Pub Date : 2020-12-06DOI: 10.1080/24705357.2020.1834884
F. Grasso, A. Carlier, P. Cugier, R. Verney, M. Marzloff
Abstract In coastal environments, strong feedback can exist between benthic fauna and sediment dynamics. Benthic populations can modify sediment dynamics through biofiltration and bioturbation, while hydro- and sediment dynamics directly determine local environmental conditions for benthic organisms. However, these complex feedbacks are difficult to study in situ. Here, we carried out mesocosm experiments to characterize the effects of a benthic species (the gastropod Crepidula fornicata) on mud dynamics under hydrodynamic conditions representative of their natural habitat. Different experimental tests related to the inclusion (or not) of dead or live crepidula reveal that biofiltration can increase particle settling up to 40%. Flocculation, which is strengthened by organic matter enrichment in shell beds, also substantially increases particle settling. Thus, both processes enhance sedimentation above live crepidula habitats. Furthermore, these experiments highlight serious technical, physical and biological challenges that have to be tackled for properly investigating bio-physical interactions.
{"title":"Influence of Crepidula fornicata on suspended particle dynamics in coastal systems: a mesocosm experimental study","authors":"F. Grasso, A. Carlier, P. Cugier, R. Verney, M. Marzloff","doi":"10.1080/24705357.2020.1834884","DOIUrl":"https://doi.org/10.1080/24705357.2020.1834884","url":null,"abstract":"Abstract In coastal environments, strong feedback can exist between benthic fauna and sediment dynamics. Benthic populations can modify sediment dynamics through biofiltration and bioturbation, while hydro- and sediment dynamics directly determine local environmental conditions for benthic organisms. However, these complex feedbacks are difficult to study in situ. Here, we carried out mesocosm experiments to characterize the effects of a benthic species (the gastropod Crepidula fornicata) on mud dynamics under hydrodynamic conditions representative of their natural habitat. Different experimental tests related to the inclusion (or not) of dead or live crepidula reveal that biofiltration can increase particle settling up to 40%. Flocculation, which is strengthened by organic matter enrichment in shell beds, also substantially increases particle settling. Thus, both processes enhance sedimentation above live crepidula habitats. Furthermore, these experiments highlight serious technical, physical and biological challenges that have to be tackled for properly investigating bio-physical interactions.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77101960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-20DOI: 10.1080/24705357.2020.1830723
P. Romero-Gomez, M. Lång, S. Weissenberger
Abstract The construction, rehabilitation and re-licensing of hydropower stations must nowadays fulfill strict demands for fish protection, particularly those related to enhanced turbine passage survival rates of downstream migratory species. In an analogy to the efficiency curves of a water turbine represented on a hill chart, the bio-hill chart introduced herein depicts the relationships between the operating conditions (i.e., discharge and head) and the potential survival rate of migratory fish passing through the turbine. The bio-hill chart applies over the entire operating range of the machine, which is a step forward with respect to previous works that determined hydraulic-biological evaluations for only a few operating points. The elaboration of a bio-hill chart involves two steps: (i) the calculation of turbine flows for each operating point and (ii) the corresponding evaluation of fish friendliness. The flow conditions are determined via computational fluid dynamics simulations. The calculation of fish friendliness relies on modelling approaches to determine mortality risks associated with collision on rotating blades and rapid decompression. We thoroughly describe the process to elaborate the bio-hill chart for juvenile salmonid species, as well as its implementation in a Kaplan turbine. The bio-hill chart represents a first approximation for determining those operating conditions that may mitigate fish mortality risks (i.e., maximize fish friendliness) and for quantitatively establishing the inevitable trade-off that exists between the hydraulic and environmental demands of hydropower generation.
{"title":"The bio-hill chart of a Kaplan turbine","authors":"P. Romero-Gomez, M. Lång, S. Weissenberger","doi":"10.1080/24705357.2020.1830723","DOIUrl":"https://doi.org/10.1080/24705357.2020.1830723","url":null,"abstract":"Abstract The construction, rehabilitation and re-licensing of hydropower stations must nowadays fulfill strict demands for fish protection, particularly those related to enhanced turbine passage survival rates of downstream migratory species. In an analogy to the efficiency curves of a water turbine represented on a hill chart, the bio-hill chart introduced herein depicts the relationships between the operating conditions (i.e., discharge and head) and the potential survival rate of migratory fish passing through the turbine. The bio-hill chart applies over the entire operating range of the machine, which is a step forward with respect to previous works that determined hydraulic-biological evaluations for only a few operating points. The elaboration of a bio-hill chart involves two steps: (i) the calculation of turbine flows for each operating point and (ii) the corresponding evaluation of fish friendliness. The flow conditions are determined via computational fluid dynamics simulations. The calculation of fish friendliness relies on modelling approaches to determine mortality risks associated with collision on rotating blades and rapid decompression. We thoroughly describe the process to elaborate the bio-hill chart for juvenile salmonid species, as well as its implementation in a Kaplan turbine. The bio-hill chart represents a first approximation for determining those operating conditions that may mitigate fish mortality risks (i.e., maximize fish friendliness) and for quantitatively establishing the inevitable trade-off that exists between the hydraulic and environmental demands of hydropower generation.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86434269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-19DOI: 10.1080/24705357.2020.1830002
D. Rosero‐López, E. Cowen, M. Walter, B. Bièvre, D. González‐Zeas, A. Flecker, R. Osorio, O. Dangles
Abstract Controlled in-stream flow manipulations are challenging but necessary to implement to assess the consequences of real-world flow alterations on aquatic ecosystems. We designed a double v-notch weir system, which was first prototype-tested in a laboratory flume and then in the field. The device diverted instantaneous flows proportionally in a robust way (e.g., 10% of flow in the stream main channel and 90% of flow into the diversion channel). We tested diversions systematically and evaluated how well flows matched our target flow-percentages. This is one of the first ecohydraulic structures designed and tested to experimentally manipulate environmental flows in small upland streams.
{"title":"Design of a paired-weir system for experimental manipulation of environmental flows in streams","authors":"D. Rosero‐López, E. Cowen, M. Walter, B. Bièvre, D. González‐Zeas, A. Flecker, R. Osorio, O. Dangles","doi":"10.1080/24705357.2020.1830002","DOIUrl":"https://doi.org/10.1080/24705357.2020.1830002","url":null,"abstract":"Abstract Controlled in-stream flow manipulations are challenging but necessary to implement to assess the consequences of real-world flow alterations on aquatic ecosystems. We designed a double v-notch weir system, which was first prototype-tested in a laboratory flume and then in the field. The device diverted instantaneous flows proportionally in a robust way (e.g., 10% of flow in the stream main channel and 90% of flow into the diversion channel). We tested diversions systematically and evaluated how well flows matched our target flow-percentages. This is one of the first ecohydraulic structures designed and tested to experimentally manipulate environmental flows in small upland streams.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78192119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.1080/24705357.2020.1835566
R. Tinoco, A. F. Prada, A. George, B. H. Stahlschmidt, P. R. Jackson, D. Chapman
Abstract Aquatic vegetation can provide habitat and refuge for a variety of species in streams. However, the flow features generated by submerged patches of vegetation can also pose a challenge for fish larvae. We conducted a series of experiments with live grass carp larvae (starting ∼50 h post hatch) in a laboratory racetrack flume, using a submerged array of rigid cylinders to mimic vegetation. We used particle image velocimetry to characterize the flow field, and particle tracking velocimetry to obtain position and displacement of the fish. Four speeds and two submergence ratios were investigated. In contrast with previous studies with grass carp eggs, our data showed an active response from larvae to determine their position. Our study shows that: (1) mean velocity by itself is not a reliable predictor, as some larvae will seemingly prefer to be in areas of higher speeds with lower shear and turbulence, (2) turbulence characteristics can be used to identify areas avoided by larvae, (3) turbulence length scales are relevant to determine spatial distribution of larvae and their swimming capabilities within and above vegetated patches and similar roughness elements in streams. These findings can inform the design of monitoring and control strategies in rivers based on turbulence and turbulence scales generated by natural and man-made instream structures.
{"title":"Identifying turbulence features hindering swimming capabilities of grass carp larvae (Ctenopharyngodon idella) through submerged vegetation","authors":"R. Tinoco, A. F. Prada, A. George, B. H. Stahlschmidt, P. R. Jackson, D. Chapman","doi":"10.1080/24705357.2020.1835566","DOIUrl":"https://doi.org/10.1080/24705357.2020.1835566","url":null,"abstract":"Abstract Aquatic vegetation can provide habitat and refuge for a variety of species in streams. However, the flow features generated by submerged patches of vegetation can also pose a challenge for fish larvae. We conducted a series of experiments with live grass carp larvae (starting ∼50 h post hatch) in a laboratory racetrack flume, using a submerged array of rigid cylinders to mimic vegetation. We used particle image velocimetry to characterize the flow field, and particle tracking velocimetry to obtain position and displacement of the fish. Four speeds and two submergence ratios were investigated. In contrast with previous studies with grass carp eggs, our data showed an active response from larvae to determine their position. Our study shows that: (1) mean velocity by itself is not a reliable predictor, as some larvae will seemingly prefer to be in areas of higher speeds with lower shear and turbulence, (2) turbulence characteristics can be used to identify areas avoided by larvae, (3) turbulence length scales are relevant to determine spatial distribution of larvae and their swimming capabilities within and above vegetated patches and similar roughness elements in streams. These findings can inform the design of monitoring and control strategies in rivers based on turbulence and turbulence scales generated by natural and man-made instream structures.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78146397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-29DOI: 10.1080/24705357.2020.1818642
An V. Vu, L. Baumgartner, M. Mallen‐Cooper, J. Howitt, W. Robinson, N. So, I. Cowx
Abstract Diadromous fishes, those that migrate between fresh and marine waters, are among the most vulnerable species to river infrastructural development. These fish need to move between fresh water and the sea, so any obstruction to migration can block access to critical habitat areas. The Lower Mekong Basin (LMB) is experiencing an unprecedented boom in river development, with many dams and irrigation schemes being installed. Although general patterns of fish migration are known in the LMB, there is relatively little information on diadromous fish migration, so the overall impacts of river development on their population status is likely underestimated for many species. In this study, we reviewed the available information for over one thousand Mekong fish species to identify evidence for diadromy. Our results found that diadromy is likely a more common life history trait in the LMB than previously assumed. For instance, 61 of the 1136 Mekong fish species assessed exhibit diadromous traits (44 amphidromous species, 9 anadromous species, and 8 catadromous species). Many of these species are known to migrate relatively long distances, connecting with the Mekong estuary to some extent to complete their life cycles. Based on routine fish catch monitoring data, these suspected diadromous fishes contributed around 3% to the total catch across the basin and included a number of endemic species of significant economic value. Riverine development must therefore proceed in a balanced manner to protect diadromous species diversity and associated fisheries resources, whilst also meeting food and energy demands in the region.
{"title":"Diadromy in a large tropical river, the Mekong: more common than assumed, with greater implications for management","authors":"An V. Vu, L. Baumgartner, M. Mallen‐Cooper, J. Howitt, W. Robinson, N. So, I. Cowx","doi":"10.1080/24705357.2020.1818642","DOIUrl":"https://doi.org/10.1080/24705357.2020.1818642","url":null,"abstract":"Abstract Diadromous fishes, those that migrate between fresh and marine waters, are among the most vulnerable species to river infrastructural development. These fish need to move between fresh water and the sea, so any obstruction to migration can block access to critical habitat areas. The Lower Mekong Basin (LMB) is experiencing an unprecedented boom in river development, with many dams and irrigation schemes being installed. Although general patterns of fish migration are known in the LMB, there is relatively little information on diadromous fish migration, so the overall impacts of river development on their population status is likely underestimated for many species. In this study, we reviewed the available information for over one thousand Mekong fish species to identify evidence for diadromy. Our results found that diadromy is likely a more common life history trait in the LMB than previously assumed. For instance, 61 of the 1136 Mekong fish species assessed exhibit diadromous traits (44 amphidromous species, 9 anadromous species, and 8 catadromous species). Many of these species are known to migrate relatively long distances, connecting with the Mekong estuary to some extent to complete their life cycles. Based on routine fish catch monitoring data, these suspected diadromous fishes contributed around 3% to the total catch across the basin and included a number of endemic species of significant economic value. Riverine development must therefore proceed in a balanced manner to protect diadromous species diversity and associated fisheries resources, whilst also meeting food and energy demands in the region.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86384059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-25DOI: 10.1080/24705357.2020.1813057
R. Casas‐Mulet, D. Vanzo, Ana Adeva-Bustos, Camille J. Macnaughton, M. Stewardson, G. Pasternack, E. Enders, F. Dyer
Abstract Interdisciplinary approaches are required to tackle complex environmental issues as freshwater ecosystems face unprecedented pressures globally. The emerging Ecohydraulics field of research should, therefore, take steps towards developing true interdisciplinarity to adapt to a continuing changing world. This study contributes to the ongoing discussion on interdisciplinarity in Ecohydraulics and shapes its growth by identifying key actions, actors and implementation strategies that can strengthen it. Based on an online questionnaire and a workshop involving over 150 early and established careers, we present a list of 20 prioritised actions that will help engage the research community towards specific goals and will result in increased interdisciplinary outcomes. While early career researchers (ECRs) have taken the lead on creating this roadmap, its implementation should be a joint responsibility of both ECRs, established career scientists, groups, and institutions within Ecohydraulics. The list of identified actions and assigned responsibility should, therefore, be considered a conversation starter. Continued revision of the here-stated approaches will be required in the future as the field of research and its community progresses. With this contribution, we resume a critical reflection on where the Ecohydraulics field of research and community stand today and suggest where resources should be invested in the long-term to consolidate the inherent interdisciplinarity in Ecohydraulics.
{"title":"How to strengthen interdisciplinarity in ecohydraulics? Outcomes from ISE 2018","authors":"R. Casas‐Mulet, D. Vanzo, Ana Adeva-Bustos, Camille J. Macnaughton, M. Stewardson, G. Pasternack, E. Enders, F. Dyer","doi":"10.1080/24705357.2020.1813057","DOIUrl":"https://doi.org/10.1080/24705357.2020.1813057","url":null,"abstract":"Abstract Interdisciplinary approaches are required to tackle complex environmental issues as freshwater ecosystems face unprecedented pressures globally. The emerging Ecohydraulics field of research should, therefore, take steps towards developing true interdisciplinarity to adapt to a continuing changing world. This study contributes to the ongoing discussion on interdisciplinarity in Ecohydraulics and shapes its growth by identifying key actions, actors and implementation strategies that can strengthen it. Based on an online questionnaire and a workshop involving over 150 early and established careers, we present a list of 20 prioritised actions that will help engage the research community towards specific goals and will result in increased interdisciplinary outcomes. While early career researchers (ECRs) have taken the lead on creating this roadmap, its implementation should be a joint responsibility of both ECRs, established career scientists, groups, and institutions within Ecohydraulics. The list of identified actions and assigned responsibility should, therefore, be considered a conversation starter. Continued revision of the here-stated approaches will be required in the future as the field of research and its community progresses. With this contribution, we resume a critical reflection on where the Ecohydraulics field of research and community stand today and suggest where resources should be invested in the long-term to consolidate the inherent interdisciplinarity in Ecohydraulics.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76879419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-17DOI: 10.1080/24705357.2020.1790047
C. Judes, V. Gouraud, Hervé Capra, Anthony Maire, A. Barillier, Nicolas, Lamouroux
Abstract Hydropeaking corresponds to rapid artificial discharge variations, designed to address sub-daily peaks in electricity demand. It generates rapid changes in physical habitat (e.g., flow velocity and water depth) with potential impacts on stream assemblages. For assessing the generality of hydropeaking effects on fish assemblages, we present an original combination of spatial (among 45 reaches, including six groups of nearby reaches) and temporal (over 3-17 years) analyses of these effects. Our analyses involved descriptions of natural and artificial hydraulic variations in reaches, obtained after translating hourly discharge data into hydraulics. We found that the influence of hydropeaking was secondary compared to well-known spatial variations in fish assemblage structure along longitudinal gradients, and negative influences of floods on annual densities. However, the spatial and temporal analyses consistently suggested that hydropeaking may disfavour fish species typical of medium-sized streams relative to species of headwater streams (Salmo trutta, Phoxinus phoxinus, Cottus gobio). The magnitude of hydropeaking effects observed here, as well as an apparent weaker effect of ramping rates than the frequency of hydropeaks, may be due to lower ramping rates in our data set than in other studies.
{"title":"Consistent but secondary influence of hydropeaking on stream fish assemblages in space and time","authors":"C. Judes, V. Gouraud, Hervé Capra, Anthony Maire, A. Barillier, Nicolas, Lamouroux","doi":"10.1080/24705357.2020.1790047","DOIUrl":"https://doi.org/10.1080/24705357.2020.1790047","url":null,"abstract":"Abstract Hydropeaking corresponds to rapid artificial discharge variations, designed to address sub-daily peaks in electricity demand. It generates rapid changes in physical habitat (e.g., flow velocity and water depth) with potential impacts on stream assemblages. For assessing the generality of hydropeaking effects on fish assemblages, we present an original combination of spatial (among 45 reaches, including six groups of nearby reaches) and temporal (over 3-17 years) analyses of these effects. Our analyses involved descriptions of natural and artificial hydraulic variations in reaches, obtained after translating hourly discharge data into hydraulics. We found that the influence of hydropeaking was secondary compared to well-known spatial variations in fish assemblage structure along longitudinal gradients, and negative influences of floods on annual densities. However, the spatial and temporal analyses consistently suggested that hydropeaking may disfavour fish species typical of medium-sized streams relative to species of headwater streams (Salmo trutta, Phoxinus phoxinus, Cottus gobio). The magnitude of hydropeaking effects observed here, as well as an apparent weaker effect of ramping rates than the frequency of hydropeaks, may be due to lower ramping rates in our data set than in other studies.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85949654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-08DOI: 10.1080/24705357.2020.1792364
L. Guiot, L. Cassan, D. Dorchies, P. Sagnes, G. Belaud
Abstract Water control structures, used to regulate water levels and flow exchange in coastal marshes, act as barriers during fish migration between the ocean and brackish or freshwater ecosystems. Usual fish pass solutions may be unsuitable for obstacles subject to significant water level variations such as tidal range. This study proposes new solutions that were developed, implemented and evaluated on a marsh controlled by a series of hydraulic structures. These solutions were based on soft physical modifications (passive management) of the control gates, and on adaptations of their operation rules (active management). To evaluate the impacts of these adaptations, a hydraulic model of the marsh was built. It solves the one-dimensional Saint-Venant equations and appropriate gate equations. The model was used to identify management rules of control structures in a way to improve fish migration without significantly affecting the initial hydraulic management of the marsh (i.e. targeted seasonal water levels). Fish passability of upstream structures could be improved by managing downstream ones. It was concluded that the combination of active and passive management of water control structures could largely increase the passability of these obstacles during glass eel migration, while limiting seawater intrusion in the marsh and maintaining water levels into a range compatible with marsh management needs.
{"title":"Hydraulic management of coastal freshwater marsh to conciliate local water needs and fish passage","authors":"L. Guiot, L. Cassan, D. Dorchies, P. Sagnes, G. Belaud","doi":"10.1080/24705357.2020.1792364","DOIUrl":"https://doi.org/10.1080/24705357.2020.1792364","url":null,"abstract":"Abstract Water control structures, used to regulate water levels and flow exchange in coastal marshes, act as barriers during fish migration between the ocean and brackish or freshwater ecosystems. Usual fish pass solutions may be unsuitable for obstacles subject to significant water level variations such as tidal range. This study proposes new solutions that were developed, implemented and evaluated on a marsh controlled by a series of hydraulic structures. These solutions were based on soft physical modifications (passive management) of the control gates, and on adaptations of their operation rules (active management). To evaluate the impacts of these adaptations, a hydraulic model of the marsh was built. It solves the one-dimensional Saint-Venant equations and appropriate gate equations. The model was used to identify management rules of control structures in a way to improve fish migration without significantly affecting the initial hydraulic management of the marsh (i.e. targeted seasonal water levels). Fish passability of upstream structures could be improved by managing downstream ones. It was concluded that the combination of active and passive management of water control structures could largely increase the passability of these obstacles during glass eel migration, while limiting seawater intrusion in the marsh and maintaining water levels into a range compatible with marsh management needs.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89323087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-31DOI: 10.1080/24705357.2020.1768600
A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry
Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.
{"title":"Catchment-scale, high-resolution, hydraulic models and habitat maps – a salmonid's perspective","authors":"A. O'Sullivan, Bernhard Wegscheider, J. Helminen, Joseph G. Cormier, T. Linnansaari, Dale A. Wilson, R. A. Curry","doi":"10.1080/24705357.2020.1768600","DOIUrl":"https://doi.org/10.1080/24705357.2020.1768600","url":null,"abstract":"Abstract The advent of remotely-sensed high-resolution imagery has led to the development of methods to map river bathymetry. In this study, we utilized high-resolution imagery to map river depth and quantify hydraulic habitats at the catchment scale (>1000 km2) during low flows. Using 0.3-m airborne multi-spectral imagery (resampled to 0.5 m), we mapped contiguous river depth (124 km) within a well-established Atlantic Salmon (Salmo salar) and Brook Trout (Salvelinus fontinalis) river – The Little Southwest Miramichi, New Brunswick. We built image-derived depth maps with and without field data calibration. The model without field calibration data (flow resistance equation‐based imaging of river depths) accurately described river depths (R 2 = 72.7; RMSE = 0.167 m; n = 762); however, it overestimated shallow depths. The field-calibrated model removed shallow depth errors (R 2 = 76.4; RMSE = 0.155 m; n = 762). We mapped velocity using a relationship between river geometry and discharge, and coalesced the field-calibrated depth and velocity maps to create Froude and Reynolds number maps. Finally, we performed an unsupervised classification model to delineate the hydraulically relevant habitat units for salmonids. This approach provides an unprecedented view of catchment-scale hydraulic habitats that will advance both hydrological process research and river resources management.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74020815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-02DOI: 10.1080/24705357.2019.1696717
Peter J. Moniz, G. Pasternack, D. Massa, L. Stearman, P. Bratovich
Abstract Microhabitat suitability models are commonly used to estimate salmonid habitat abundance and quality with unknown accuracy or reliability. When tested, the metrics used to evaluate these models are often limited by the methods used to develop them. More generalized bioverification strategies that transcend methodology are therefore needed in ecohydraulics. This study further developed and applied such a generalized bioverification framework to four approximately 1-m-resolution rearing salmonid microhabitat suitability models. Water depth and velocity habitat suitability criteria (HSC) functions were developed for two size classes of rearing Oncorhynchus tshawytscha and O. mykiss using snorkel survey data collected over three years at seven sites along the lower Yuba River in California, USA. An expert-based cover HSC function was modified from previous studies. HSC functions were applied to previously validated, approximately 1-m-resolution two-dimensional hydrodynamic models and cover maps of the river. Mann–Whitney U tests confirmed that suitability values were significantly higher at utilized locations compared to randomly generated, non-utilized locations for all four models. Bootstrapped forage ratios demonstrated that microhabitat suitability models accurately predicted both preferred and avoided habitat beyond the 95% confidence level. This generalized bioverification framework is recommended for evaluating and comparing the accuracy and reliability of ecohydraulic models used in habitat management worldwide.
{"title":"Do rearing salmonids predictably occupy physical microhabitat?","authors":"Peter J. Moniz, G. Pasternack, D. Massa, L. Stearman, P. Bratovich","doi":"10.1080/24705357.2019.1696717","DOIUrl":"https://doi.org/10.1080/24705357.2019.1696717","url":null,"abstract":"Abstract Microhabitat suitability models are commonly used to estimate salmonid habitat abundance and quality with unknown accuracy or reliability. When tested, the metrics used to evaluate these models are often limited by the methods used to develop them. More generalized bioverification strategies that transcend methodology are therefore needed in ecohydraulics. This study further developed and applied such a generalized bioverification framework to four approximately 1-m-resolution rearing salmonid microhabitat suitability models. Water depth and velocity habitat suitability criteria (HSC) functions were developed for two size classes of rearing Oncorhynchus tshawytscha and O. mykiss using snorkel survey data collected over three years at seven sites along the lower Yuba River in California, USA. An expert-based cover HSC function was modified from previous studies. HSC functions were applied to previously validated, approximately 1-m-resolution two-dimensional hydrodynamic models and cover maps of the river. Mann–Whitney U tests confirmed that suitability values were significantly higher at utilized locations compared to randomly generated, non-utilized locations for all four models. Bootstrapped forage ratios demonstrated that microhabitat suitability models accurately predicted both preferred and avoided habitat beyond the 95% confidence level. This generalized bioverification framework is recommended for evaluating and comparing the accuracy and reliability of ecohydraulic models used in habitat management worldwide.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79833098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}