Pub Date : 2020-09-08DOI: 10.1080/24705357.2020.1792364
L. Guiot, L. Cassan, D. Dorchies, P. Sagnes, G. Belaud
Abstract Water control structures, used to regulate water levels and flow exchange in coastal marshes, act as barriers during fish migration between the ocean and brackish or freshwater ecosystems. Usual fish pass solutions may be unsuitable for obstacles subject to significant water level variations such as tidal range. This study proposes new solutions that were developed, implemented and evaluated on a marsh controlled by a series of hydraulic structures. These solutions were based on soft physical modifications (passive management) of the control gates, and on adaptations of their operation rules (active management). To evaluate the impacts of these adaptations, a hydraulic model of the marsh was built. It solves the one-dimensional Saint-Venant equations and appropriate gate equations. The model was used to identify management rules of control structures in a way to improve fish migration without significantly affecting the initial hydraulic management of the marsh (i.e. targeted seasonal water levels). Fish passability of upstream structures could be improved by managing downstream ones. It was concluded that the combination of active and passive management of water control structures could largely increase the passability of these obstacles during glass eel migration, while limiting seawater intrusion in the marsh and maintaining water levels into a range compatible with marsh management needs.
{"title":"Hydraulic management of coastal freshwater marsh to conciliate local water needs and fish passage","authors":"L. Guiot, L. Cassan, D. Dorchies, P. Sagnes, G. Belaud","doi":"10.1080/24705357.2020.1792364","DOIUrl":"https://doi.org/10.1080/24705357.2020.1792364","url":null,"abstract":"Abstract Water control structures, used to regulate water levels and flow exchange in coastal marshes, act as barriers during fish migration between the ocean and brackish or freshwater ecosystems. Usual fish pass solutions may be unsuitable for obstacles subject to significant water level variations such as tidal range. This study proposes new solutions that were developed, implemented and evaluated on a marsh controlled by a series of hydraulic structures. These solutions were based on soft physical modifications (passive management) of the control gates, and on adaptations of their operation rules (active management). To evaluate the impacts of these adaptations, a hydraulic model of the marsh was built. It solves the one-dimensional Saint-Venant equations and appropriate gate equations. The model was used to identify management rules of control structures in a way to improve fish migration without significantly affecting the initial hydraulic management of the marsh (i.e. targeted seasonal water levels). Fish passability of upstream structures could be improved by managing downstream ones. It was concluded that the combination of active and passive management of water control structures could largely increase the passability of these obstacles during glass eel migration, while limiting seawater intrusion in the marsh and maintaining water levels into a range compatible with marsh management needs.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"11 1","pages":"51 - 70"},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89323087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-31DOI: 10.1080/24705357.2020.1768600
A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry
Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.
{"title":"Catchment-scale, high-resolution, hydraulic models and habitat maps – a salmonid's perspective","authors":"A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry","doi":"10.1080/24705357.2020.1768600","DOIUrl":"https://doi.org/10.1080/24705357.2020.1768600","url":null,"abstract":"Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"17 1","pages":"53 - 68"},"PeriodicalIF":0.0,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74020815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-02DOI: 10.1080/24705357.2019.1696717
Peter J. Moniz, G. Pasternack, D. Massa, L. Stearman, P. Bratovich
Abstract Microhabitat suitability models are commonly used to estimate salmonid habitat abundance and quality with unknown accuracy or reliability. When tested, the metrics used to evaluate these models are often limited by the methods used to develop them. More generalized bioverification strategies that transcend methodology are therefore needed in ecohydraulics. This study further developed and applied such a generalized bioverification framework to four approximately 1-m-resolution rearing salmonid microhabitat suitability models. Water depth and velocity habitat suitability criteria (HSC) functions were developed for two size classes of rearing Oncorhynchus tshawytscha and O. mykiss using snorkel survey data collected over three years at seven sites along the lower Yuba River in California, USA. An expert-based cover HSC function was modified from previous studies. HSC functions were applied to previously validated, approximately 1-m-resolution two-dimensional hydrodynamic models and cover maps of the river. Mann–Whitney U tests confirmed that suitability values were significantly higher at utilized locations compared to randomly generated, non-utilized locations for all four models. Bootstrapped forage ratios demonstrated that microhabitat suitability models accurately predicted both preferred and avoided habitat beyond the 95% confidence level. This generalized bioverification framework is recommended for evaluating and comparing the accuracy and reliability of ecohydraulic models used in habitat management worldwide.
{"title":"Do rearing salmonids predictably occupy physical microhabitat?","authors":"Peter J. Moniz, G. Pasternack, D. Massa, L. Stearman, P. Bratovich","doi":"10.1080/24705357.2019.1696717","DOIUrl":"https://doi.org/10.1080/24705357.2019.1696717","url":null,"abstract":"Abstract Microhabitat suitability models are commonly used to estimate salmonid habitat abundance and quality with unknown accuracy or reliability. When tested, the metrics used to evaluate these models are often limited by the methods used to develop them. More generalized bioverification strategies that transcend methodology are therefore needed in ecohydraulics. This study further developed and applied such a generalized bioverification framework to four approximately 1-m-resolution rearing salmonid microhabitat suitability models. Water depth and velocity habitat suitability criteria (HSC) functions were developed for two size classes of rearing Oncorhynchus tshawytscha and O. mykiss using snorkel survey data collected over three years at seven sites along the lower Yuba River in California, USA. An expert-based cover HSC function was modified from previous studies. HSC functions were applied to previously validated, approximately 1-m-resolution two-dimensional hydrodynamic models and cover maps of the river. Mann–Whitney U tests confirmed that suitability values were significantly higher at utilized locations compared to randomly generated, non-utilized locations for all four models. Bootstrapped forage ratios demonstrated that microhabitat suitability models accurately predicted both preferred and avoided habitat beyond the 95% confidence level. This generalized bioverification framework is recommended for evaluating and comparing the accuracy and reliability of ecohydraulic models used in habitat management worldwide.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"33 1","pages":"132 - 150"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79833098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-02DOI: 10.1080/24705357.2020.1835197
C. Katopodis, P. Kemp
{"title":"A good start – but time for new leadership in the editorship of the Journal of Ecohydraulics","authors":"C. Katopodis, P. Kemp","doi":"10.1080/24705357.2020.1835197","DOIUrl":"https://doi.org/10.1080/24705357.2020.1835197","url":null,"abstract":"","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"250 1","pages":"111 - 112"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80708055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-02DOI: 10.1080/24705357.2020.1842039
{"title":"Promoting safe fish passage across barriers: A Special Segment from Fish Passage 2020","authors":"","doi":"10.1080/24705357.2020.1842039","DOIUrl":"https://doi.org/10.1080/24705357.2020.1842039","url":null,"abstract":"","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"156 1","pages":"151 - 151"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73648226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-30DOI: 10.1080/24705357.2020.1762128
Patricia Sarai da Silva, L. F. Celestino, L. de Assumpção, S. Makrakis, J. P. Dias, E. Kashiwaqui, M. Makrakis
Abstract The seasonal pattern and the composition of downstream drift of fish eggs and larvae through the fish ladder of the Porto Primavera dam, located in the Upper Paraná River, Brazil, were studied. Additionally, the condition of individual larvae with regard to injuries was examined. Samples were collected monthly over three reproductive seasons at upper and lower pools at the twilight (nightfall and dawn). Ichthyoplankton densities were low, especially for eggs, and the downstream passage of fish eggs and larvae through the fish ladder was negatively correlated to water residence time of the reservoir. Highest larvae densities occurred between December and March, with highest densities in February. The ichthyoplankton abundance was similar between sites and times of day, with the predominance of partially damaged larvae (60%). Seventeen taxa were identified, especially non-migratory species. Long-distance migratory species represented less than 1% of the total. Since many migratory species have found favorable habitats for spawning and development in the tributaries of Porto Primavera Reservoir, the dispersion of larvae from these free-flowing tributaries located far from dam through reservoir may not be beneficial for their survival. At the same time, despite the low density and diversity of migratory species larvae drifting downstream from the dam, this fish ladder may have dispersive potential as long as the reservoir displays a shorter water residence time.
{"title":"Ichthyoplankton drift through fishway in large dam: effect of hydrology, seasonal patterns and larvae condition","authors":"Patricia Sarai da Silva, L. F. Celestino, L. de Assumpção, S. Makrakis, J. P. Dias, E. Kashiwaqui, M. Makrakis","doi":"10.1080/24705357.2020.1762128","DOIUrl":"https://doi.org/10.1080/24705357.2020.1762128","url":null,"abstract":"Abstract The seasonal pattern and the composition of downstream drift of fish eggs and larvae through the fish ladder of the Porto Primavera dam, located in the Upper Paraná River, Brazil, were studied. Additionally, the condition of individual larvae with regard to injuries was examined. Samples were collected monthly over three reproductive seasons at upper and lower pools at the twilight (nightfall and dawn). Ichthyoplankton densities were low, especially for eggs, and the downstream passage of fish eggs and larvae through the fish ladder was negatively correlated to water residence time of the reservoir. Highest larvae densities occurred between December and March, with highest densities in February. The ichthyoplankton abundance was similar between sites and times of day, with the predominance of partially damaged larvae (60%). Seventeen taxa were identified, especially non-migratory species. Long-distance migratory species represented less than 1% of the total. Since many migratory species have found favorable habitats for spawning and development in the tributaries of Porto Primavera Reservoir, the dispersion of larvae from these free-flowing tributaries located far from dam through reservoir may not be beneficial for their survival. At the same time, despite the low density and diversity of migratory species larvae drifting downstream from the dam, this fish ladder may have dispersive potential as long as the reservoir displays a shorter water residence time.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"17 1","pages":"165 - 174"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81130725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-29DOI: 10.1080/24705357.2020.1770135
Elena-Maria Klopries, A. Wilmink, E. Pummer, Imke Böckmann, A. Hoffmann, H. Schüttrumpf
Abstract Passage through hydropower plants can cause severe injuries for downstream migrating fish. Bar racks and bypass systems can help to protect fish from turbine-induced mortality if they are designed correctly following guidelines. Currently, it is not possible to assess how effective bar racks are that do not meet design criteria for fish protection. We introduced the screening effect as a performance parameter for bar racks and developed an equation for determining the screening effect of bar racks for silver eels based on an empirical approach. We compared the equation for eels with the results of behavioural laboratory studies with European eels (Anguilla anguilla), roach (Rutilus rutilus) and Atlantic salmon smolts (Salmo salar). We showed that the equation is not applicable for roach and Atlantic salmon smolts. Using univariate statistics, we identified a significant influence of the bar rack spacing on the screening effect for eels for the guidance system with (Kruskal-Wallis test, p = 0.002) and without a bypass (Kruskal-Wallis test, p = 0.0220) and for salmon without a bypass (Kruskal-Wallis test, p = 0.001) for a significance level of 0.05. The screening effect was significantly different between the fish species tested for a bar rack without bypass and 20 mm bar rack spacing (Kruskal-Wallis test, p = 0.003) and 40 mm (Kruskal-Wallis test, p < 0.001) as well as a bar rack with a bypass and either 40 mm bar rack spacing (Kruskal-Wallis test, p = 0.014) or 60 mm (Kruskal-Wallis test, p = 0.001). The results can help to perform biological evaluations and plan retrofitting measures of non-optimal bar racks.
通过水电站会对下游洄游鱼类造成严重伤害。如果按照指导原则正确设计,杆架和旁路系统可以帮助保护鱼类免受涡轮机引起的死亡。目前,不可能评估不符合鱼类保护设计标准的酒吧架的效果。本文将筛选效果作为酒吧架的性能参数,并基于经验方法建立了确定酒吧架对银鳗筛选效果的公式。我们将鳗鱼的方程与欧洲鳗鱼(Anguilla Anguilla)、蟑螂(Rutilus Rutilus)和大西洋鲑鱼幼鱼(Salmo salar)的行为实验室研究结果进行了比较。我们证明,这个等式不适用于蟑螂和大西洋鲑鱼幼崽。使用单变量统计,我们发现了杆架间距对引导系统筛选效果的显著影响,包括有(Kruskal-Wallis检验,p = 0.002)和没有旁路(Kruskal-Wallis检验,p = 0.0220)的鳗鱼和没有旁路的鲑鱼(Kruskal-Wallis检验,p = 0.001),显著性水平为0.05。在不搭桥的杆架和间距为20 mm (Kruskal-Wallis试验,p = 0.003)、40 mm (Kruskal-Wallis试验,p < 0.001)以及有搭桥的杆架和间距为40 mm (Kruskal-Wallis试验,p = 0.014)、60 mm (Kruskal-Wallis试验,p = 0.001)的杆架试验中,对鱼种的筛选效果有显著差异。研究结果有助于对非最佳酒吧架进行生物学评价和规划改造措施。
{"title":"Development and evaluation of an empirical equation for the screening effect of bar racks","authors":"Elena-Maria Klopries, A. Wilmink, E. Pummer, Imke Böckmann, A. Hoffmann, H. Schüttrumpf","doi":"10.1080/24705357.2020.1770135","DOIUrl":"https://doi.org/10.1080/24705357.2020.1770135","url":null,"abstract":"Abstract Passage through hydropower plants can cause severe injuries for downstream migrating fish. Bar racks and bypass systems can help to protect fish from turbine-induced mortality if they are designed correctly following guidelines. Currently, it is not possible to assess how effective bar racks are that do not meet design criteria for fish protection. We introduced the screening effect as a performance parameter for bar racks and developed an equation for determining the screening effect of bar racks for silver eels based on an empirical approach. We compared the equation for eels with the results of behavioural laboratory studies with European eels (Anguilla anguilla), roach (Rutilus rutilus) and Atlantic salmon smolts (Salmo salar). We showed that the equation is not applicable for roach and Atlantic salmon smolts. Using univariate statistics, we identified a significant influence of the bar rack spacing on the screening effect for eels for the guidance system with (Kruskal-Wallis test, p = 0.002) and without a bypass (Kruskal-Wallis test, p = 0.0220) and for salmon without a bypass (Kruskal-Wallis test, p = 0.001) for a significance level of 0.05. The screening effect was significantly different between the fish species tested for a bar rack without bypass and 20 mm bar rack spacing (Kruskal-Wallis test, p = 0.003) and 40 mm (Kruskal-Wallis test, p < 0.001) as well as a bar rack with a bypass and either 40 mm bar rack spacing (Kruskal-Wallis test, p = 0.014) or 60 mm (Kruskal-Wallis test, p = 0.001). The results can help to perform biological evaluations and plan retrofitting measures of non-optimal bar racks.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"233 1","pages":"184 - 197"},"PeriodicalIF":0.0,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79035673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-23DOI: 10.1080/24705357.2020.1771223
Karan Solanki, H. Sharma, N. Joshi
Abstract Submerged vanes are the hydrofoils which generate the helical currents in the flow due to the difference in pressure between the approaching flow side and the downstream side of vanes and are placed obliquely with the flow, with angles ranging from 10° to 40°. Previous studies have been done on the rectangular shaped submerged vanes but only a few studies have been reported for the submerged vanes with non-rectangular shapes. The present study aims to optimize the parameters of tapered vanes and their effect on flow structure around the vanes through numerical modelling. Numerical modelling for the present study was done in ANSYS-CFX software using the K-ω turbulence closure model to simulate the vortical flow. It was observed that maximum strength of secondary currents was obtained for angle of attack, sweep angle and relative vane height (ratio of vane height to depth of flow) of 17°, 10° and 0.48, respectively. It was also observed that in the proximity of the tapered vane, secondary currents are dominated by vortex-lift while in far-reaches, potential lift prevails. It was observed that transverse velocity was maximum for a sweep angle of 10°. Comparing the optimal rectangular vane (with angle of attack of 30) with the tapered vane (with angle of attack of 17), it was observed that the rectangular vane has a tendency to generate higher transverse velocities and hence may act as a sediment diverter to counter sediment movement while the tapered vane has a tendency to generate vortical structures over a larger distance, hence may act as a sediment managing device.
{"title":"Flow and parameter optimization of tapered vane","authors":"Karan Solanki, H. Sharma, N. Joshi","doi":"10.1080/24705357.2020.1771223","DOIUrl":"https://doi.org/10.1080/24705357.2020.1771223","url":null,"abstract":"Abstract Submerged vanes are the hydrofoils which generate the helical currents in the flow due to the difference in pressure between the approaching flow side and the downstream side of vanes and are placed obliquely with the flow, with angles ranging from 10° to 40°. Previous studies have been done on the rectangular shaped submerged vanes but only a few studies have been reported for the submerged vanes with non-rectangular shapes. The present study aims to optimize the parameters of tapered vanes and their effect on flow structure around the vanes through numerical modelling. Numerical modelling for the present study was done in ANSYS-CFX software using the K-ω turbulence closure model to simulate the vortical flow. It was observed that maximum strength of secondary currents was obtained for angle of attack, sweep angle and relative vane height (ratio of vane height to depth of flow) of 17°, 10° and 0.48, respectively. It was also observed that in the proximity of the tapered vane, secondary currents are dominated by vortex-lift while in far-reaches, potential lift prevails. It was observed that transverse velocity was maximum for a sweep angle of 10°. Comparing the optimal rectangular vane (with angle of attack of 30) with the tapered vane (with angle of attack of 17), it was observed that the rectangular vane has a tendency to generate higher transverse velocities and hence may act as a sediment diverter to counter sediment movement while the tapered vane has a tendency to generate vortical structures over a larger distance, hence may act as a sediment managing device.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"367 1","pages":"13 - 25"},"PeriodicalIF":0.0,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74905827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-19DOI: 10.1080/24705357.2020.1775504
Daniel P Zielinski, S. Miehls, Gordon C. Burns, Charles C. Coutant
Abstract Manipulation of water velocities and turbulence using pumps, propellers, or jets is a promising alternative to physical water control structures to guide fish towards traps or fishways. Sea lamprey (Petromyzon marinus) are a species of concern in much of their native and invasive ranges, and their improved guidance could benefit management actions for both conservation and control. The flow velocity enhancement system (FVES), an emergent technology that uses a Venturi pump to generate a plume of turbulence, has shown promise guiding downstream migrating fish in slow-moving or static water conditions formed by large reservoirs, but is untested for guidance of upstream swimming fish in low current environments. The FVES had minimal impact on depth averaged velocity profiles, but produced elevated levels of turbulence. Changes in spatial distribution and number of turns suggest sea lamprey detect and are mildly attracted to turbulence induced by the FVES. These results demonstrate the potential of induced turbulence as a guidance mechanism for upstream migrating sea lamprey, but more extensive testing is needed to show the full utility of this approach.
{"title":"Adult sea lamprey respond to induced turbulence in a low current system","authors":"Daniel P Zielinski, S. Miehls, Gordon C. Burns, Charles C. Coutant","doi":"10.1080/24705357.2020.1775504","DOIUrl":"https://doi.org/10.1080/24705357.2020.1775504","url":null,"abstract":"Abstract Manipulation of water velocities and turbulence using pumps, propellers, or jets is a promising alternative to physical water control structures to guide fish towards traps or fishways. Sea lamprey (Petromyzon marinus) are a species of concern in much of their native and invasive ranges, and their improved guidance could benefit management actions for both conservation and control. The flow velocity enhancement system (FVES), an emergent technology that uses a Venturi pump to generate a plume of turbulence, has shown promise guiding downstream migrating fish in slow-moving or static water conditions formed by large reservoirs, but is untested for guidance of upstream swimming fish in low current environments. The FVES had minimal impact on depth averaged velocity profiles, but produced elevated levels of turbulence. Changes in spatial distribution and number of turns suggest sea lamprey detect and are mildly attracted to turbulence induced by the FVES. These results demonstrate the potential of induced turbulence as a guidance mechanism for upstream migrating sea lamprey, but more extensive testing is needed to show the full utility of this approach.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"29 1","pages":"82 - 90"},"PeriodicalIF":0.0,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83174036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-16DOI: 10.1080/24705357.2020.1768166
S. Amaral, S. Watson, Abraham D. Schneider, Jenna Rackovan, Andrew Baumgartner
Abstract Compact turbines offer potential to reduce hydropower plant construction costs, but conventional turbine blade designs endanger entrained fish due to high blade strike speeds and thin leading edges. We evaluated the potential for combined blade leading edge slant and large leading edge thickness to increase strike survival. Rainbow trout (Oncorhynchus mykiss) were subjected to strikes with 100 mm thick blade analogues. At 10 m/s, strikes at fish length to blade leading edge thickness ratio (L/t) of 2 resulted in 98% survival at a location along the blade witha 30° slant relative to the tangential direction, compared to 26.8% survival at a location with 90°slant. For L/t 1.14-2, survival was found to be sensitive to location of strike within the mid-body region, determined from high-speed video. Strikes of 200 mm fish at 10 m/s resulted in 68% survival when body strike location was 0.58 (near caudal), and 7.9% when body strike location was 0.36 (near head). These results are consistent with previous trends and indicate opportunities to improve turbine blade design for greater entrained fish survival at higher turbine speeds, at both low head (<30 m) and high head projects.
{"title":"Improving survival: injury and mortality of fish struck by blades with slanted, blunt leading edges","authors":"S. Amaral, S. Watson, Abraham D. Schneider, Jenna Rackovan, Andrew Baumgartner","doi":"10.1080/24705357.2020.1768166","DOIUrl":"https://doi.org/10.1080/24705357.2020.1768166","url":null,"abstract":"Abstract Compact turbines offer potential to reduce hydropower plant construction costs, but conventional turbine blade designs endanger entrained fish due to high blade strike speeds and thin leading edges. We evaluated the potential for combined blade leading edge slant and large leading edge thickness to increase strike survival. Rainbow trout (Oncorhynchus mykiss) were subjected to strikes with 100 mm thick blade analogues. At 10 m/s, strikes at fish length to blade leading edge thickness ratio (L/t) of 2 resulted in 98% survival at a location along the blade witha 30° slant relative to the tangential direction, compared to 26.8% survival at a location with 90°slant. For L/t 1.14-2, survival was found to be sensitive to location of strike within the mid-body region, determined from high-speed video. Strikes of 200 mm fish at 10 m/s resulted in 68% survival when body strike location was 0.58 (near caudal), and 7.9% when body strike location was 0.36 (near head). These results are consistent with previous trends and indicate opportunities to improve turbine blade design for greater entrained fish survival at higher turbine speeds, at both low head (<30 m) and high head projects.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"5 1","pages":"175 - 183"},"PeriodicalIF":0.0,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86978426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}