首页 > 最新文献

CNS & neurological disorders drug targets最新文献

英文 中文
Sleep-Related Disorders in Parkinson's Disease: Mechanisms, Diagnosis, and Therapeutic Approaches. 帕金森病的睡眠相关障碍:机制、诊断和治疗方法》。
Pub Date : 2025-01-01 DOI: 10.2174/0118715273314675240820191447
Oscar Arias-Carrion, Emmanuel Ortega-Robles, Daniel Ortuno-Sahagun, Jesus Ramirez-Bermudez, Aya Hamid, Ali Shalash

Background: Parkinson's Disease (PD) is frequently associated with a spectrum of sleep-related disorders, including insomnia, Excessive Daytime Sleepiness (EDS), REM sleep Behaviour Disorder (RBD), Restless Legs Syndrome (RLS), and Sleep-related Breathing Disorders (SBDs). These disorders significantly impact PD patients' Quality of Life (QoL) and present unique diagnostic and therapeutic challenges.

Methods: This review has explored the intricate relationship between PD and sleep-related disorders, emphasizing their distinctive features and underlying neurobiological mechanisms. It aimed to consolidate current knowledge to optimize clinical management and improve patient care. The profound impact of these disorders on QoL has been evaluated, along with precise diagnostic methodologies. Additionally, various therapeutic strategies, including pharmacological treatments, nonpharmacological interventions, and device-aided therapies, have been examined.

Results: Sleep-related disorders are prevalent among PD patients. Specifically, RBD exhibits a prevalence of 40-50%, often preceding the onset of motor symptoms, indicating its potential as an early marker of PD. Despite their significant impact on QoL, these non-motor symptoms are frequently under-recognized and inadequately managed in clinical practice. Pharmacological treatments, along with nonpharmacological interventions, like cognitive-behavioral therapy for insomnia and lifestyle modifications, have shown varied efficacy. Device-aided therapies have also demonstrated the potential to improve sleep-related disorders and overall non-motor symptom burden.

Conclusion: Effective management of sleep-related disorders in PD calls for personalized, comprehensive, and multimodal therapeutic approaches. This requires the collaborative efforts of neurologists, sleep specialists, psychiatrists, and other healthcare professionals. Future research should focus on the intricate relationship between PD and sleep disorders, aiming to develop innovative treatments and significantly improve patient outcomes.

背景:帕金森病(PD)常伴有一系列睡眠相关障碍,包括失眠、白天过度嗜睡(EDS)、快速眼动睡眠行为障碍(RBD)、不宁腿综合征(RLS)和睡眠相关呼吸障碍(SBD)。这些疾病严重影响了帕金森病患者的生活质量(QoL),并给诊断和治疗带来了独特的挑战:本综述探讨了帕金森病与睡眠相关障碍之间错综复杂的关系,强调了它们的显著特征和潜在的神经生物学机制。综述旨在整合现有知识,优化临床管理,改善患者护理。研究评估了这些疾病对生活质量的深远影响,以及精确的诊断方法。此外,还研究了各种治疗策略,包括药物治疗、非药物干预和设备辅助疗法:结果:睡眠相关障碍在帕金森病患者中很普遍。具体而言,RBD的发病率为40%-50%,通常发生在运动症状出现之前,这表明它有可能成为帕金森病的早期标志。尽管这些非运动症状对患者的生活质量有很大影响,但在临床实践中却常常得不到充分认识和处理。药物治疗和非药物干预(如失眠认知行为疗法和生活方式调整)已显示出不同的疗效。设备辅助疗法也显示出改善睡眠相关障碍和整体非运动症状负担的潜力:结论:有效治疗帕金森病患者的睡眠相关障碍需要个性化、综合和多模式的治疗方法。这需要神经科医生、睡眠专家、精神科医生和其他医疗保健专业人员的共同努力。未来的研究应关注帕金森病与睡眠障碍之间错综复杂的关系,旨在开发创新的治疗方法,显著改善患者的预后。
{"title":"Sleep-Related Disorders in Parkinson's Disease: Mechanisms, Diagnosis, and Therapeutic Approaches.","authors":"Oscar Arias-Carrion, Emmanuel Ortega-Robles, Daniel Ortuno-Sahagun, Jesus Ramirez-Bermudez, Aya Hamid, Ali Shalash","doi":"10.2174/0118715273314675240820191447","DOIUrl":"10.2174/0118715273314675240820191447","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's Disease (PD) is frequently associated with a spectrum of sleep-related disorders, including insomnia, Excessive Daytime Sleepiness (EDS), REM sleep Behaviour Disorder (RBD), Restless Legs Syndrome (RLS), and Sleep-related Breathing Disorders (SBDs). These disorders significantly impact PD patients' Quality of Life (QoL) and present unique diagnostic and therapeutic challenges.</p><p><strong>Methods: </strong>This review has explored the intricate relationship between PD and sleep-related disorders, emphasizing their distinctive features and underlying neurobiological mechanisms. It aimed to consolidate current knowledge to optimize clinical management and improve patient care. The profound impact of these disorders on QoL has been evaluated, along with precise diagnostic methodologies. Additionally, various therapeutic strategies, including pharmacological treatments, nonpharmacological interventions, and device-aided therapies, have been examined.</p><p><strong>Results: </strong>Sleep-related disorders are prevalent among PD patients. Specifically, RBD exhibits a prevalence of 40-50%, often preceding the onset of motor symptoms, indicating its potential as an early marker of PD. Despite their significant impact on QoL, these non-motor symptoms are frequently under-recognized and inadequately managed in clinical practice. Pharmacological treatments, along with nonpharmacological interventions, like cognitive-behavioral therapy for insomnia and lifestyle modifications, have shown varied efficacy. Device-aided therapies have also demonstrated the potential to improve sleep-related disorders and overall non-motor symptom burden.</p><p><strong>Conclusion: </strong>Effective management of sleep-related disorders in PD calls for personalized, comprehensive, and multimodal therapeutic approaches. This requires the collaborative efforts of neurologists, sleep specialists, psychiatrists, and other healthcare professionals. Future research should focus on the intricate relationship between PD and sleep disorders, aiming to develop innovative treatments and significantly improve patient outcomes.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"132-143"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-inducible Factor-1α Pathway in Cerebral Ischemia: From Molecular Mechanisms to Therapeutic Targets. 脑缺血中的缺氧诱导因子-1α通路:从分子机制到治疗靶点。
Pub Date : 2025-01-01 DOI: 10.2174/0118715273324551241008111827
Veerta Sharma, Thakur Gurjeet Singh

Introduction: Ischemic injury to the brain can result in a variety of life-threatening conditions, mortality, or varying degrees of disability. Hypoxia-inducible factor 1α (HIF 1α), an oxygen- sensitive transcription factor that controls the adaptive metabolic response to hypoxia, is a critical constituent of cerebral ischemia. It participates in numerous processes, such as metabolism, proliferation, and angiogenesis, and plays a major role in cerebral ischemia.

Methods: Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the pharmacological modulation of HIF-1α pathways for the treatment of cerebral ischemia.

Results: Various signalling pathways, such as Mitogen-activated protein kinase (MAPK), Janus kinase/ signal transducers and activators (JAK/STAT), Phosphoinositide-3-kinase (PI3-K), and cAMPresponse element binding protein (CREB) play a vital role in modulation of HIF-1α pathway, which helps in preventing the pathogenesis of cerebral ischemia.

Conclusion: The pharmacological modulation of the HIF-1α pathway via various molecular signalling pathways, such as PI3-K, MAPK, CREB, and JAK/STAT activators, offer a promising prospect for future interventions and treatment for cerebral ischemia.

导言:脑缺血损伤可导致多种危及生命的情况、死亡或不同程度的残疾。缺氧诱导因子 1α(HIF 1α)是一种对氧敏感的转录因子,可控制对缺氧的适应性代谢反应,是脑缺血的重要组成部分。它参与代谢、增殖和血管生成等多个过程,在脑缺血中发挥着重要作用:方法:通过使用 Scopus、PubMed、Bentham 和 Elsevier 数据库等多个不同的搜索引擎,进行文献综述,以研究治疗脑缺血的 HIF-1α 通路的药理调节:结果:各种信号通路,如丝裂原活化蛋白激酶(MAPK)、Janus 激酶/信号转导和激活因子(JAK/STAT)、磷脂酰肌醇-3-激酶(PI3-K)和 cAMP 反应元件结合蛋白(CREB)在调节 HIF-1α 通路中发挥着重要作用,有助于预防脑缺血的发病机制:结论:通过各种分子信号通路(如 PI3-K、MAPK、CREB 和 JAK/STAT 激活剂)对 HIF-1α 通路进行药理调节,为未来干预和治疗脑缺血提供了广阔的前景。
{"title":"Hypoxia-inducible Factor-1α Pathway in Cerebral Ischemia: From Molecular Mechanisms to Therapeutic Targets.","authors":"Veerta Sharma, Thakur Gurjeet Singh","doi":"10.2174/0118715273324551241008111827","DOIUrl":"10.2174/0118715273324551241008111827","url":null,"abstract":"<p><strong>Introduction: </strong>Ischemic injury to the brain can result in a variety of life-threatening conditions, mortality, or varying degrees of disability. Hypoxia-inducible factor 1α (HIF 1α), an oxygen- sensitive transcription factor that controls the adaptive metabolic response to hypoxia, is a critical constituent of cerebral ischemia. It participates in numerous processes, such as metabolism, proliferation, and angiogenesis, and plays a major role in cerebral ischemia.</p><p><strong>Methods: </strong>Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the pharmacological modulation of HIF-1α pathways for the treatment of cerebral ischemia.</p><p><strong>Results: </strong>Various signalling pathways, such as Mitogen-activated protein kinase (MAPK), Janus kinase/ signal transducers and activators (JAK/STAT), Phosphoinositide-3-kinase (PI3-K), and cAMPresponse element binding protein (CREB) play a vital role in modulation of HIF-1α pathway, which helps in preventing the pathogenesis of cerebral ischemia.</p><p><strong>Conclusion: </strong>The pharmacological modulation of the HIF-1α pathway via various molecular signalling pathways, such as PI3-K, MAPK, CREB, and JAK/STAT activators, offer a promising prospect for future interventions and treatment for cerebral ischemia.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"208-218"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Alpha-7 Nicotinic Receptor Positive Allosteric Modulator PNU120596 Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors and Cognitive Impairment by Regulating the PPAR-α Signaling Pathway in Mice. α-7烟碱受体正性异位调节剂PNU120596通过调节PPAR-α信号通路减轻脂多糖诱发的小鼠抑郁样行为和认知障碍
Pub Date : 2025-01-01 DOI: 10.2174/0118715273311527240916050749
Sami Alzarea, Shafiqur Rahman

Background and objective: The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice.

Materials and methods: Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test.

Results: PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg).

Conclusion: These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.

背景和目的:大脑α7烟碱乙酰胆碱受体(α7 nAChR)在涉及神经炎症的重度抑郁症(MDD)病理生理学中起着关键作用。研究表明,α7 nAChR刺激可通过其在大脑中的内源性配体调节核过氧化物酶体增殖激活受体-α(PPAR-α)的抗炎作用。本研究确定了α7 nAChR调节剂PNU120596对PPAR-α、κB(IκB)和核因子-κB(NF-κB)表达抑制剂以及白细胞介素-1β(IL-1β)水平的影响。我们还评估了 PNU120596 和 PPAR-α 拮抗剂 GW6471 对小鼠抑郁样行为和认知缺陷样行为的联合影响:雄性 C57BL/6J 小鼠接受 PNU120596 治疗,然后全身注射 LPS(1 毫克/千克,静注)。给药 LPS 后,使用 qRT-PCR 评估 PNU120596 对海马和前脑功能区 PPAR-α 和 IκB mRNA 表达的影响。同样,PNU120596 对 PPAR-α 和 NF-κB 免疫活性的影响也是通过免疫荧光法测定的。此外,还使用酶联免疫吸附法测定了 PNU120596 对海马和全脑功能区促炎细胞因子 IL-1β 水平的影响。还使用尾悬试验(TST)、强迫游泳试验(FST)和Y-迷宫试验评估了PNU120596和GW6471对LPS诱导的抑郁样和认知缺陷样行为的联合作用:结果:PNU120596(4 毫克/千克)能显著预防 LPS 引起的海马和前脑功能区 PPAR-α、IκB、p-NF-κB p65 和 IL-1β 的失调。PNU120596的预处理通过减少TST和FST中的静止时间而显示出显著的抗抑郁样作用。同样,PNU120596也能显著减少Y迷宫测试中的认知缺陷行为。PPAR-α拮抗剂GW6471(2 mg/kg)可逆转PNU120596的抗抑郁和促进认知类行为的作用:这些结果表明,PNU120596通过调节海马和前脑功能区的α7 nAChR/PPAR-α信号通路,预防了LPS诱导的MDD和认知样行为。
{"title":"The Alpha-7 Nicotinic Receptor Positive Allosteric Modulator PNU120596 Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors and Cognitive Impairment by Regulating the PPAR-α Signaling Pathway in Mice.","authors":"Sami Alzarea, Shafiqur Rahman","doi":"10.2174/0118715273311527240916050749","DOIUrl":"10.2174/0118715273311527240916050749","url":null,"abstract":"<p><strong>Background and objective: </strong>The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice.</p><p><strong>Materials and methods: </strong>Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test.</p><p><strong>Results: </strong>PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p<sup>65</sup>, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg).</p><p><strong>Conclusion: </strong>These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"234-244"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling. T-006通过调节tlr4介导的MyD88/ NF-κB信号通路对阿尔茨海默病模型的抗神经炎症和神经保护作用
Pub Date : 2025-01-01 DOI: 10.2174/0118715273337232241121113048
Haiyun Chen, Xiao Chang, Jiemei Zhou, Guiliang Zhang, Jiehong Cheng, Zaijun Zhang, Jieyu Xing, Chunyan Yan, Zheng Liu

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology.

Methods: The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured.

Results: T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function.

Conclusion: T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.

由小胶质细胞激活引起的神经炎症被认为是阿尔茨海默病(AD)的重要致病因素。在AD转基因小鼠模型中,四甲基吡嗪衍生物T-006通过抑制tau蛋白表达和磷酸化来减轻认知缺陷。近年来,研究证实T-006能显著降低APP/PS1小鼠的总β淀粉样蛋白(Aβ)肽和胶质纤维酸性蛋白(GFAP)水平,并抑制离子钙结合受体分子-1 (Iba-1)的表达。因此,我们进一步研究了T-006对ad样病理神经炎症的影响。方法:观察T-006对脂多糖(LPS)诱导的AD大鼠的抗炎作用及其机制。还测量了对lps激活的小胶质细胞介导的神经毒性的潜在保护作用。结果:T-006通过抑制小胶质细胞/星形胶质细胞活化,显著改善脂多糖诱导的AD大鼠认知功能障碍。进一步的细胞实验发现,T-006以浓度依赖的方式显著保留了lps诱导的BV2小胶质细胞中炎症因子的异常升高,而单独使用T-006对正常培养的细胞没有影响。T-006还能降低LPS刺激下BV2细胞中toll样受体4 (TLR4)/髓样分化蛋白88 (MyD88)/NF-κB信号相关蛋白的水平。TAK242选择性抑制TLR4,在lps处理的BV2细胞中,T-006的作用略有减弱,但无显著性。重要的是,T-006通过抑制活性氧(ROS)的产生和维持线粒体功能来保护神经元免受lps诱导的神经炎症。结论:T-006抑制tlr4介导的MyD88/NF-κB信号通路,抑制lps诱导的AD大鼠神经炎症。
{"title":"Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling.","authors":"Haiyun Chen, Xiao Chang, Jiemei Zhou, Guiliang Zhang, Jiehong Cheng, Zaijun Zhang, Jieyu Xing, Chunyan Yan, Zheng Liu","doi":"10.2174/0118715273337232241121113048","DOIUrl":"10.2174/0118715273337232241121113048","url":null,"abstract":"<p><strong>Introduction: </strong>Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology.</p><p><strong>Methods: </strong>The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured.</p><p><strong>Results: </strong>T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function.</p><p><strong>Conclusion: </strong>T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"382-396"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine Depletion in Parkinson's Disease and Therapeutic Options. 帕金森病的多巴胺耗竭和治疗选择。
IF 3 Pub Date : 2025-01-01 DOI: 10.2174/0118715273366223250302092948
Hussaini Adam, Subash C B Gopinath, Tijjani Adam, Evan T Salim, Makram A Fakhri
{"title":"Dopamine Depletion in Parkinson's Disease and Therapeutic Options.","authors":"Hussaini Adam, Subash C B Gopinath, Tijjani Adam, Evan T Salim, Makram A Fakhri","doi":"10.2174/0118715273366223250302092948","DOIUrl":"10.2174/0118715273366223250302092948","url":null,"abstract":"","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"577-581"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erythropoietin for Seizures and Epilepsy: Neuroprotective Effects, Mechanisms, and Contradictory Risks. 促红细胞生成素治疗癫痫和癫痫:神经保护作用、机制和相互矛盾的风险。
IF 3 Pub Date : 2025-01-01 DOI: 10.2174/0118715273367111250307081826
Heba M Mahdy

Background: Epilepsy is a widespread neurological disorder, particularly affecting children and the elderly, presenting complex and varied challenges in management. Recently, erythropoietin has gained significant attention due to its neuroprotective effects, which have been demonstrated experimentally in various neurological conditions, including epilepsy. This review aims to analyze current literature on the role of erythropoietin in seizures and epilepsy.

Method: A comprehensive literature search was conducted through PubMed, Scopus, and Web of Science databases up to September 30, 2024. The search terms included "Epilepsy AND Erythropoietin", "Seizures AND Erythropoietin," and "Status Epilepticus AND Erythropoietin", applied to titles, abstracts, and keywords.

Results: The review highlights ongoing debates surrounding erythropoietin's effects on epilepsy. While erythropoietin shows potential in mitigating seizure-induced brain damage and modulating cellular processes such as anti-apoptotic and anti-inflammatory pathways, its clinical application is complicated by conflicting evidence. Some studies suggest that erythropoietin may trigger seizures, with factors such as dosage and individual patient characteristics potentially influencing this risk.

Conclusion: Experimental studies suggest that erythropoietin offers neuroprotective benefits in epilepsy. However, its possible pro-convulsant effects-which might be linked to erythropoietin-induced hypertension, rapid increases in hematocrit levels, dosage, or individual patient characteristics-raise safety concerns. These risks complicate its clinical use, making it premature to endorse erythropoietin as a treatment fully. Future research should focus on non-erythropoietic derivatives that retain neuroprotective effects without stimulating red blood cell production, thereby reducing risks, such as hypertension and thrombosis. Well-designed clinical trials and further investigation into erythropoietin's mechanisms are essential to clarify its role and optimize its therapeutic potential in epilepsy.

背景:癫痫是一种广泛存在的神经系统疾病,尤其影响儿童和老年人,给治疗带来了复杂多样的挑战。最近,促红细胞生成素因其在包括癫痫在内的各种神经系统疾病中的实验证明的神经保护作用而备受关注。本综述旨在分析当前有关促红细胞生成素在癫痫发作和癫痫中作用的文献:方法:通过 PubMed、Scopus 和 Web of Science 数据库对截至 2024 年 9 月 30 日的文献进行了全面检索。检索词包括 "癫痫与促红细胞生成素"、"癫痫发作与促红细胞生成素 "和 "癫痫状态与促红细胞生成素",并应用于标题、摘要和关键词:结果:综述强调了目前围绕促红细胞生成素对癫痫影响的争论。虽然促红细胞生成素在减轻癫痫发作引起的脑损伤和调节细胞过程(如抗凋亡和抗炎途径)方面显示出潜力,但其临床应用却因相互矛盾的证据而变得复杂。一些研究表明,促红细胞生成素可能会诱发癫痫发作,而剂量和患者个体特征等因素可能会影响这种风险:实验研究表明,促红细胞生成素对癫痫患者具有神经保护作用。然而,促红细胞生成素可能产生的促惊厥效应--这可能与促红细胞生成素诱发的高血压、血细胞比容水平的快速升高、剂量或患者个体特征有关--引发了安全性问题。这些风险使红细胞生成素的临床应用变得更加复杂,因此完全认可红细胞生成素作为一种治疗手段还为时过早。未来的研究重点应放在非促红细胞生成素衍生物上,这些衍生物能在不刺激红细胞生成的情况下保留神经保护作用,从而降低高血压和血栓形成等风险。精心设计的临床试验和对促红细胞生成素机制的进一步研究对于明确其在癫痫中的作用和优化其治疗潜力至关重要。
{"title":"Erythropoietin for Seizures and Epilepsy: Neuroprotective Effects, Mechanisms, and Contradictory Risks.","authors":"Heba M Mahdy","doi":"10.2174/0118715273367111250307081826","DOIUrl":"10.2174/0118715273367111250307081826","url":null,"abstract":"<p><strong>Background: </strong>Epilepsy is a widespread neurological disorder, particularly affecting children and the elderly, presenting complex and varied challenges in management. Recently, erythropoietin has gained significant attention due to its neuroprotective effects, which have been demonstrated experimentally in various neurological conditions, including epilepsy. This review aims to analyze current literature on the role of erythropoietin in seizures and epilepsy.</p><p><strong>Method: </strong>A comprehensive literature search was conducted through PubMed, Scopus, and Web of Science databases up to September 30, 2024. The search terms included \"Epilepsy AND Erythropoietin\", \"Seizures AND Erythropoietin,\" and \"Status Epilepticus AND Erythropoietin\", applied to titles, abstracts, and keywords.</p><p><strong>Results: </strong>The review highlights ongoing debates surrounding erythropoietin's effects on epilepsy. While erythropoietin shows potential in mitigating seizure-induced brain damage and modulating cellular processes such as anti-apoptotic and anti-inflammatory pathways, its clinical application is complicated by conflicting evidence. Some studies suggest that erythropoietin may trigger seizures, with factors such as dosage and individual patient characteristics potentially influencing this risk.</p><p><strong>Conclusion: </strong>Experimental studies suggest that erythropoietin offers neuroprotective benefits in epilepsy. However, its possible pro-convulsant effects-which might be linked to erythropoietin-induced hypertension, rapid increases in hematocrit levels, dosage, or individual patient characteristics-raise safety concerns. These risks complicate its clinical use, making it premature to endorse erythropoietin as a treatment fully. Future research should focus on non-erythropoietic derivatives that retain neuroprotective effects without stimulating red blood cell production, thereby reducing risks, such as hypertension and thrombosis. Well-designed clinical trials and further investigation into erythropoietin's mechanisms are essential to clarify its role and optimize its therapeutic potential in epilepsy.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"701-721"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PPARs in the Brain: From Old Knowledge to Emerging Therapeutic Roles. 针对大脑中的ppar:从旧知识到新治疗作用。
IF 3 Pub Date : 2025-01-01 DOI: 10.2174/0118715273387422250417185024
Alessandra Ammazzalorso
{"title":"Targeting PPARs in the Brain: From Old Knowledge to Emerging Therapeutic Roles.","authors":"Alessandra Ammazzalorso","doi":"10.2174/0118715273387422250417185024","DOIUrl":"10.2174/0118715273387422250417185024","url":null,"abstract":"","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"649-651"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-Free DNA, a Noninvasive Biomarker for Prediction and Detection of Neurodegenerative Diseases, New Insights, and Perspectives. 无细胞DNA,一种预测和检测神经退行性疾病的无创生物标志物,新的见解和观点。
IF 3 Pub Date : 2025-01-01 DOI: 10.2174/0118715273366438250408120558
Tahere Barabadi, Elahe Sadat Mirjalili, Seyed Mahdi Mohamadi-Zarch, Hossein Rahimi, Fariborz Keshmirshekan, Seyyed Majid Bagheri

Neurodegenerative diseases pose serious threats to public health worldwide. Biomarkers for neurodegenerative disorders are essential to enhance the diagnostic process in clinical settings and to aid in the creation and assessment of effective disease-modifying treatments. In recent times, affordable and readily available blood-based biomarkers identifying the same neurodegenerative disease pathologies have been created, potentially transforming the diagnostic approach for these disorders worldwide. Emerging relevant biomarkers for α-synuclein pathology in Parkinson's disease include blood-based indicators of overall neurodegeneration and glial activation. Cell-free DNA (cfDNA), an encouraging non-invasive biomarker commonly utilized in oncology and pregnancy, has demonstrated significant potential in clinical uses for diagnosing neurodegenerative disorders. In this section, we explore the latest cfDNA studies related to neurodegenerative disorders. Moreover, we present a perspective on the possible role of cfDNA as a diagnostic, therapeutic, and prognostic indicator for neurodegenerative disorders. This review provides a summary of the most recent progress in biomarkers for neurodegenerative disorders such as Alzheimer's, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury.

神经退行性疾病对全世界的公共卫生构成严重威胁。神经退行性疾病的生物标志物对于提高临床诊断过程和帮助创建和评估有效的疾病改善治疗是必不可少的。近年来,人们开发出了价格合理且易于获得的基于血液的生物标志物,用于识别相同的神经退行性疾病病理,这可能会改变全球范围内这些疾病的诊断方法。帕金森病α-突触核蛋白病理的新兴相关生物标志物包括基于血液的整体神经变性和神经胶质活化指标。无细胞DNA (cfDNA)是一种令人鼓舞的非侵入性生物标志物,通常用于肿瘤和妊娠,在诊断神经退行性疾病的临床应用中显示出巨大的潜力。在本节中,我们将探讨与神经退行性疾病相关的最新cfDNA研究。此外,我们提出了cfDNA作为神经退行性疾病的诊断、治疗和预后指标的可能作用的观点。本文综述了神经退行性疾病生物标志物的最新进展,如阿尔茨海默病、帕金森病、多发性硬化症、肌萎缩侧索硬化症和创伤性脑损伤。
{"title":"Cell-Free DNA, a Noninvasive Biomarker for Prediction and Detection of Neurodegenerative Diseases, New Insights, and Perspectives.","authors":"Tahere Barabadi, Elahe Sadat Mirjalili, Seyed Mahdi Mohamadi-Zarch, Hossein Rahimi, Fariborz Keshmirshekan, Seyyed Majid Bagheri","doi":"10.2174/0118715273366438250408120558","DOIUrl":"10.2174/0118715273366438250408120558","url":null,"abstract":"<p><p>Neurodegenerative diseases pose serious threats to public health worldwide. Biomarkers for neurodegenerative disorders are essential to enhance the diagnostic process in clinical settings and to aid in the creation and assessment of effective disease-modifying treatments. In recent times, affordable and readily available blood-based biomarkers identifying the same neurodegenerative disease pathologies have been created, potentially transforming the diagnostic approach for these disorders worldwide. Emerging relevant biomarkers for α-synuclein pathology in Parkinson's disease include blood-based indicators of overall neurodegeneration and glial activation. Cell-free DNA (cfDNA), an encouraging non-invasive biomarker commonly utilized in oncology and pregnancy, has demonstrated significant potential in clinical uses for diagnosing neurodegenerative disorders. In this section, we explore the latest cfDNA studies related to neurodegenerative disorders. Moreover, we present a perspective on the possible role of cfDNA as a diagnostic, therapeutic, and prognostic indicator for neurodegenerative disorders. This review provides a summary of the most recent progress in biomarkers for neurodegenerative disorders such as Alzheimer's, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"731-742"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Neuroprotective Role of Tangeritin. 橘皮素的神经保护作用
Pub Date : 2025-01-01 DOI: 10.2174/0118715273325789240904065214
Javeria Fatima, Yasir Hasan Siddique

The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin via its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.

随着人们寿命的延长,神经退行性疾病的发病率也在增加,因此有必要探索新型神经保护剂。橘皮素是从柑橘类水果中提取的一种多甲氧基化黄酮,因其潜在的治疗效果而备受关注。本综述将重点介绍橘皮素通过其抗氧化和抗炎机制所具有的神经保护特性。橘皮素在减轻氧化应激、神经炎症和神经元损伤方面具有疗效,适用于各种神经退行性疾病,包括阿尔茨海默病、帕金森病、脑缺血和癫痫。它有望改善与这些疾病相关的认知障碍和记忆损伤。此外,橘皮素还能调节多种信号通路,防止神经元凋亡,这凸显了它作为治疗药物的潜力。
{"title":"The Neuroprotective Role of Tangeritin.","authors":"Javeria Fatima, Yasir Hasan Siddique","doi":"10.2174/0118715273325789240904065214","DOIUrl":"10.2174/0118715273325789240904065214","url":null,"abstract":"<p><p>The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin via its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"144-157"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. 纳米载体治疗帕金森病的再利用综述:最新专利和临床试验。
Pub Date : 2025-01-01 DOI: 10.2174/0118715273323074241001071645
Sara Khan, Md Faheem Haider

Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.

帕金森病(Parkinson's Disease,PD)是一种进行性神经退行性疾病,其特征是产生多巴胺的神经元退化,导致震颤和僵直等运动障碍。虽然确切的病因仍然难以捉摸,但遗传和环境因素都与之有关。线粒体功能障碍、氧化应激和蛋白质错误折叠是导致该病的病理原因。目前的治疗方法主要是通过多巴胺替代和脑深部刺激来缓解症状。然而,人们仍在探索改变疾病的治疗方法。正在进行的临床试验探索了神经保护剂和基因疗法等新方法,反映了不断发展的帕金森病研究现状。这篇综述全面概述了帕金森病,涵盖了帕金森病的基本知识、致病因素、主要发病途径、现有治疗方法以及对正在进行的临床试验的深入探讨。随着科学界努力揭开帕金森氏症的复杂面纱,本综述深入探讨了为更好地了解和加强管理这种使人衰弱的疾病而采取的多方面策略。
{"title":"A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials.","authors":"Sara Khan, Md Faheem Haider","doi":"10.2174/0118715273323074241001071645","DOIUrl":"10.2174/0118715273323074241001071645","url":null,"abstract":"<p><p>Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"181-195"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CNS & neurological disorders drug targets
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1