Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson
Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.
{"title":"AI Foundation Models for Wearable Movement Data in Mental Health Research.","authors":"Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Pessoa, Max Schweiger, Lance W Q Xu, Tristan Manha, Ayush Saurabh, Julian Antolin Camarena, Steve Pressé
Across the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$. Similarly, when writing $x=ab$, $a$ can be thought of as the illumination intensity and $b$ the density of fluorescent molecules of interest. Yet dividing or subtracting stochastic signals amplifies noise, and we ask instead whether, using the statistics of $a$ and the measurement of $x$ as input, we can recover the statistics of $b$. Here, we show how normalizing flows can generate an approximation of the probability distribution over $b$, thereby avoiding subtraction or division altogether. This method is implemented in our software package, NFdeconvolve, available on GitHub with a tutorial linked in the main text.
{"title":"Avoiding subtraction and division of stochastic signals using normalizing flows: NFdeconvolve.","authors":"Pedro Pessoa, Max Schweiger, Lance W Q Xu, Tristan Manha, Ayush Saurabh, Julian Antolin Camarena, Steve Pressé","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Across the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$. Similarly, when writing $x=ab$, $a$ can be thought of as the illumination intensity and $b$ the density of fluorescent molecules of interest. Yet dividing or subtracting stochastic signals amplifies noise, and we ask instead whether, using the statistics of $a$ and the measurement of $x$ as input, we can recover the statistics of $b$. Here, we show how normalizing flows can generate an approximation of the probability distribution over $b$, thereby avoiding subtraction or division altogether. This method is implemented in our software package, NFdeconvolve, available on GitHub with a tutorial linked in the main text.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuchen Zhou, Emmy Liu, Graham Neubig, Michael J Tarr, Leila Wehbe
Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense. We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
{"title":"Divergences between Language Models and Human Brains.","authors":"Yuchen Zhou, Emmy Liu, Graham Neubig, Michael J Tarr, Leila Wehbe","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: <b>social/emotional intelligence</b> and <b>physical commonsense</b>. We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amber Hu, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, Scott Linderman
Understanding how the collective activity of neural populations relates to computation and ultimately behavior is a key goal in neuroscience. To this end, statistical methods which describe high-dimensional neural time series in terms of low-dimensional latent dynamics have played a fundamental role in characterizing neural systems. Yet, what constitutes a successful method involves two opposing criteria: (1) methods should be expressive enough to capture complex nonlinear dynamics, and (2) they should maintain a notion of interpretability often only warranted by simpler linear models. In this paper, we develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS). Our method builds on previous work modeling the latent state evolution via a stochastic differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs). We propose a novel kernel function which enforces smoothly interpolated locally linear dynamics, and therefore expresses flexible - yet interpretable - dynamics akin to those of recurrent switching linear dynamical systems (rSLDS). Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics. To fit our models, we leverage a modified learning objective which improves the estimation accuracy of kernel hyperparameters compared to previous GP-SDE fitting approaches. We apply our method to synthetic data and data recorded in two neuroscience experiments and demonstrate favorable performance in comparison to the rSLDS.
{"title":"Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems.","authors":"Amber Hu, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, Scott Linderman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding how the collective activity of neural populations relates to computation and ultimately behavior is a key goal in neuroscience. To this end, statistical methods which describe high-dimensional neural time series in terms of low-dimensional latent dynamics have played a fundamental role in characterizing neural systems. Yet, what constitutes a successful method involves two opposing criteria: (1) methods should be expressive enough to capture complex nonlinear dynamics, and (2) they should maintain a notion of interpretability often only warranted by simpler linear models. In this paper, we develop an approach that balances these two objectives: the <i>Gaussian Process Switching Linear Dynamical System</i> (gpSLDS). Our method builds on previous work modeling the latent state evolution via a stochastic differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs). We propose a novel kernel function which enforces smoothly interpolated locally linear dynamics, and therefore expresses flexible - yet interpretable - dynamics akin to those of recurrent switching linear dynamical systems (rSLDS). Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics. To fit our models, we leverage a modified learning objective which improves the estimation accuracy of kernel hyperparameters compared to previous GP-SDE fitting approaches. We apply our method to synthetic data and data recorded in two neuroscience experiments and demonstrate favorable performance in comparison to the rSLDS.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakub R Kaczmarzyk, Rishul Sharma, Peter K Koo, Joel H Saltz
Foundation models for computational pathology have shown great promise for specimen-level tasks and are increasingly accessible to researchers. However, specimen-level models built on these foundation models remain largely unavailable, hindering their broader utility and impact. To address this gap, we developed SpinPath, a toolkit designed to democratize specimen-level deep learning by providing a zoo of pretrained specimen-level models, a Python-based inference engine, and a JavaScript-based inference platform. We demonstrate the utility of SpinPath in metastasis detection tasks across nine foundation models. SpinPath may foster reproducibility, simplify experimentation, and accelerate the adoption of specimen-level deep learning in computational pathology research.
{"title":"Reusable specimen-level inference in computational pathology.","authors":"Jakub R Kaczmarzyk, Rishul Sharma, Peter K Koo, Joel H Saltz","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Foundation models for computational pathology have shown great promise for specimen-level tasks and are increasingly accessible to researchers. However, specimen-level models built on these foundation models remain largely unavailable, hindering their broader utility and impact. To address this gap, we developed SpinPath, a toolkit designed to democratize specimen-level deep learning by providing a zoo of pretrained specimen-level models, a Python-based inference engine, and a JavaScript-based inference platform. We demonstrate the utility of SpinPath in metastasis detection tasks across nine foundation models. SpinPath may foster reproducibility, simplify experimentation, and accelerate the adoption of specimen-level deep learning in computational pathology research.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maxwell Sanderford, Sudip Sharma, Glen Stecher, Jun Liu, Jieping Ye, Sudhir Kumar
Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequences alignments. ESL employs sparsity between and within the groups of genomic features (e.g., genomic loci or genes) by using sparse-group LASSO. Although some software packages are available for performing sparse group LASSO, we found them less well-suited for processing and analyzing genome-scale sequence data containing millions of features, such as bases. MyESL software fills the need for open-source software for conducting ESL analyses with facilities to pre-process the input hypotheses and large alignments, make LASSO flexible and computationally efficient, and post-process the output model to produce different metrics useful in functional or evolutionary genomics. MyESL takes binary response or phylogenetic trees as the regression response, processing them into class-balanced hypotheses as required. It also processes continuous and binary features or sequence alignments that are transformed into a binary one-hot encoded feature matrix for analysis. The model outputs are processed into user-friendly text and graphical files. The computational core of MyESL is written in C++, which offers model building with or without group sparsity, while the pre- and post-processing of inputs and model outputs is performed using customized functions written in Python. One of its applications in phylogenomics showcases the utility of MyESL. Our analysis of empirical genome-scale datasets shows that MyESL can build evolutionary models quickly and efficiently on a personal desktop, while other computational packages were unable due to their prohibitive requirements of computational resources and time. MyESL is available for Python environments on Linux and distributed as a standalone application for both Windows and macOS, which can be integrated into third-party software and pipelines.
{"title":"MyESL: Sparse learning in molecular evolution and phylogenetic analysis.","authors":"Maxwell Sanderford, Sudip Sharma, Glen Stecher, Jun Liu, Jieping Ye, Sudhir Kumar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequences alignments. ESL employs sparsity between and within the groups of genomic features (e.g., genomic loci or genes) by using sparse-group LASSO. Although some software packages are available for performing sparse group LASSO, we found them less well-suited for processing and analyzing genome-scale sequence data containing millions of features, such as bases. MyESL software fills the need for open-source software for conducting ESL analyses with facilities to pre-process the input hypotheses and large alignments, make LASSO flexible and computationally efficient, and post-process the output model to produce different metrics useful in functional or evolutionary genomics. MyESL takes binary response or phylogenetic trees as the regression response, processing them into class-balanced hypotheses as required. It also processes continuous and binary features or sequence alignments that are transformed into a binary one-hot encoded feature matrix for analysis. The model outputs are processed into user-friendly text and graphical files. The computational core of MyESL is written in C++, which offers model building with or without group sparsity, while the pre- and post-processing of inputs and model outputs is performed using customized functions written in Python. One of its applications in phylogenomics showcases the utility of MyESL. Our analysis of empirical genome-scale datasets shows that MyESL can build evolutionary models quickly and efficiently on a personal desktop, while other computational packages were unable due to their prohibitive requirements of computational resources and time. MyESL is available for Python environments on Linux and distributed as a standalone application for both Windows and macOS, which can be integrated into third-party software and pipelines.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Identifying novel and functional RNA structures remains a significant challenge in RNA motif design and is crucial for developing RNA-based therapeutics. Here we introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% (121 dual graphs) correspond to approximately 200,000 known RNA atomic fragments/substructures (collected in 2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely to be associated with RNA structures, we apply computational topology descriptors using the Persistent Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering algorithms that partition all possible dual graphs into two clusters. The cluster with the higher percentage of known dual graphs for RNA is defined as the "RNA-like" cluster, while the other is considered as "non-RNA-like". The distance of each dual graph to the center of the RNA-like cluster represents the likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes 97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the hypothetical RNAs are predicted to be RNA-like. Among the top 15 graphs identified as high-likelihood candidates for novel RNA motifs, 4 were confirmed from the RNA dataset collected in 2022. Significantly, we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the top 15 non-RNA-like dual graphs tend not to have any subgraphs (subgraphs preserve pseudoknots and junctions). Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs is evident when comparing their topological features (e.g. Betti-0 and Betti-1 numbers). These findings provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs, perhaps anti-viral therapeutics by subgraph assembly.
{"title":"How Large is the Universe of RNA-Like Motifs? A Clustering Analysis of RNA Graph Motifs Using Topological Descriptors.","authors":"Rui Wang, Tamar Schlick","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Identifying novel and functional RNA structures remains a significant challenge in RNA motif design and is crucial for developing RNA-based therapeutics. Here we introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% (121 dual graphs) correspond to approximately 200,000 known RNA atomic fragments/substructures (collected in 2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely to be associated with RNA structures, we apply computational topology descriptors using the Persistent Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering algorithms that partition all possible dual graphs into two clusters. The cluster with the higher percentage of known dual graphs for RNA is defined as the \"RNA-like\" cluster, while the other is considered as \"non-RNA-like\". The distance of each dual graph to the center of the RNA-like cluster represents the likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes 97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the hypothetical RNAs are predicted to be RNA-like. Among the top 15 graphs identified as high-likelihood candidates for novel RNA motifs, 4 were confirmed from the RNA dataset collected in 2022. Significantly, we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the top 15 non-RNA-like dual graphs tend not to have any subgraphs (subgraphs preserve pseudoknots and junctions). Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs is evident when comparing their topological features (e.g. Betti-0 and Betti-1 numbers). These findings provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs, perhaps anti-viral therapeutics by subgraph assembly.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pradip K Bera, Molly McCord, Jun Zhang, Jacob Notbohm
In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer. We quantified the cell velocities, the tractions at the cell-substrate interface, and stresses within the cell layer near +1/2 defects. Results revealed that both traction and stress are sources of activity within the epithelial cell monolayer, with their competition defining whether the cells inject or dissipate energy and determining the direction of motion of +1/2 defects. Interestingly, patterns of motion, traction, stress, and energy injection near +1/2 defects existed before defect formation, suggesting that defects form as a result of spatially coordinated patterns in cell forces and motion. These findings reverse the current picture, from one in which defects define the cell forces and motion to one in which coordinated patterns of cell forces and motion cause defects to form and move.
{"title":"Energy Dynamics Powered by Traction and Stress Control Formation and Motion of +1/2 Topological Defects in Epithelial Cell Monolayers.","authors":"Pradip K Bera, Molly McCord, Jun Zhang, Jacob Notbohm","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer. We quantified the cell velocities, the tractions at the cell-substrate interface, and stresses within the cell layer near +1/2 defects. Results revealed that both traction and stress are sources of activity within the epithelial cell monolayer, with their competition defining whether the cells inject or dissipate energy and determining the direction of motion of +1/2 defects. Interestingly, patterns of motion, traction, stress, and energy injection near +1/2 defects existed before defect formation, suggesting that defects form as a result of spatially coordinated patterns in cell forces and motion. These findings reverse the current picture, from one in which defects define the cell forces and motion to one in which coordinated patterns of cell forces and motion cause defects to form and move.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carina G Biar, Nicholas Bodkin, Gemma L Carvill, Jeffrey D Calhoun
Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake. Herein, we describe curated loci prime editing (cliPE) which is an accessible, low-cost experimental pipeline to perform MAVEs using prime editing of a target gene, as well as a companion Shiny app (pegRNA Designer) to rapidly and easily design user-specific MAVE libraries.
变异效应多重检测(MAVEs)可同时鉴定许多变异。Prime editing 最近已被采用,用于在原生基因组环境中引入许多变体。然而,稳健的协议和标准有限,阻碍了其广泛应用。在这里,我们将介绍一种可利用的、低成本的实验管道--cliPE(curated loci prime editing),该管道可利用目标基因的质粒编辑来执行 MAVEs,我们还将介绍一种配套的 Shiny 应用程序(pegRNA Designer),该程序可快速、轻松地设计用户特异的 MAVE 文库。
{"title":"Curated loci prime editing (cliPE) for accessible multiplexed assays of variant effect (MAVEs).","authors":"Carina G Biar, Nicholas Bodkin, Gemma L Carvill, Jeffrey D Calhoun","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake. Herein, we describe curated loci prime editing (cliPE) which is an accessible, low-cost experimental pipeline to perform MAVEs using prime editing of a target gene, as well as a companion Shiny app (pegRNA Designer) to rapidly and easily design user-specific MAVE libraries.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yabo Fu, Hao Zhang, Weixing Cai, Huiqiao Xie, Licheng Kuo, Laura Cervino, Jean Moran, Xiang Li, Tianfang Li
In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition. The challenge lies in the sparse sampling of projections, which introduces severe streaking artifacts and compromises image quality. This paper introduces a novel framework leveraging spatiotemporal Gaussian representation for 4D-CBCT reconstruction from sparse projections, achieving a balance between streak artifact reduction, dynamic motion preservation, and fine detail restoration. Each Gaussian is characterized by its 3D position, covariance, rotation, and density. Two-dimensional X-ray projection images can be rendered from the Gaussian point cloud representation via X-ray rasterization. The properties of each Gaussian were optimized by minimizing the discrepancy between the measured projections and the rendered X-ray projections. A Gaussian deformation network is jointly optimized to deform these Gaussian properties to obtain a 4D Gaussian representation for dynamic CBCT scene modeling. The final 4D-CBCT images are reconstructed by voxelizing the 4D Gaussians, achieving a high-quality representation that preserves both motion dynamics and spatial detail. The code and reconstruction results can be found at https://github.com/fuyabo/4DGS_for_4DCBCT/tree/main.
{"title":"Spatiotemporal Gaussian Optimization for 4D Cone Beam CT Reconstruction from Sparse Projections.","authors":"Yabo Fu, Hao Zhang, Weixing Cai, Huiqiao Xie, Licheng Kuo, Laura Cervino, Jean Moran, Xiang Li, Tianfang Li","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition. The challenge lies in the sparse sampling of projections, which introduces severe streaking artifacts and compromises image quality. This paper introduces a novel framework leveraging spatiotemporal Gaussian representation for 4D-CBCT reconstruction from sparse projections, achieving a balance between streak artifact reduction, dynamic motion preservation, and fine detail restoration. Each Gaussian is characterized by its 3D position, covariance, rotation, and density. Two-dimensional X-ray projection images can be rendered from the Gaussian point cloud representation via X-ray rasterization. The properties of each Gaussian were optimized by minimizing the discrepancy between the measured projections and the rendered X-ray projections. A Gaussian deformation network is jointly optimized to deform these Gaussian properties to obtain a 4D Gaussian representation for dynamic CBCT scene modeling. The final 4D-CBCT images are reconstructed by voxelizing the 4D Gaussians, achieving a high-quality representation that preserves both motion dynamics and spatial detail. The code and reconstruction results can be found at https://github.com/fuyabo/4DGS_for_4DCBCT/tree/main.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}