Pub Date : 2025-01-01DOI: 10.2174/0118715273329531240911075309
Meenakshi Attri, Asha Raghav, Jyoti Sinha
Repurposing drugs (DR) has become a viable approach to hasten the search for cures for neurodegenerative diseases (NDs). This review examines different off-target and on-target drug discovery techniques and how they might be used to find possible treatments for non-diagnostic depressions. Off-target strategies look at the known or unknown side effects of currently approved drugs for repositioning, whereas on-target strategies connect disease pathways to targets that can be treated with drugs. The review highlights the potential of experimental and computational methodologies, such as machine learning, proteomic techniques, network and genomics-based approaches, and in silico screening, in uncovering new drug-disease correlations. It also looks at difficulties and failed attempts at drug repurposing for NDs, highlighting the necessity of exact and standardised procedures to increase success rates. This review's objectives are to address the purpose of drug repurposing in human disorders, particularly neurological diseases, and to provide an overview of repurposing candidates that are presently undergoing clinical trials for neurological conditions, along with any possible causes and early findings. We then include a list of drug repurposing strategies, restrictions, and difficulties for upcoming research.
{"title":"Revolutionising Neurological Therapeutics: Investigating Drug Repurposing Strategies.","authors":"Meenakshi Attri, Asha Raghav, Jyoti Sinha","doi":"10.2174/0118715273329531240911075309","DOIUrl":"10.2174/0118715273329531240911075309","url":null,"abstract":"<p><p>Repurposing drugs (DR) has become a viable approach to hasten the search for cures for neurodegenerative diseases (NDs). This review examines different off-target and on-target drug discovery techniques and how they might be used to find possible treatments for non-diagnostic depressions. Off-target strategies look at the known or unknown side effects of currently approved drugs for repositioning, whereas on-target strategies connect disease pathways to targets that can be treated with drugs. The review highlights the potential of experimental and computational methodologies, such as machine learning, proteomic techniques, network and genomics-based approaches, and in silico screening, in uncovering new drug-disease correlations. It also looks at difficulties and failed attempts at drug repurposing for NDs, highlighting the necessity of exact and standardised procedures to increase success rates. This review's objectives are to address the purpose of drug repurposing in human disorders, particularly neurological diseases, and to provide an overview of repurposing candidates that are presently undergoing clinical trials for neurological conditions, along with any possible causes and early findings. We then include a list of drug repurposing strategies, restrictions, and difficulties for upcoming research.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"115-131"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273306929240820071521
Farha Bano, Faris F Aba Alkhayl, Mohammad Rashid, Mohammed Ghanim Alqethami, Mohammed Omair Alsufyani, Khadijah Oudah R Alhothali, Mohammed Japer Mohammed Hakme, Abdulrahman Mohammed Al-Jarallah, Rikeshwer Prasad Dewangan, Asif Husain
The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.
{"title":"Recent Development of Zolmitriptan Formulation in Migraine Therapy: Production, Metabolism and Pharmaceutical Aspects.","authors":"Farha Bano, Faris F Aba Alkhayl, Mohammad Rashid, Mohammed Ghanim Alqethami, Mohammed Omair Alsufyani, Khadijah Oudah R Alhothali, Mohammed Japer Mohammed Hakme, Abdulrahman Mohammed Al-Jarallah, Rikeshwer Prasad Dewangan, Asif Husain","doi":"10.2174/0118715273306929240820071521","DOIUrl":"10.2174/0118715273306929240820071521","url":null,"abstract":"<p><p>The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"219-233"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273332140240724093837
Amit Anand, Aman Shrivastava, Kuldeep Singh, Rakesh Barik, Devshree Gayakwad, S Jailani, Shamim, Sumeet Dwivedi
Central Nervous System (CNS) disorders affect millions of people worldwide, with a significant proportion experiencing drug-resistant forms where conventional medications fail to provide adequate seizure control. This abstract delves into recent advancements and innovative therapies aimed at addressing the complex challenge of CNS-related drug-resistant epilepsy (DRE) management. The idea of precision medicine has opened up new avenues for epilepsy treatment. Herbs such as curcumin, ginkgo biloba, panax ginseng, bacopa monnieri, ashwagandha, and rhodiola rosea influence the BDNF pathway through various mechanisms. These include the activation of CREB, inhibition of NF-κB, modulation of neurotransmitters, reduction of oxidative stress, and anti- inflammatory effects. By promoting BDNF expression and activity, these herbs support neuroplasticity, cognitive function, and overall neuronal health. Novel antiepileptic drugs (AEDs) with distinct mechanisms of action demonstrate efficacy in refractory cases where traditional medications falter. Additionally, repurposing existing drugs for antiepileptic purposes presents a cost-effective strategy to broaden therapeutic choices. Cannabidiol (CBD), derived from cannabis herbs, has garnered attention for its anticonvulsant properties, offering a potential adjunctive therapy for refractory seizures. In conclusion, recent advances and innovative therapies represent a multifaceted approach to managing drug-resistant epilepsy. Leveraging precision medicine, neurostimulation technologies, novel pharmaceuticals, and complementary therapies, clinicians can optimize treatment outcomes and improve the life expectancy of patients living with refractory seizures. Genetic testing and biomarker identification now allow for personalized therapeutic approaches tailored to individual patient profiles. Utilizing next-generation sequencing techniques, researchers have elucidated genetic mutations.
{"title":"Neuroprotective Efficacy and Complementary Treatment with Medicinal Herbs: A Comprehensive Review of Recent Therapeutic Approaches in Epilepsy Management.","authors":"Amit Anand, Aman Shrivastava, Kuldeep Singh, Rakesh Barik, Devshree Gayakwad, S Jailani, Shamim, Sumeet Dwivedi","doi":"10.2174/0118715273332140240724093837","DOIUrl":"10.2174/0118715273332140240724093837","url":null,"abstract":"<p><p>Central Nervous System (CNS) disorders affect millions of people worldwide, with a significant proportion experiencing drug-resistant forms where conventional medications fail to provide adequate seizure control. This abstract delves into recent advancements and innovative therapies aimed at addressing the complex challenge of CNS-related drug-resistant epilepsy (DRE) management. The idea of precision medicine has opened up new avenues for epilepsy treatment. Herbs such as curcumin, ginkgo biloba, panax ginseng, bacopa monnieri, ashwagandha, and rhodiola rosea influence the BDNF pathway through various mechanisms. These include the activation of CREB, inhibition of NF-κB, modulation of neurotransmitters, reduction of oxidative stress, and anti- inflammatory effects. By promoting BDNF expression and activity, these herbs support neuroplasticity, cognitive function, and overall neuronal health. Novel antiepileptic drugs (AEDs) with distinct mechanisms of action demonstrate efficacy in refractory cases where traditional medications falter. Additionally, repurposing existing drugs for antiepileptic purposes presents a cost-effective strategy to broaden therapeutic choices. Cannabidiol (CBD), derived from cannabis herbs, has garnered attention for its anticonvulsant properties, offering a potential adjunctive therapy for refractory seizures. In conclusion, recent advances and innovative therapies represent a multifaceted approach to managing drug-resistant epilepsy. Leveraging precision medicine, neurostimulation technologies, novel pharmaceuticals, and complementary therapies, clinicians can optimize treatment outcomes and improve the life expectancy of patients living with refractory seizures. Genetic testing and biomarker identification now allow for personalized therapeutic approaches tailored to individual patient profiles. Utilizing next-generation sequencing techniques, researchers have elucidated genetic mutations.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"60-73"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273318552240708055413
Lav Goyal, Shamsher Singh
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
{"title":"Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide.","authors":"Lav Goyal, Shamsher Singh","doi":"10.2174/0118715273318552240708055413","DOIUrl":"10.2174/0118715273318552240708055413","url":null,"abstract":"<p><p>Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca<sup>2+</sup> and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"47-59"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273304077240603115521
Giovanni Di Mauro, Giovanni Vietri, Loreta Quaranta, Fabio Placidi, Francesca Izzi, Alessandro Castelli, Andrea Pagano, Francesca Leonardis, Viviana De Angelis, Ciro Bianco, Maria Grazia Celeste, Nicola Biagio Mercuri, Claudio Liguori
Introduction: Refractory and super-refractory status epilepticus are medical emergencies that must be promptly treated in consideration of their high mortality and morbidity rate. Nevertheless, the available evidence of effective treatment for these conditions is scarce. Among novel antiseizure medications (ASMs), highly purified cannabidiol (hpCBD) has shown noteworthy efficacy in reducing seizures in Lennox-Gastaut syndrome, Dravet syndrome, and Tuberous Sclerosis Complex.
Case presentation: Here, we present two cases of effective use of hpCBD in both refractory and super- refractory status epilepticus. The administration of the nasogastric tube permitted the resolution of status epilepticus without adverse events. At 6-month follow-up, both patients were on hpCBD treatment, which continued to be efficacious for treating seizures.
Conclusion: According to our experience, hpCBD should be taken into consideration as an add-on therapy of RSE and SRSE while also considering the possibility of maintaining this treatment during the follow-up of patients. However, more studies and real-world experiences are needed to better understand its effectiveness in this setting and the interaction with other ASMs.
{"title":"Effectiveness of Highly Purified Cannabidiol in Refractory and Super-Refractory Status Epilepticus: A Case Series.","authors":"Giovanni Di Mauro, Giovanni Vietri, Loreta Quaranta, Fabio Placidi, Francesca Izzi, Alessandro Castelli, Andrea Pagano, Francesca Leonardis, Viviana De Angelis, Ciro Bianco, Maria Grazia Celeste, Nicola Biagio Mercuri, Claudio Liguori","doi":"10.2174/0118715273304077240603115521","DOIUrl":"10.2174/0118715273304077240603115521","url":null,"abstract":"<p><strong>Introduction: </strong>Refractory and super-refractory status epilepticus are medical emergencies that must be promptly treated in consideration of their high mortality and morbidity rate. Nevertheless, the available evidence of effective treatment for these conditions is scarce. Among novel antiseizure medications (ASMs), highly purified cannabidiol (hpCBD) has shown noteworthy efficacy in reducing seizures in Lennox-Gastaut syndrome, Dravet syndrome, and Tuberous Sclerosis Complex.</p><p><strong>Case presentation: </strong>Here, we present two cases of effective use of hpCBD in both refractory and super- refractory status epilepticus. The administration of the nasogastric tube permitted the resolution of status epilepticus without adverse events. At 6-month follow-up, both patients were on hpCBD treatment, which continued to be efficacious for treating seizures.</p><p><strong>Conclusion: </strong>According to our experience, hpCBD should be taken into consideration as an add-on therapy of RSE and SRSE while also considering the possibility of maintaining this treatment during the follow-up of patients. However, more studies and real-world experiences are needed to better understand its effectiveness in this setting and the interaction with other ASMs.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"158-163"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273319405240707164638
Sadayuki Hashioka
Although electroconvulsive therapy (ECT) has immediate and profound effects on severe psychiatric disorders compared to pharmacotherapy, the mechanisms underlying its therapeutic effects remain elusive. Increasing evidence indicates that glial activation is a common pathogenetic factor in both major depression and schizophrenia, raising the question of whether ECT can inhibit glial activation. This article summarizes the findings from both clinical and experimental studies addressing this key question. Based on the findings, it is proposed that the suppression of glial activation associated with neuroinflammation may be involved in the mechanism by which ECT restores brain homeostasis and exerts its therapeutic effects.
{"title":"Glia as a New Target for Therapeutic Actions of Electroconvulsive Therapy.","authors":"Sadayuki Hashioka","doi":"10.2174/0118715273319405240707164638","DOIUrl":"10.2174/0118715273319405240707164638","url":null,"abstract":"<p><p>Although electroconvulsive therapy (ECT) has immediate and profound effects on severe psychiatric disorders compared to pharmacotherapy, the mechanisms underlying its therapeutic effects remain elusive. Increasing evidence indicates that glial activation is a common pathogenetic factor in both major depression and schizophrenia, raising the question of whether ECT can inhibit glial activation. This article summarizes the findings from both clinical and experimental studies addressing this key question. Based on the findings, it is proposed that the suppression of glial activation associated with neuroinflammation may be involved in the mechanism by which ECT restores brain homeostasis and exerts its therapeutic effects.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"2-6"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.
{"title":"Exploring the Pharmacological Effects of Bioactive Peptides on Human Nervous Disorders: A Comprehensive Review.","authors":"Kuldeep Singh, Jeetendra Kumar Gupta, Aman Shrivastava, Divya Jain, Amrendra Pratap Yadav, Sumeet Dwivedi, Anubhav Dubey, Shivendra Kumar","doi":"10.2174/0118715273316382240807120241","DOIUrl":"10.2174/0118715273316382240807120241","url":null,"abstract":"<p><p>A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"32-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.
{"title":"The Gut Microbiota-Brain Axis: A New Frontier in Alzheimer's Disease Pathology.","authors":"Meenakshi Dhanawat, Garima Malik, Kashish Wilson, Sumeet Gupta, Nidhi Gupta, Satish Sardana","doi":"10.2174/0118715273302508240613114103","DOIUrl":"10.2174/0118715273302508240613114103","url":null,"abstract":"<p><p>Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the \"two-way\" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"7-20"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715273315891240801065231
Jose Augusto Nogueira-Machado, Franscisco das Chagas Lima E Silva, Fabiana Rocha-Silva, Nathalia Gomes
Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.
肌萎缩性脊髓侧索硬化症(ALS)是一种罕见的渐进性不治之症。散发性(sALS)占 ALS 病例的 90%,而家族性 ALS(fALS)约占 15%。有报告指出,家族性 ALS 有 30 多种不同形式。多种类型的家族性渐进性肌萎缩性脊髓侧索硬化症(fALS)表现出相似的症状,但基因突变不同,主要代谢信号也可能不同。临床诊断会考虑患者病史,但不会考虑基因突变、折叠错误的蛋白质或代谢信号。随着遗传学和代谢途径研究的进展,预计 ALS 的复杂性将进一步加剧。临床医生讨论的问题是,基因的存在是疾病的原因,还是只是一种关联或结果。他们认为,仅凭突变基因不足以诊断 ALS。肌萎缩性脊髓侧索硬化症通常被认为是一种单一的疾病,但它似乎是一系列症状相似的复杂疾病的集合。这篇综述重点介绍了基因突变、代谢途径和肌肉神经元之间的相互作用。
{"title":"Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms.","authors":"Jose Augusto Nogueira-Machado, Franscisco das Chagas Lima E Silva, Fabiana Rocha-Silva, Nathalia Gomes","doi":"10.2174/0118715273315891240801065231","DOIUrl":"10.2174/0118715273315891240801065231","url":null,"abstract":"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"83-90"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuropathies, which encompass a wide array of peripheral nervous system disorders, present significant challenges due to their varied causes, such as metabolic diseases, toxic exposures, and genetic mutations. This review article, focused on the critical role of neurotrophins in peripheral neuropathy, highlights the intricate balance of neurotrophins necessary for nerve health and the pathophysiological consequences when this balance is disturbed. Neurotrophins, including Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT- 3), and Neurotrophin-4 (NT-4), are essential for neuronal survival, axonal growth, and synaptic plasticity. Their signaling pathways are crucial for maintaining peripheral nervous system integrity, primarily via the Tropomyosin receptor kinase (Trk) receptors and the p75 neurotrophin receptor p75(NTR). Dysregulation of neurotrophins is implicated in various neuropathies, such as diabetic neuropathy and chemotherapy-induced peripheral neuropathy, leading to impaired nerve function and regeneration. Understanding neurotrophin signaling intricacies and their alterations in neuropathic conditions is crucial for identifying novel therapeutic targets. Recent advancements illuminate neurotrophins' potential as therapeutic agents, promising disease-modifying treatments by promoting neuronal survival, enhancing axonal regeneration, and improving functional recovery post-nerve injury. However, translating these molecular insights into effective clinical applications faces challenges, including delivery methods, target specificity, and the instability of protein- based therapies.
{"title":"Neurotrophins in Peripheral Neuropathy: Exploring Pathophysiological Mechanisms and Emerging Therapeutic Opportunities.","authors":"Suman Samaddar, Moqbel Ali Moqbel Redhwan, Mohan Muttanahally Eraiah, Raju Koneri","doi":"10.2174/0118715273327121240820074049","DOIUrl":"10.2174/0118715273327121240820074049","url":null,"abstract":"<p><p>Neuropathies, which encompass a wide array of peripheral nervous system disorders, present significant challenges due to their varied causes, such as metabolic diseases, toxic exposures, and genetic mutations. This review article, focused on the critical role of neurotrophins in peripheral neuropathy, highlights the intricate balance of neurotrophins necessary for nerve health and the pathophysiological consequences when this balance is disturbed. Neurotrophins, including Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT- 3), and Neurotrophin-4 (NT-4), are essential for neuronal survival, axonal growth, and synaptic plasticity. Their signaling pathways are crucial for maintaining peripheral nervous system integrity, primarily <i>via</i> the Tropomyosin receptor kinase (Trk) receptors and the p75 neurotrophin receptor p75(NTR). Dysregulation of neurotrophins is implicated in various neuropathies, such as diabetic neuropathy and chemotherapy-induced peripheral neuropathy, leading to impaired nerve function and regeneration. Understanding neurotrophin signaling intricacies and their alterations in neuropathic conditions is crucial for identifying novel therapeutic targets. Recent advancements illuminate neurotrophins' potential as therapeutic agents, promising disease-modifying treatments by promoting neuronal survival, enhancing axonal regeneration, and improving functional recovery post-nerve injury. However, translating these molecular insights into effective clinical applications faces challenges, including delivery methods, target specificity, and the instability of protein- based therapies.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"91-101"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}