Introduction: Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.
Areas covered: This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.
Expert opinion: The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.
导言:慢性伤口需要比标准伤口护理更复杂的护理,因为糖尿病等疾病导致慢性伤口越来越严重。三维生物打印技术解决了现有方法的不足,为实现个性化、机械强度高、细胞刺激性强的伤口敷料提供了一条可行之路:这篇综述强调了传统方法的弊端,同时也指出了管理慢性伤口的困难。讨论围绕采用天然生物材料定制敷料展开,并特别强调了三维生物打印技术。通过对最新研究和专利的深入了解,我们可以全面了解 3D 打印敷料在各种慢性伤口中的应用:专家认为,伤口是人类历史上的一种疾病,并强调了与伤口治疗相关的日益增长的困难和费用。专家承认三维打印技术具有革命性意义,但也指出它仍处于起步阶段,有可能加强而不是取代大规模生产。评论强调了3D打印技术在伤口敷料方面的优势,举例说明了智能材料通过刺激血管生成、减轻疼痛和靶向特定酶来改善治疗效果。专家建议,即使面对医疗行业变革的阻力,也要采取行动,将该技术的预期优势转化为患者的实际利益。据信,越来越多的体内研究证据令人充满希望,代表着慢性伤口治疗正朝着复杂的 3D 打印敷料方向积极转变。
{"title":"A comprehensive review of the application of 3D-bioprinting in chronic wound management.","authors":"Prathap Madeswara Guptha, Jovita Kanoujia, Ankita Kishore, Neha Raina, Abhishek Wahi, Piyush Kumar Gupta, Madhu Gupta","doi":"10.1080/17425247.2024.2355184","DOIUrl":"10.1080/17425247.2024.2355184","url":null,"abstract":"<p><strong>Introduction: </strong>Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.</p><p><strong>Areas covered: </strong>This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.</p><p><strong>Expert opinion: </strong>The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1573-1594"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-24DOI: 10.1080/17425247.2024.2379943
Ishwor Poudel, Nur Mita, R Jayachandra Babu
Introduction: 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined.
Areas covered: In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field.
Expert opinion: 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
{"title":"3D printed dosage forms, where are we headed?","authors":"Ishwor Poudel, Nur Mita, R Jayachandra Babu","doi":"10.1080/17425247.2024.2379943","DOIUrl":"10.1080/17425247.2024.2379943","url":null,"abstract":"<p><strong>Introduction: </strong>3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined.</p><p><strong>Areas covered: </strong>In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field.</p><p><strong>Expert opinion: </strong>3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1595-1614"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-03-30DOI: 10.1080/17425247.2024.2336492
Aikaterini Dedeloudi, Laura Martinez-Marcos, Thomas Quinten, Sune Andersen, Dimitrios A Lamprou
Background: Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery.
Research design and methods: Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week.
Results: Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC.
Conclusions: The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.
{"title":"Biopolymeric 3D printed implantable scaffolds as a potential adjuvant treatment for acute post-operative pain management.","authors":"Aikaterini Dedeloudi, Laura Martinez-Marcos, Thomas Quinten, Sune Andersen, Dimitrios A Lamprou","doi":"10.1080/17425247.2024.2336492","DOIUrl":"10.1080/17425247.2024.2336492","url":null,"abstract":"<p><strong>Background: </strong>Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery.</p><p><strong>Research design and methods: </strong>Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week.</p><p><strong>Results: </strong>Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC.</p><p><strong>Conclusions: </strong>The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1651-1663"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-09DOI: 10.1080/17425247.2024.2351928
Mershen Govender, Sunaina Indermun, Yahya E Choonara
Introduction: Three-Dimensional (3D) microneedles have recently gained significant attention due to their versatility, biocompatibility, enhanced permeation, and predictable behavior. The incorporation of biological agents into these 3D constructs has advanced the traditional microneedle into an effective platform for wide-ranging applications.
Areas covered: This review discusses the current state of microneedle fabrication as well as the developed 3D printed microneedles incorporating labile pharmaceutical agents and biological materials for potential biomedical applications. The mechanical and processing considerations for the preparation of microneedles and the barriers to effective 3D printing of microneedle constructs have additionally been reviewed along with their therapeutic applications and potential for tissue engineering and regenerative applications. Additionally, the regulatory considerations for microneedle approval have been discussed as well as the current clinical trial and patent landscapes.
Expert opinion: The fields of tissue engineering and regenerative medicine are evolving at a significant pace with researchers constantly focused on incorporating advanced manufacturing techniques for the development of versatile, complex, and biologically specific platforms. 3D bioprinted microneedles, fabricated using conventional 3D printing techniques, have resultantly provided an alternative to 2D bioscaffolds through the incorporation of biological materials within 3D constructs while providing further mechanical stability, increased bioactive permeation and improved innervation into surrounding tissues. This advancement therefore potentially allows for a more effective biomimetic construct with improved tissue-specific cellular growth for the enhanced treatment of physiological conditions requiring tissue regeneration and replacement.
{"title":"3D bioprinted microneedles: merging drug delivery and scaffold science for tissue-specific applications.","authors":"Mershen Govender, Sunaina Indermun, Yahya E Choonara","doi":"10.1080/17425247.2024.2351928","DOIUrl":"10.1080/17425247.2024.2351928","url":null,"abstract":"<p><strong>Introduction: </strong>Three-Dimensional (3D) microneedles have recently gained significant attention due to their versatility, biocompatibility, enhanced permeation, and predictable behavior. The incorporation of biological agents into these 3D constructs has advanced the traditional microneedle into an effective platform for wide-ranging applications.</p><p><strong>Areas covered: </strong>This review discusses the current state of microneedle fabrication as well as the developed 3D printed microneedles incorporating labile pharmaceutical agents and biological materials for potential biomedical applications. The mechanical and processing considerations for the preparation of microneedles and the barriers to effective 3D printing of microneedle constructs have additionally been reviewed along with their therapeutic applications and potential for tissue engineering and regenerative applications. Additionally, the regulatory considerations for microneedle approval have been discussed as well as the current clinical trial and patent landscapes.</p><p><strong>Expert opinion: </strong>The fields of tissue engineering and regenerative medicine are evolving at a significant pace with researchers constantly focused on incorporating advanced manufacturing techniques for the development of versatile, complex, and biologically specific platforms. 3D bioprinted microneedles, fabricated using conventional 3D printing techniques, have resultantly provided an alternative to 2D bioscaffolds through the incorporation of biological materials within 3D constructs while providing further mechanical stability, increased bioactive permeation and improved innervation into surrounding tissues. This advancement therefore potentially allows for a more effective biomimetic construct with improved tissue-specific cellular growth for the enhanced treatment of physiological conditions requiring tissue regeneration and replacement.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1559-1572"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data.
Area’s covered: This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices.
Expert opinion: Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
简介组织工程的挑战在于复制原生细胞外基质的复杂结构。最近,AM(特别是三维打印)技术的进步为精确定制支架、控制结构和生物活性等特性提供了前所未有的能力。计算机辅助设计(CAD)工具通过使用患者的特定数据促进设计,从而对此进行了补充:这篇综述介绍了增材制造(AM)和计算机辅助设计(CAD),它们是推进组织工程,尤其是软骨再生的关键工具。本文探讨了增材制造中使用的各种材料,重点关注聚合物和水凝胶在组织工程应用中的优势特性。文章讨论了将生物活性分子(包括生长因子)整合到支架中以促进组织再生的问题,同时还讨论了涉及不同细胞来源(如干细胞)的策略,以增强支架基质中的组织发育:专家观点:本综述强调了AM和CAD在解决软骨组织工程中骨软骨缺损和骨关节炎等特定挑战方面的应用。这篇综述整合了当前的研究成果,提供了专家对 AM 和 CAD 技术在推进组织工程,尤其是软骨再生方面不断发展的见解。
{"title":"3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering.","authors":"Babak Mikaeeli Kangarshahi, Seyed Morteza Naghib, Navid Rabiee","doi":"10.1080/17425247.2024.2409913","DOIUrl":"10.1080/17425247.2024.2409913","url":null,"abstract":"<p><strong>Introduction: </strong>The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data.</p><p><strong>Area’s covered: </strong>This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices.</p><p><strong>Expert opinion: </strong>Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1615-1636"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1080/17425247.2024.2422939
Minkyung Kim, Geonwoo Kang, Hye Su Min, Youjin Lee, Shinyoung Park, Hyungil Jung
Introduction: Dissolving microneedles (DMN) offer advantages in vaccine delivery, such as enhanced immunogenicity and simplified administration, by targeting immune-rich layers of the skin. However, these benefits require precise and consistent delivery, which poses practical challenges. To address this, specialized applicators are essential for ensuring the accurate deployment of DMNs, making this technology a viable alternative to traditional methods, particularly in low- and middle-income countries (LMICs), where healthcare infrastructure is limited.
Areas covered: In this review, we examine the advancements in DMN-based vaccination and applicator design, focusing on their joint effort. These innovations have improved the precision and efficiency of DMN vaccine delivery. Complex and costly early-stage applicators have evolved into simpler and more cost-effective designs. We highlight these developments in this review, with the latch applicator as a key example of a feature that enhances vaccine delivery.
Expert opinion: Although applicator development has advanced DMN-based vaccination toward practical use, challenges remain. Key areas for further optimization include user friendliness, cost, packaging volume, and wear time. Once optimized, DMN vaccination may become a highly effective and accessible tool for global immunization, supporting efforts to achieve worldwide vaccine equality.
{"title":"Evolution of microneedle applicators for vaccination: the role of the latch applicator in optimizing dissolving microneedle-based immunization.","authors":"Minkyung Kim, Geonwoo Kang, Hye Su Min, Youjin Lee, Shinyoung Park, Hyungil Jung","doi":"10.1080/17425247.2024.2422939","DOIUrl":"10.1080/17425247.2024.2422939","url":null,"abstract":"<p><strong>Introduction: </strong>Dissolving microneedles (DMN) offer advantages in vaccine delivery, such as enhanced immunogenicity and simplified administration, by targeting immune-rich layers of the skin. However, these benefits require precise and consistent delivery, which poses practical challenges. To address this, specialized applicators are essential for ensuring the accurate deployment of DMNs, making this technology a viable alternative to traditional methods, particularly in low- and middle-income countries (LMICs), where healthcare infrastructure is limited.</p><p><strong>Areas covered: </strong>In this review, we examine the advancements in DMN-based vaccination and applicator design, focusing on their joint effort. These innovations have improved the precision and efficiency of DMN vaccine delivery. Complex and costly early-stage applicators have evolved into simpler and more cost-effective designs. We highlight these developments in this review, with the latch applicator as a key example of a feature that enhances vaccine delivery.</p><p><strong>Expert opinion: </strong>Although applicator development has advanced DMN-based vaccination toward practical use, challenges remain. Key areas for further optimization include user friendliness, cost, packaging volume, and wear time. Once optimized, DMN vaccination may become a highly effective and accessible tool for global immunization, supporting efforts to achieve worldwide vaccine equality.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1080/17425247.2024.2421402
Gabriel Davi Marena, Alba Ruiz-Gaitán, Taís Maria Bauab, Marlus Chorilli
Introduction: Fungal infections, particularly those caused by Candida spp. have increased in recent years. A primary contributor to this surge was the COVID-19 pandemic, where many hospitalized patients had secondary fungal infections. Additionally, the emergence of resistant and multi-resistant fungal strains has become increasingly problematic due to the limited therapeutic options available in antifungal treatments.
Areas covered: This review presents a comprehensive analysis of recent studies focused on the development and characterization of lipid-based nanosystems as an emerging and promising therapeutic alternative. These systems have been evaluated for their potential to deliver antifungal agents specifically targeting resistant Candida spp. strains, offering a controlled and sustained release of drugs.
Expert opinion: Lipid-based nanomaterials are promising tools for the controlled and sustained release of drugs, particularly in treating Candida spp. infections. Although substantial research has been dedicated to development of these nanomaterials, only a few have reached clinical application, such as liposomal amphotericin B, for example. Therefore, it is critical to push forward with advancements to bring these nanomedicines into clinical practice, where they can contribute meaningfully to mitigating the challenge of resistant and lethal fungal strains.
{"title":"Improving antifungal lipid-based drug delivery against <i>Candida</i>: a review.","authors":"Gabriel Davi Marena, Alba Ruiz-Gaitán, Taís Maria Bauab, Marlus Chorilli","doi":"10.1080/17425247.2024.2421402","DOIUrl":"10.1080/17425247.2024.2421402","url":null,"abstract":"<p><strong>Introduction: </strong>Fungal infections, particularly those caused by <i>Candida</i> spp. have increased in recent years. A primary contributor to this surge was the COVID-19 pandemic, where many hospitalized patients had secondary fungal infections. Additionally, the emergence of resistant and multi-resistant fungal strains has become increasingly problematic due to the limited therapeutic options available in antifungal treatments.</p><p><strong>Areas covered: </strong>This review presents a comprehensive analysis of recent studies focused on the development and characterization of lipid-based nanosystems as an emerging and promising therapeutic alternative. These systems have been evaluated for their potential to deliver antifungal agents specifically targeting resistant <i>Candida</i> spp. strains, offering a controlled and sustained release of drugs.</p><p><strong>Expert opinion: </strong>Lipid-based nanomaterials are promising tools for the controlled and sustained release of drugs, particularly in treating <i>Candida</i> spp. infections. Although substantial research has been dedicated to development of these nanomaterials, only a few have reached clinical application, such as liposomal amphotericin B, for example. Therefore, it is critical to push forward with advancements to bring these nanomedicines into clinical practice, where they can contribute meaningfully to mitigating the challenge of resistant and lethal fungal strains.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-27DOI: 10.1080/17425247.2024.2420750
Velmurugan Kailasam, Samhita Sai Veda Koduganti, Oindrilla Dasgupta, Prashant Garg, Jayabalan Nirmal
Introduction: Amphotericin B is a polyene antibiotic that is used as an off-label eye drop to treat fungal keratitis. Poor solubility, permeability and high susceptibility to hydrolytic degradation make it challenging to formulate a drug delivery system. Despite its drawbacks, it is a potent antifungal drug against Candida and other fungal species. However, it has not been explored much in ocular drug delivery. Hence, this review brings into focus the potential and increasing significance of Amphotericin B in ocular drug delivery.
Areas covered: In this review, we have systematically summarized the use of Amphotericin B in ocular diseases, the various formulation challenges for Amphotericin B, along with its off-label ocular usage, and stability concerns. The degradation mechanism of Amphotericin B in different conditions was discussed in this article as well.
Expert opinion: In the last few decades, several nanocarriers have been explored to improve the formulation challenges associated with Amphotericin B. Also, due to insufficient clinical studies and unknown toxicity profile, there is no US Food and Drug Administration (FDA) approved Amphotericin B formulation for ocular drug delivery. This review aims to offer thorough information about Amphotericin B in ocular drug delivery.
简介两性霉素 B 是一种多烯类抗生素,被用作治疗真菌性角膜炎的非处方眼药水。两性霉素 B 溶解性、渗透性差,极易水解降解,因此配制给药系统具有挑战性。尽管存在这些缺点,但它仍是一种有效的抗真菌药物,可用于治疗念珠菌和其他真菌。然而,在眼部给药方面,对它的研究还不多。因此,本综述聚焦两性霉素 B 在眼部给药方面的潜力和日益重要的意义:在这篇综述中,我们系统地总结了两性霉素 B 在眼部疾病中的应用、两性霉素 B 的各种制剂挑战、标示外眼部用药以及稳定性问题。本文还讨论了两性霉素 B 在不同条件下的降解机制:在过去的几十年里,人们探索了多种纳米载体,以改善两性霉素 B 的制剂难题。此外,由于临床研究不足和毒性情况不明,美国食品和药物管理局(FDA)尚未批准用于眼部给药的两性霉素 B 制剂。本综述旨在提供有关两性霉素 B 用于眼部给药的全面信息。
{"title":"Ocular delivery of Amphotericin B: current challenges and future perspectives.","authors":"Velmurugan Kailasam, Samhita Sai Veda Koduganti, Oindrilla Dasgupta, Prashant Garg, Jayabalan Nirmal","doi":"10.1080/17425247.2024.2420750","DOIUrl":"10.1080/17425247.2024.2420750","url":null,"abstract":"<p><strong>Introduction: </strong>Amphotericin B is a polyene antibiotic that is used as an off-label eye drop to treat fungal keratitis. Poor solubility, permeability and high susceptibility to hydrolytic degradation make it challenging to formulate a drug delivery system. Despite its drawbacks, it is a potent antifungal drug against Candida and other fungal species. However, it has not been explored much in ocular drug delivery. Hence, this review brings into focus the potential and increasing significance of Amphotericin B in ocular drug delivery.</p><p><strong>Areas covered: </strong>In this review, we have systematically summarized the use of Amphotericin B in ocular diseases, the various formulation challenges for Amphotericin B, along with its off-label ocular usage, and stability concerns. The degradation mechanism of Amphotericin B in different conditions was discussed in this article as well.</p><p><strong>Expert opinion: </strong>In the last few decades, several nanocarriers have been explored to improve the formulation challenges associated with Amphotericin B. Also, due to insufficient clinical studies and unknown toxicity profile, there is no US Food and Drug Administration (FDA) approved Amphotericin B formulation for ocular drug delivery. This review aims to offer thorough information about Amphotericin B in ocular drug delivery.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1080/17425247.2024.2416511
Pjotr Tinke, Wendy van Beurden, Martijn Goosens, Job van der Palen
Background: The effectiveness of inhaled medications in asthma and COPD is significantly impacted by inhalation errors. Feedback mechanisms, built into the design of the inhaler might reduce the number of critical errors. This study compares critical errors, preferences, and ease of use of two dry powder inhalers, the Nexthaler, and the Turbuhaler.
Research design and methods: In this multi-center, prospective, randomized, open-label, cross-over study, the proportions of asthma and COPD patients making critical errors were compared between the Nexthaler and Turbuhaler after 4 weeks of clinical use, after having been trained for the correct use of both inhalers.
Results: Ninety and 49 patients with asthma and COPD, respectively, were assessed. No significant difference was found in the number of critical errors between the two inhalers (3 with Nexthaler and 5 with Turbuhaler). However, more patients preferred the Nexthaler (57.6%) over the Turbuhaler (34.5%) (p = 0.006), while 7.9% stated no preference.
Conclusions: The study found no significant differences in critical error rate between the Nexthaler and Turbuhaler but the Nexthaler was preferred over the Turbuhaler. This study highlights the importance of dedicating sufficient time to instructing patients on the correct inhalation technique, which can lead to long-term retention of the inhalation technique.
{"title":"A randomized crossover study assessing critical errors, preferences, and ease of use of two multidose powder inhalers.","authors":"Pjotr Tinke, Wendy van Beurden, Martijn Goosens, Job van der Palen","doi":"10.1080/17425247.2024.2416511","DOIUrl":"https://doi.org/10.1080/17425247.2024.2416511","url":null,"abstract":"<p><strong>Background: </strong>The effectiveness of inhaled medications in asthma and COPD is significantly impacted by inhalation errors. Feedback mechanisms, built into the design of the inhaler might reduce the number of critical errors. This study compares critical errors, preferences, and ease of use of two dry powder inhalers, the Nexthaler, and the Turbuhaler.</p><p><strong>Research design and methods: </strong>In this multi-center, prospective, randomized, open-label, cross-over study, the proportions of asthma and COPD patients making critical errors were compared between the Nexthaler and Turbuhaler after 4 weeks of clinical use, after having been trained for the correct use of both inhalers.</p><p><strong>Results: </strong>Ninety and 49 patients with asthma and COPD, respectively, were assessed. No significant difference was found in the number of critical errors between the two inhalers (3 with Nexthaler and 5 with Turbuhaler). However, more patients preferred the Nexthaler (57.6%) over the Turbuhaler (34.5%) (<i>p</i> = 0.006), while 7.9% stated no preference.</p><p><strong>Conclusions: </strong>The study found no significant differences in critical error rate between the Nexthaler and Turbuhaler but the Nexthaler was preferred over the Turbuhaler. This study highlights the importance of dedicating sufficient time to instructing patients on the correct inhalation technique, which can lead to long-term retention of the inhalation technique.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1080/17425247.2024.2419446
Derya İlem-Özdemir, Ralph Santos-Oliveira
{"title":"Can radiopharmaceuticals be delivered by quantum dots?","authors":"Derya İlem-Özdemir, Ralph Santos-Oliveira","doi":"10.1080/17425247.2024.2419446","DOIUrl":"https://doi.org/10.1080/17425247.2024.2419446","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}