the detection of substances in the human body, such as glucose, uric acid, and urea. This article will set an example for future scientific research on the development of a sensor for other biological fluids in the human body, such as the sensor developed for blood samples. In addition, this developed sensor provides an innovation that improves the quality of life of patients by allowing them to constantly monitor their glucose levels and intervene when necessary.
本研究开发了一种用于葡萄糖测定的新型安培生物传感器。为此,在铂板上通过苯胺和吡咯与聚(4-苯乙烯磺酸钠)的电聚合制备了聚苯胺-聚吡咯-聚(4-苯乙烯磺酸钠)薄膜。确定了聚苯胺-聚吡咯-聚(4-苯乙烯磺酸钠)薄膜的最佳工作条件。采用夹持法将葡萄糖氧化酶固定在聚苯胺-聚吡咯-聚(4-苯乙烯磺酸钠)薄膜中。在 +0.40 V 电压下,制备的生物传感器表面发生酶促反应生成过氧化氢,根据过氧化氢的氧化作用进行葡萄糖测定。研究了 pH 值和温度对葡萄糖生物传感器响应的影响。确定了生物传感器的可重复使用性和保质期。研究了生物环境中的干扰对生物传感器响应的影响。利用制备的生物传感器对生物液体(血液)中的葡萄糖进行了测定。这项研究的一个特点是为即将开发的用于检测葡萄糖、尿酸和尿素等人体内物质的生物传感器研究提供了启示。这篇文章将为今后针对人体内其他生物液体开发传感器的科学研究树立榜样,例如针对血液样本开发的传感器。此外,这种已开发出的传感器还提供了一种创新,使病人能够持续监测自己的血糖水平,并在必要时进行干预,从而提高病人的生活质量。
{"title":"Development of an amperometric biosensor that can determine the amount of glucose in the blood using the glucose oxidase enzyme: Preparation of polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film.","authors":"Tugce Yagmur Uzumer, Servet Cete, Yener Tekeli, Elif Esra Altuner","doi":"10.1002/bab.2640","DOIUrl":"https://doi.org/10.1002/bab.2640","url":null,"abstract":"<p><p>In this study, a new amperometric biosensor was developed for glucose determination. For this purpose, polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film was prepared by electropolymerization of aniline and pyrrole with poly(sodium-4-styrenesulfonate) on a platinum plate. The best working conditions of the polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film were determined. The glucose oxidase enzyme was immobilized by the entrapment method in polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Glucose determination was made based on the oxidation of hydrogen peroxide, which is formed as a result of the enzymatic reaction on the surface of the prepared biosensor at +0.40 V. The working range for the glucose determination of the biosensor was determined. The effects of pH and temperature on the response of the glucose biosensor were investigated. The reusability and shelf life of the biosensor were determined. The effects of interference in biological environments on the response of the biosensor were investigated. Glucose determination was made in the biological fluid (blood) with the prepared biosensor. This study has a feature that sheds light on biosensor studies to be developed for the detection of substances in the human body, such as glucose, uric acid, and urea. This article will set an example for future scientific research on the development of a sensor for other biological fluids in the human body, such as the sensor developed for blood samples. In addition, this developed sensor provides an innovation that improves the quality of life of patients by allowing them to constantly monitor their glucose levels and intervene when necessary.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cong Kang, Lei Qiu, Yali Duo, FengLing Bi, Zhongjie Liu, Jing Wang, Lei Zheng, Ning Zhao
Mounting studies have shown that the oncoproteins E6 and E7 encoded by the human papillomavirus (HPV) genome are essential in HPV-induced cervical cancer (CC). Ca2+ binding protein 1 (CABP1), a downstream target of HPV18-positive HeLa cells that interferes with E6/E7 expression, was identified through screening the GEO Database (GSE6926). It was confirmed to be down-regulated in CC through TCGA prediction and in vitro detection. Subsequent in vitro experiments revealed that knocking down E6/E7 inhibited cell proliferation, migration, and invasion, whereas knocking down CABP1 promoted these processes. Simultaneously knocking down CABP1 reversed these effects. Additionally, the results were validated in vivo. Previous studies have indicated that CABP1 can regulate Ca2+ channels, influencing Ca2+ influx and tumor progression. In this study, it was observed that knocking down CABP1 enhanced Ca2+ inflow, as demonstrated by flow cytometry and confocal microscopy. Knocking down E6/E7 inhibited these processes, whereas simultaneously knocking down E6/E7 and CABP1 restored the inhibitory effect of knocking down E6/E7 on Ca2+ inflow. To further elucidate that E6/E7 promotes CC progression by inhibiting CABP1 expression and activating Ca2+ influx, BAPTA/AM treatment was administered during CABP1 knockdown. It was discovered that Ca2+ chelation could reverse the effect of CABP1 knockdown on CC cells. In conclusion, our results offer a novel target for the diagnosis and treatment of HPV-induced CC.
{"title":"HPV18 E6/E7 activates Ca<sup>2+</sup> influx to promote the malignant progression of cervical cancer by inhibiting Ca<sup>2+</sup> binding protein 1 expression.","authors":"Cong Kang, Lei Qiu, Yali Duo, FengLing Bi, Zhongjie Liu, Jing Wang, Lei Zheng, Ning Zhao","doi":"10.1002/bab.2650","DOIUrl":"https://doi.org/10.1002/bab.2650","url":null,"abstract":"<p><p>Mounting studies have shown that the oncoproteins E6 and E7 encoded by the human papillomavirus (HPV) genome are essential in HPV-induced cervical cancer (CC). Ca<sup>2+</sup> binding protein 1 (CABP1), a downstream target of HPV18-positive HeLa cells that interferes with E6/E7 expression, was identified through screening the GEO Database (GSE6926). It was confirmed to be down-regulated in CC through TCGA prediction and in vitro detection. Subsequent in vitro experiments revealed that knocking down E6/E7 inhibited cell proliferation, migration, and invasion, whereas knocking down CABP1 promoted these processes. Simultaneously knocking down CABP1 reversed these effects. Additionally, the results were validated in vivo. Previous studies have indicated that CABP1 can regulate Ca<sup>2+</sup> channels, influencing Ca<sup>2+</sup> influx and tumor progression. In this study, it was observed that knocking down CABP1 enhanced Ca<sup>2+</sup> inflow, as demonstrated by flow cytometry and confocal microscopy. Knocking down E6/E7 inhibited these processes, whereas simultaneously knocking down E6/E7 and CABP1 restored the inhibitory effect of knocking down E6/E7 on Ca<sup>2+</sup> inflow. To further elucidate that E6/E7 promotes CC progression by inhibiting CABP1 expression and activating Ca<sup>2+</sup> influx, BAPTA/AM treatment was administered during CABP1 knockdown. It was discovered that Ca<sup>2+</sup> chelation could reverse the effect of CABP1 knockdown on CC cells. In conclusion, our results offer a novel target for the diagnosis and treatment of HPV-induced CC.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}