首页 > 最新文献

Blue-Green Systems最新文献

英文 中文
Impact of bioretention cells in cities with a cold climate: modeling snow management based on a case study 寒冷气候城市中生物滞留细胞的影响:基于案例研究的雪管理建模
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-02 DOI: 10.2166/bgs.2023.032
Garance Gougeon, O. Bouattour, Emma Formankova, Julien St-Laurent, Samuel Doucet, S. Dorner, Sandrine Lacroix, M. Kuller, D. Dagenais, F. Bichai
The performance of blue-green infrastructure (BGI) has been well documented in temperate and subtropical climates, but evidence supporting its application in cold climates, especially during snowmelt, is still scarce. To address this gap, the present study proposes a modeling method for simulating the performance of bioretention cells during snowmelt according to different spatial implementation scenarios. We used the Storm Water Management Model (SWMM) of a catchment in a medium-sized city in Quebec, Canada as a case study. Pollutants commonly found in the snow (TSS, Cr, Pb, Zn, Cl–) were included in the model using event mean concentrations (EMCs) documented in the literature. Bioretention cells performed best on industrial road sites for the entire snowmelt period. Bioretention cell performance was affected by snow management procedures applied to the roads in residential areas. Not modeling the snow cover build-up and meltdown in the simulation led to higher runoff and bioretention cell performance. Modeling results facilitated the identification of bioretention cell sites that efficiently controlled runoff during snowmelt. Such information is needed to support decision planning for BGI in cities with cold climate.
蓝绿色基础设施(BGI)在温带和亚热带气候中的性能已得到充分证明,但支持其在寒冷气候中应用的证据仍然很少,尤其是在融雪期间。为了解决这一差距,本研究提出了一种建模方法,用于根据不同的空间实施场景模拟融雪过程中生物滞留细胞的性能。我们使用加拿大魁北克省一个中等城市集水区的雨水管理模型(SWMM)作为案例研究。使用文献中记录的事件平均浓度(EMCs),将雪中常见的污染物(TSS、Cr、Pb、Zn、Cl–)包括在模型中。在整个融雪期,生物滞留细胞在工业道路上的表现最好。生物滞留细胞的性能受到应用于住宅区道路的雪管理程序的影响。模拟中没有对积雪的堆积和融化进行建模,导致了更高的径流和生物滞留池性能。建模结果有助于识别在融雪期间有效控制径流的生物滞留细胞位点。需要这些信息来支持华大基因在寒冷气候城市的决策规划。
{"title":"Impact of bioretention cells in cities with a cold climate: modeling snow management based on a case study","authors":"Garance Gougeon, O. Bouattour, Emma Formankova, Julien St-Laurent, Samuel Doucet, S. Dorner, Sandrine Lacroix, M. Kuller, D. Dagenais, F. Bichai","doi":"10.2166/bgs.2023.032","DOIUrl":"https://doi.org/10.2166/bgs.2023.032","url":null,"abstract":"\u0000 \u0000 The performance of blue-green infrastructure (BGI) has been well documented in temperate and subtropical climates, but evidence supporting its application in cold climates, especially during snowmelt, is still scarce. To address this gap, the present study proposes a modeling method for simulating the performance of bioretention cells during snowmelt according to different spatial implementation scenarios. We used the Storm Water Management Model (SWMM) of a catchment in a medium-sized city in Quebec, Canada as a case study. Pollutants commonly found in the snow (TSS, Cr, Pb, Zn, Cl–) were included in the model using event mean concentrations (EMCs) documented in the literature. Bioretention cells performed best on industrial road sites for the entire snowmelt period. Bioretention cell performance was affected by snow management procedures applied to the roads in residential areas. Not modeling the snow cover build-up and meltdown in the simulation led to higher runoff and bioretention cell performance. Modeling results facilitated the identification of bioretention cell sites that efficiently controlled runoff during snowmelt. Such information is needed to support decision planning for BGI in cities with cold climate.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44026669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Re-integration of heritage water systems: spatial lessons for present-day water management 遗产水系统的重新整合:当今水管理的空间教训
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-16 DOI: 10.2166/bgs.2022.121
Ashwini More, C. Walsh, R. Dawson
With increasing global challenges such as climate change and urbanisation, it is essential to relook at ingenious ways that water has been managed in the past and continues to be managed. This paper looks at heritage water management systems that have existed for centuries from an exploratory research approach. The ‘mosaic model’ from the landscape ecology scholarship is applied to understand the spatial components and linkages of these systems. The paper starts with the key features of heritage water systems, then moves to establish a close link between green infrastructure and heritage water systems. Finally, we explore a few select cases by applying the mosaic model to understand the heritage water systems. One of these cases is then further demonstrated to provide an insight into the systems and enable its spatial-wise use in the present fabric.
随着气候变化和城市化等全球挑战的增加,必须重新审视过去和未来水资源管理的巧妙方式。本文从探索性研究的角度审视了已经存在了几个世纪的遗产水管理系统。景观生态学学术中的“镶嵌模型”被用于理解这些系统的空间组成部分和联系。本文从遗产水系统的主要特征入手,然后在绿色基础设施和遗产水系统之间建立紧密的联系。最后,我们通过应用镶嵌模型来了解遗产水系,探索了一些精选案例。然后进一步展示了其中一个案例,以深入了解系统,并使其能够在当前结构中在空间上使用。
{"title":"Re-integration of heritage water systems: spatial lessons for present-day water management","authors":"Ashwini More, C. Walsh, R. Dawson","doi":"10.2166/bgs.2022.121","DOIUrl":"https://doi.org/10.2166/bgs.2022.121","url":null,"abstract":"\u0000 With increasing global challenges such as climate change and urbanisation, it is essential to relook at ingenious ways that water has been managed in the past and continues to be managed. This paper looks at heritage water management systems that have existed for centuries from an exploratory research approach. The ‘mosaic model’ from the landscape ecology scholarship is applied to understand the spatial components and linkages of these systems. The paper starts with the key features of heritage water systems, then moves to establish a close link between green infrastructure and heritage water systems. Finally, we explore a few select cases by applying the mosaic model to understand the heritage water systems. One of these cases is then further demonstrated to provide an insight into the systems and enable its spatial-wise use in the present fabric.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42895891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions 城市热缓解的蓝绿系统:机制、有效性和研究方向
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-12 DOI: 10.2166/bgs.2022.028
Noëmie Probst, P. Bach, L. Cook, M. Maurer, J. Leitão
Reflected in the growing body of literature, urban heat mitigation is increasingly relevant as cities experience extreme heat, exacerbated by climate change and rapid urbanisation. Most studies focus on urban–rural temperature differences, known as the Urban Heat Island, which does not provide insight into urban heat dynamics. Here, we synthesise current knowledge on spatio-temporal variations of heat sources and sinks, showing that a targeted and absolute understanding of urban heat dynamics rather than an urban–rural comparison should be encouraged. We discuss mechanisms of heat sinks for microclimate control, provide a clear classification of Blue Green Systems and evaluate current knowledge of their effectiveness in urban heat mitigation. We consider planning and optimisation aspects of Blue Green Infrastructure (greenery and water bodies/features), interactions with hard surfaces and practices that ensure space and water availability. Blue Green Systems can positively affect urban microclimates, especially when strategically planned to achieve synergies. Effectiveness is governed by their dominant cooling mechanisms that show diurnal and seasonal variability and depend upon background climatic conditions and characteristics of surrounding urban areas. Situationally appropriate combination of various types of Blue Green Systems and their connectivity increases heat mitigation potential while providing multiple ecosystem services but requires further research.
反映在越来越多的文献中,随着城市经历极端高温,气候变化和快速城市化加剧,城市热量缓解变得越来越重要。大多数研究都集中在城市和农村的温差上,被称为城市热岛,这并不能深入了解城市的热动力学。在这里,我们综合了当前关于热源和散热器时空变化的知识,表明应该鼓励对城市热动力学进行有针对性的绝对理解,而不是进行城乡比较。我们讨论了散热器控制小气候的机制,对蓝绿系统进行了明确的分类,并评估了目前对其在城市散热中的有效性的认识。我们考虑蓝绿基础设施(绿化和水体/特征)的规划和优化方面,与坚硬表面的互动以及确保空间和水资源可用性的实践。蓝绿系统可以对城市小气候产生积极影响,尤其是在进行战略规划以实现协同效应的情况下。有效性由其主要的冷却机制决定,这些机制表现出昼夜和季节变化,并取决于背景气候条件和周围城市地区的特征。各种类型的蓝绿系统及其连接的适当组合在提供多种生态系统服务的同时增加了散热潜力,但需要进一步研究。
{"title":"Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions","authors":"Noëmie Probst, P. Bach, L. Cook, M. Maurer, J. Leitão","doi":"10.2166/bgs.2022.028","DOIUrl":"https://doi.org/10.2166/bgs.2022.028","url":null,"abstract":"\u0000 Reflected in the growing body of literature, urban heat mitigation is increasingly relevant as cities experience extreme heat, exacerbated by climate change and rapid urbanisation. Most studies focus on urban–rural temperature differences, known as the Urban Heat Island, which does not provide insight into urban heat dynamics. Here, we synthesise current knowledge on spatio-temporal variations of heat sources and sinks, showing that a targeted and absolute understanding of urban heat dynamics rather than an urban–rural comparison should be encouraged. We discuss mechanisms of heat sinks for microclimate control, provide a clear classification of Blue Green Systems and evaluate current knowledge of their effectiveness in urban heat mitigation. We consider planning and optimisation aspects of Blue Green Infrastructure (greenery and water bodies/features), interactions with hard surfaces and practices that ensure space and water availability. Blue Green Systems can positively affect urban microclimates, especially when strategically planned to achieve synergies. Effectiveness is governed by their dominant cooling mechanisms that show diurnal and seasonal variability and depend upon background climatic conditions and characteristics of surrounding urban areas. Situationally appropriate combination of various types of Blue Green Systems and their connectivity increases heat mitigation potential while providing multiple ecosystem services but requires further research.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44863059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Copper(II) hydroxide/oxide-coated granular activated carbon for E. coli removal in water 氢氧化铜/氧化物包覆颗粒活性炭去除水中大肠杆菌
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-09 DOI: 10.2166/bgs.2022.027
Yali Li, A. Deletic, R. Henry, Tong Zhang, D. Mccarthy
Low-cost granular filter media with hybrid bacterial adsorption and survival inhibition capability is highly desired for the development of a low-impact water filtration system. In addition to overall removal, a deeper understanding of the fate and transport behaviour of bacteria in such systems should also be obtained to guide system operation. In this study, copper(II) hydroxide nanoparticles-modified granular activated carbon via a single-step in situ coating was prepared and denoted as CuH-G. Copper release behaviour and Escherichia coli removal efficiency of CuH-G were studied in saturated columns as a function of salinity, flow rate, and hydraulic loading. Copper release decreased exponentially on increasing salinity in test water, which potentiates controlled copper release for desired bacteria inhibition efficiency. With an effective contact time of 3.7 min, CuH-G provided 3.0 and 1.6 log E. coli removal in test water of salinity 237 and 680 μS/cm, respectively. Copper leaching at these two salinities were 1.7 and 0.74 mg/l, respectively below the Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies. Further study of E. coli transport and deposition behaviour in heat-treated CuH-G at 160 °C revealed that the observed removal was largely attributed to enhanced attachment during filtration and survival inhibition post filtration.
具有混合细菌吸附和生存抑制能力的低成本颗粒过滤介质是开发低影响水过滤系统的迫切需要。除了整体去除外,还应更深入地了解此类系统中细菌的命运和运输行为,以指导系统的操作。本研究采用单步原位包覆法制备了氢氧化铜纳米颗粒修饰的颗粒活性炭,记作CuH-G。研究了饱和柱中CuH-G对铜的释放行为和对大肠杆菌的去除效率与盐度、流速和水力载荷的关系。铜的释放量随着试验水盐度的增加呈指数下降,这有助于控制铜的释放,以达到理想的抑菌效果。CuH-G的有效接触时间为3.7 min,对盐度为237 μS/cm和680 μS/cm的试验水的大肠杆菌去除率分别为3.0和1.6 log。这两种盐度下的铜浸出率分别为1.7和0.74毫克/升,低于澳大利亚水循环准则:增加饮用水供应。进一步研究大肠杆菌在160°C热处理的CuH-G中的运输和沉积行为表明,所观察到的去除主要归因于过滤过程中的附着增强和过滤后的存活抑制。
{"title":"Copper(II) hydroxide/oxide-coated granular activated carbon for E. coli removal in water","authors":"Yali Li, A. Deletic, R. Henry, Tong Zhang, D. Mccarthy","doi":"10.2166/bgs.2022.027","DOIUrl":"https://doi.org/10.2166/bgs.2022.027","url":null,"abstract":"\u0000 Low-cost granular filter media with hybrid bacterial adsorption and survival inhibition capability is highly desired for the development of a low-impact water filtration system. In addition to overall removal, a deeper understanding of the fate and transport behaviour of bacteria in such systems should also be obtained to guide system operation. In this study, copper(II) hydroxide nanoparticles-modified granular activated carbon via a single-step in situ coating was prepared and denoted as CuH-G. Copper release behaviour and Escherichia coli removal efficiency of CuH-G were studied in saturated columns as a function of salinity, flow rate, and hydraulic loading. Copper release decreased exponentially on increasing salinity in test water, which potentiates controlled copper release for desired bacteria inhibition efficiency. With an effective contact time of 3.7 min, CuH-G provided 3.0 and 1.6 log E. coli removal in test water of salinity 237 and 680 μS/cm, respectively. Copper leaching at these two salinities were 1.7 and 0.74 mg/l, respectively below the Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies. Further study of E. coli transport and deposition behaviour in heat-treated CuH-G at 160 °C revealed that the observed removal was largely attributed to enhanced attachment during filtration and survival inhibition post filtration.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48493483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Into the air: a freestanding vertical greenery system (VGS) for evapotranspiration (ET) of roof runoff 向空中:用于屋顶径流蒸散(ET)的独立式垂直绿化系统(VGS)
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-09 DOI: 10.2166/bgs.2022.029
Emilia Danuta Lausen, M. B. Jensen, M. Randall
In the search for space-efficient nature-based solutions (NBS) for stormwater management, we designed a vertical greenery system (VGS) for enhanced evapotranspiration (ET). After assessing a range of construction options, an 80 m long and 3.2 m high freestanding stormwater-VGS, referred to as the Green Climate Screen (GCS), was constructed in 2019 in Copenhagen. The GCS receives runoff from 240 m2 of roof top and has a high ratio of surface-to-ground area to allow for the clothesline effect to enhance ET. The conveyance of runoff to the top of the GCS is based on gravitational force. It is estimated that 24 h events with return periods up to the 0.1 y (13.9 mm) are managed by ET, from 0.1 to 15 y (48.5 mm) by infiltration beneath the screen, and from 15 to >100 y by overflow to an adjacent area allowing for aboveground storage (167 mm), in total 229 mm. With the fulfillment of most performance criteria and successful inclusion of selected co-benefits ET-based stormwater, NBS could become future standard elements. To reduce CO2 and resource footprint, steel, concrete, and mineral wool must be replaced with renewable materials. Adaptation to more spatial contexts is encouraged.
为了寻找空间高效的基于自然的雨水管理解决方案(NBS),我们设计了一个垂直绿化系统(VGS)来增强蒸散发(ET)。在评估了一系列施工方案后,一个80米长、3.2米高的独立式雨水vgs,被称为绿色气候屏幕(GCS),于2019年在哥本哈根建成。GCS接收来自240平方米屋顶的径流,其地面与地面面积的比例很高,允许晾衣绳效应增强ET。径流向GCS顶部的输送基于重力。据估计,24小时的事件,其返回周期高达0.1 y (13.9 mm),由ET管理,从0.1到15 y (48.5 mm)通过渗透到屏幕下,从15到100 y通过溢出到相邻区域,允许地上储存(167 mm),总共229 mm。随着大多数性能标准的实现和基于排放当量的雨水的选定协同效益的成功纳入,NBS可能成为未来的标准要素。为了减少二氧化碳和资源足迹,钢铁、混凝土和矿棉必须用可再生材料代替。鼓励适应更多的空间环境。
{"title":"Into the air: a freestanding vertical greenery system (VGS) for evapotranspiration (ET) of roof runoff","authors":"Emilia Danuta Lausen, M. B. Jensen, M. Randall","doi":"10.2166/bgs.2022.029","DOIUrl":"https://doi.org/10.2166/bgs.2022.029","url":null,"abstract":"\u0000 In the search for space-efficient nature-based solutions (NBS) for stormwater management, we designed a vertical greenery system (VGS) for enhanced evapotranspiration (ET). After assessing a range of construction options, an 80 m long and 3.2 m high freestanding stormwater-VGS, referred to as the Green Climate Screen (GCS), was constructed in 2019 in Copenhagen. The GCS receives runoff from 240 m2 of roof top and has a high ratio of surface-to-ground area to allow for the clothesline effect to enhance ET. The conveyance of runoff to the top of the GCS is based on gravitational force. It is estimated that 24 h events with return periods up to the 0.1 y (13.9 mm) are managed by ET, from 0.1 to 15 y (48.5 mm) by infiltration beneath the screen, and from 15 to >100 y by overflow to an adjacent area allowing for aboveground storage (167 mm), in total 229 mm. With the fulfillment of most performance criteria and successful inclusion of selected co-benefits ET-based stormwater, NBS could become future standard elements. To reduce CO2 and resource footprint, steel, concrete, and mineral wool must be replaced with renewable materials. Adaptation to more spatial contexts is encouraged.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41481884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of disinfected wastewater irrigation on soil characteristics, microbial community composition, and crop yield 消毒废水灌溉对土壤特性、微生物群落组成和作物产量的影响
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-07 DOI: 10.2166/bgs.2022.126
Lays Paulino Leonel, Ariane Bize, M. Mariadassou, C. Midoux, Jerusa Schneider, A. L. Tonetti
For agricultural reuse, the disinfection treatment must be efficient to inactivate the resistant pathogens and must not generate harmful byproducts for the soil and crop production. Thus, the aim of this work was to evaluate the possible impacts caused by the irrigation with wastewater disinfected with sodium hypochlorite, peracetic acid, ultraviolet radiation, or the oxidation process UV radiation combined with hydrogen peroxide over soil physicochemical properties and microbial community composition, as well as over the wheat crop yield in the short term. A pot essay was performed in a greenhouse, and at the end the main alterations observed in soil physicochemical properties were due to water type, not to the disinfection treatments. The crop yield was influenced by the water type, but not by the disinfectant treatments. Irrigation with wastewater improved almost 5 times the wheat grains yield, compared with freshwater. Wastewater irrigation increased the abundance of families involved in organic matter degradation and nitrogen cycle, and some pathogenic bacteria. Among the disinfectant treatments, the UV disinfection played an important role in shaping soil bacterial community structure.
对于农业再利用,消毒处理必须有效地灭活耐药病原体,并且不得对土壤和作物生产产生有害的副产品。因此,这项工作的目的是评估用次氯酸钠、过乙酸、紫外线辐射消毒的废水灌溉,或紫外线辐射与过氧化氢结合的氧化过程对土壤物理化学性质和微生物群落组成以及短期内对小麦产量的可能影响。在温室中进行了盆栽试验,最后观察到土壤理化性质的主要变化是由于水的类型,而不是消毒处理。作物产量受水分类型的影响,但不受消毒处理的影响。与淡水灌溉相比,废水灌溉使小麦产量提高了近5倍。废水灌溉增加了参与有机物降解和氮循环的家庭数量,以及一些致病菌。在消毒处理中,紫外线消毒对土壤细菌群落结构的形成起着重要作用。
{"title":"Impacts of disinfected wastewater irrigation on soil characteristics, microbial community composition, and crop yield","authors":"Lays Paulino Leonel, Ariane Bize, M. Mariadassou, C. Midoux, Jerusa Schneider, A. L. Tonetti","doi":"10.2166/bgs.2022.126","DOIUrl":"https://doi.org/10.2166/bgs.2022.126","url":null,"abstract":"\u0000 For agricultural reuse, the disinfection treatment must be efficient to inactivate the resistant pathogens and must not generate harmful byproducts for the soil and crop production. Thus, the aim of this work was to evaluate the possible impacts caused by the irrigation with wastewater disinfected with sodium hypochlorite, peracetic acid, ultraviolet radiation, or the oxidation process UV radiation combined with hydrogen peroxide over soil physicochemical properties and microbial community composition, as well as over the wheat crop yield in the short term. A pot essay was performed in a greenhouse, and at the end the main alterations observed in soil physicochemical properties were due to water type, not to the disinfection treatments. The crop yield was influenced by the water type, but not by the disinfectant treatments. Irrigation with wastewater improved almost 5 times the wheat grains yield, compared with freshwater. Wastewater irrigation increased the abundance of families involved in organic matter degradation and nitrogen cycle, and some pathogenic bacteria. Among the disinfectant treatments, the UV disinfection played an important role in shaping soil bacterial community structure.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45231993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enhancing blue-green infrastructure in German cities with the involvement of urban society: insights from Frankfurt/Main and Stuttgart 在城市社会的参与下加强德国城市的蓝绿色基础设施:来自法兰克福/美因和斯图加特的见解
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-07 DOI: 10.2166/bgs.2022.017
M. Winker, Jutta Deffner, Michael Rohrbach, Engelbert Schramm, Melina Stein
Enhancing blue-green infrastructure (BGI) will help cities adapt to climate change. This study focused on urban society, specifically on residents, the housing and real estate sector, and municipal administration in the cities of Frankfurt and Stuttgart, and investigated ways to enhance BGI in line with their perceptions, expectations and requirements. A particular emphasis was placed on periods of hot, dry weather. During future workshops, actor analysis, expert interviews and two expert workshops, the positions, level of knowledge and attitudes of the various groups were examined and barriers to BGI identified, in addition to discussions about measures to overcome these barriers. The results showed that within urban society the greatest support for BGI comes from residents, followed by municipal employees, while actors in the housing and real estate sector are the most reluctant. It became evident that there is a need for action to overcome a range of barriers. Overall, political backing, alliances between stakeholders, encouragement of the housing and real estate sector to take action, and a focus on initiating action in selected urban areas are recommended for successful enhancement of BGI. To ensure maximum impact, there should also be a combination of bottom-up and top-down activities.
加强蓝绿色基础设施(BGI)将有助于城市适应气候变化。本研究重点关注城市社会,特别是法兰克福和斯图加特市的居民、住房和房地产部门以及市政管理,并调查了如何根据他们的感知、期望和要求提高BGI。特别强调的是炎热干燥的天气。在未来的研讨会、参与者分析、专家访谈和两次专家研讨会上,除了讨论克服这些障碍的措施外,还审查了各个群体的立场、知识水平和态度,并确定了华大基因的障碍。结果显示,在城市社会中,对华大基因的最大支持来自居民,其次是市政雇员,而住房和房地产行业的参与者最不情愿。显而易见,需要采取行动克服一系列障碍。总体而言,建议政治支持、利益相关者之间的联盟、鼓励住房和房地产部门采取行动,并重点在选定的城市地区启动行动,以成功提高BGI。为了确保最大限度地发挥影响,还应结合自下而上和自上而下的活动。
{"title":"Enhancing blue-green infrastructure in German cities with the involvement of urban society: insights from Frankfurt/Main and Stuttgart","authors":"M. Winker, Jutta Deffner, Michael Rohrbach, Engelbert Schramm, Melina Stein","doi":"10.2166/bgs.2022.017","DOIUrl":"https://doi.org/10.2166/bgs.2022.017","url":null,"abstract":"\u0000 Enhancing blue-green infrastructure (BGI) will help cities adapt to climate change. This study focused on urban society, specifically on residents, the housing and real estate sector, and municipal administration in the cities of Frankfurt and Stuttgart, and investigated ways to enhance BGI in line with their perceptions, expectations and requirements. A particular emphasis was placed on periods of hot, dry weather. During future workshops, actor analysis, expert interviews and two expert workshops, the positions, level of knowledge and attitudes of the various groups were examined and barriers to BGI identified, in addition to discussions about measures to overcome these barriers. The results showed that within urban society the greatest support for BGI comes from residents, followed by municipal employees, while actors in the housing and real estate sector are the most reluctant. It became evident that there is a need for action to overcome a range of barriers. Overall, political backing, alliances between stakeholders, encouragement of the housing and real estate sector to take action, and a focus on initiating action in selected urban areas are recommended for successful enhancement of BGI. To ensure maximum impact, there should also be a combination of bottom-up and top-down activities.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41689962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Zero additional maintenance stormwater biofilters: from laboratory testing to field implementation 零额外维护雨水生物过滤器:从实验室测试到现场实施
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-12-01 DOI: 10.2166/bgs.2022.030
V. Prodanovic, B. Hatt, Harsha S Fowdar, Mohammed Al-Ameri, A. Deletic
Stormwater biofilters are one of the most widely used nature-based solutions for urban water management. In the last 20 years, biofilters have been extensively studied for their pollutant removal performance; however, their application in the field is limited by high maintenance requirements. In this work, we propose the concept of zero additional maintenance (ZAM) biofilters as a solution to this challenge. To understand the design and operation of ZAM biofilters, a three-stage research programme was conducted to (i) examine filter media configurations that could protect against surface clogging, (ii) test the pollutant removal performance of a variety of lawn grasses, and (iii) validate the laboratory findings through field monitoring. The results showed that a protective filter media layer delayed the onset of clogging. Five lawn grasses – Kenda Kikuyu, Empire Zoysia, Santa Ana Couch, Village Green Kikuyu and Palmetto Soft Leaf Buffalo – were found to effectively reduce nitrogen concentrations and meet other local pollution reduction requirements. Monitoring of three field-scale ZAM biofilters confirmed their high nutrient and heavy metal removal performance. Overall, the findings of these three studies confirm the potential for well-designed ZAM biofilters to achieve stormwater management requirements with no additional maintenance compared with standard street landscaping.
雨水生物过滤器是应用最广泛的基于自然的城市水管理解决方案之一。在过去的20年里,生物过滤器的污染物去除性能得到了广泛的研究;然而,它们在现场的应用受到高维护要求的限制。在这项工作中,我们提出了零额外维护(ZAM)生物过滤器的概念,作为解决这一挑战的方案。为了了解ZAM生物过滤器的设计和操作,进行了一个三阶段的研究计划,以(i)检查可以防止表面堵塞的过滤介质配置,(ii)测试各种草坪草的污染物去除性能,以及(iii)通过现场监测验证实验室的发现。结果表明,保护性过滤介质层延缓了堵塞的发生。五种草坪草——Kenda Kikuyu、Empire Zoysia、Santa Ana Couch、Village Green Kikuyu和Palmetto Soft Leaf Buffalo——被发现可以有效降低氮浓度,并满足当地其他减少污染的要求。对三个现场规模的ZAM生物滤池的监测证实了它们的高营养和重金属去除性能。总的来说,这三项研究的结果证实,与标准街道景观相比,设计良好的ZAM生物滤池有潜力在无需额外维护的情况下实现雨水管理要求。
{"title":"Zero additional maintenance stormwater biofilters: from laboratory testing to field implementation","authors":"V. Prodanovic, B. Hatt, Harsha S Fowdar, Mohammed Al-Ameri, A. Deletic","doi":"10.2166/bgs.2022.030","DOIUrl":"https://doi.org/10.2166/bgs.2022.030","url":null,"abstract":"\u0000 Stormwater biofilters are one of the most widely used nature-based solutions for urban water management. In the last 20 years, biofilters have been extensively studied for their pollutant removal performance; however, their application in the field is limited by high maintenance requirements. In this work, we propose the concept of zero additional maintenance (ZAM) biofilters as a solution to this challenge. To understand the design and operation of ZAM biofilters, a three-stage research programme was conducted to (i) examine filter media configurations that could protect against surface clogging, (ii) test the pollutant removal performance of a variety of lawn grasses, and (iii) validate the laboratory findings through field monitoring. The results showed that a protective filter media layer delayed the onset of clogging. Five lawn grasses – Kenda Kikuyu, Empire Zoysia, Santa Ana Couch, Village Green Kikuyu and Palmetto Soft Leaf Buffalo – were found to effectively reduce nitrogen concentrations and meet other local pollution reduction requirements. Monitoring of three field-scale ZAM biofilters confirmed their high nutrient and heavy metal removal performance. Overall, the findings of these three studies confirm the potential for well-designed ZAM biofilters to achieve stormwater management requirements with no additional maintenance compared with standard street landscaping.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49546742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Constructing an inventory for fast screening of hydraulic and hydrologic performance of stormwater control measures 构建雨水控制措施水力和水文性能快速筛选清单
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-11-25 DOI: 10.2166/bgs.2022.018
Sara Maria Lerer, Alexandre Hallkvist Guidje, Karin Margrethe Löf Drenck, Camilla Christiane Jakobsen, K. Arnbjerg-Nielsen, P. Mikkelsen, H. J. Sørup
Stormwater control measures (SCMs) are effective and sustainable complementary means of managing stormwater in cities. Unlike underground drainage systems, they require space on the city surface, and therefore must be included in initial sketches of urban planning and design. These initial sketches are often made by architects and urban planners, who are usually not trained in hydrology, and therefore require simple and robust tools to inform their initial plans with respect to stormwater management. There may be local guidelines for dimensioning SCMs, but their applicability is often limited with regard to the range of SCMs, and the methodology behind them may be oversimplified, including a lack of assessment of benefits on the urban hydrological cycle. We developed a methodology for estimating multiple performance indicators of a wide range of SCMs and applied it to Danish meteorological conditions. The methodology includes consulting expected end users, configuring an SWMM model for each SCM type and choosing applicable parameter ranges, running multiple simulations for each type covering the parameter space, and post-processing the results using python and PySWMM. The outputs can be used to draw general recommendations regarding effective application ranges for different SCMs, and to quickly assess the performance of case-specific configurations.
雨水控制措施(scm)是城市雨水管理的有效和可持续的补充手段。与地下排水系统不同,它们需要城市地表的空间,因此必须包括在城市规划和设计的初始草图中。这些最初的草图通常是由建筑师和城市规划者绘制的,他们通常没有接受过水文学方面的培训,因此需要简单而强大的工具来为他们的初步计划提供有关雨水管理的信息。可能会有一些地方准则来确定可持续发展指标的尺寸,但它们的适用性往往局限于可持续发展指标的范围,其背后的方法可能过于简化,包括缺乏对城市水文循环的效益的评估。我们开发了一种估算多种SCMs性能指标的方法,并将其应用于丹麦的气象条件。该方法包括咨询预期的最终用户,为每种SCM类型配置SWMM模型并选择适用的参数范围,为每种类型运行多个模拟,覆盖参数空间,并使用python和PySWMM对结果进行后处理。输出可用于就不同scm的有效应用范围提出一般建议,并快速评估特定案例配置的性能。
{"title":"Constructing an inventory for fast screening of hydraulic and hydrologic performance of stormwater control measures","authors":"Sara Maria Lerer, Alexandre Hallkvist Guidje, Karin Margrethe Löf Drenck, Camilla Christiane Jakobsen, K. Arnbjerg-Nielsen, P. Mikkelsen, H. J. Sørup","doi":"10.2166/bgs.2022.018","DOIUrl":"https://doi.org/10.2166/bgs.2022.018","url":null,"abstract":"\u0000 Stormwater control measures (SCMs) are effective and sustainable complementary means of managing stormwater in cities. Unlike underground drainage systems, they require space on the city surface, and therefore must be included in initial sketches of urban planning and design. These initial sketches are often made by architects and urban planners, who are usually not trained in hydrology, and therefore require simple and robust tools to inform their initial plans with respect to stormwater management. There may be local guidelines for dimensioning SCMs, but their applicability is often limited with regard to the range of SCMs, and the methodology behind them may be oversimplified, including a lack of assessment of benefits on the urban hydrological cycle. We developed a methodology for estimating multiple performance indicators of a wide range of SCMs and applied it to Danish meteorological conditions. The methodology includes consulting expected end users, configuring an SWMM model for each SCM type and choosing applicable parameter ranges, running multiple simulations for each type covering the parameter space, and post-processing the results using python and PySWMM. The outputs can be used to draw general recommendations regarding effective application ranges for different SCMs, and to quickly assess the performance of case-specific configurations.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44741191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asset management for blue-green infrastructures: a scoping review 蓝绿色基础设施的资产管理:范围审查
IF 4.6 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-11-07 DOI: 10.2166/bgs.2022.019
J. Langeveld, F. Cherqui, F. Tscheikner-Gratl, T. Muthanna, M. F. Juárez, J. Leitão, B. Roghani, Karsten Kerres, Maria do Céu Almeida, C. Werey, B. Rulleau
Urban drainage systems have developed way beyond the traditional piped combined or separate sewer systems. Many ‘new’ systems are being introduced, ranging from stormwater infiltration facilities to green roofs. However, the widely advocated blue-green infrastructures are typically overlooked by asset managers, which will very likely have detrimental effects on their performance, service life, and wider adoption. In this paper, the working group on Urban Drainage Asset Management (UDAM – https://udam.home.blog/) of the IWA and IAHR Joint Committee on Urban Drainage discusses whether the state-of-the-art knowledge based on conventional sewer asset management is sufficient to develop asset management for blue-green infrastructures (BGIs). The discussion is structured around the five preconditions for effective control and asset management. Results show that asset management for BGIs is still underdeveloped due to a lack of monitoring techniques covering the broad range of BGI benefits and performance indicators, inspection techniques covering relevant failure mechanisms and models describing these mechanisms, maintenance and rehabilitation options, and sufficient support tools to aid inhabitants in the operation and maintenance of their individual BGIs such as green roofs or vegetated swales.
城市排水系统的发展远远超过了传统的管道组合或单独下水道系统。许多“新”系统正在引入,从雨水渗透设施到绿色屋顶。然而,广受推崇的蓝绿色基础设施通常被资产管理公司忽视,这很可能会对其性能、使用寿命和更广泛的采用产生不利影响。在本文中,城市排水资产管理工作组(UDAM–https://udam.home.blog/)IWA和IAHR城市排水联合委员会讨论了基于传统下水道资产管理的最先进知识是否足以发展蓝绿色基础设施的资产管理。讨论围绕有效控制和资产管理的五个先决条件展开。结果表明,由于缺乏涵盖广泛的华大基因效益和绩效指标的监测技术、涵盖相关故障机制和描述这些机制的模型的检查技术、维护和修复选项,华大基因的资产管理仍然不发达,以及足够的支持工具,以帮助居民操作和维护其单独的BGI,如绿色屋顶或植被洼地。
{"title":"Asset management for blue-green infrastructures: a scoping review","authors":"J. Langeveld, F. Cherqui, F. Tscheikner-Gratl, T. Muthanna, M. F. Juárez, J. Leitão, B. Roghani, Karsten Kerres, Maria do Céu Almeida, C. Werey, B. Rulleau","doi":"10.2166/bgs.2022.019","DOIUrl":"https://doi.org/10.2166/bgs.2022.019","url":null,"abstract":"\u0000 Urban drainage systems have developed way beyond the traditional piped combined or separate sewer systems. Many ‘new’ systems are being introduced, ranging from stormwater infiltration facilities to green roofs. However, the widely advocated blue-green infrastructures are typically overlooked by asset managers, which will very likely have detrimental effects on their performance, service life, and wider adoption. In this paper, the working group on Urban Drainage Asset Management (UDAM – https://udam.home.blog/) of the IWA and IAHR Joint Committee on Urban Drainage discusses whether the state-of-the-art knowledge based on conventional sewer asset management is sufficient to develop asset management for blue-green infrastructures (BGIs). The discussion is structured around the five preconditions for effective control and asset management. Results show that asset management for BGIs is still underdeveloped due to a lack of monitoring techniques covering the broad range of BGI benefits and performance indicators, inspection techniques covering relevant failure mechanisms and models describing these mechanisms, maintenance and rehabilitation options, and sufficient support tools to aid inhabitants in the operation and maintenance of their individual BGIs such as green roofs or vegetated swales.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45543268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Blue-Green Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1