Post-translational modifications (PTMs) have key roles in extending the functional diversity of proteins and, as a result, regulating diverse cellular processes in prokaryotic and eukaryotic organisms. Phosphorylation modification is a vital PTM that occurs in most proteins and plays a significant role in many biological processes. Disorders in the phosphorylation process lead to multiple diseases, including neurological disorders and cancers. The purpose of this review is to organize this body of knowledge associated with phosphorylation site (p-site) prediction to facilitate future research in this field. At first, we comprehensively review all related databases and introduce all steps regarding dataset creation, data preprocessing, and method evaluation in p-site prediction. Next, we investigate p-site prediction methods, which are divided into two computational groups: algorithmic and machine learning (ML). Additionally, it is shown that there are basically two main approaches for p-site prediction by ML: conventional and end-to-end deep learning methods, both of which are given an overview. Moreover, this review introduces the most important feature extraction techniques, which have mostly been used in p-site prediction. Finally, we create three test sets from new proteins related to the released version of the database of protein post-translational modifications (dbPTM) in 2022 based on general and human species. Evaluating online p-site prediction tools on newly added proteins introduced in the dbPTM 2022 release, distinct from those in the dbPTM 2019 release, reveals their limitations. In other words, the actual performance of these online p-site prediction tools on unseen proteins is notably lower than the results reported in their respective research papers.
{"title":"A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction.","authors":"Farzaneh Esmaili, Mahdi Pourmirzaei, Shahin Ramazi, Seyedehsamaneh Shojaeilangari, Elham Yavari","doi":"10.1016/j.gpb.2023.03.007","DOIUrl":"10.1016/j.gpb.2023.03.007","url":null,"abstract":"<p><p>Post-translational modifications (PTMs) have key roles in extending the functional diversity of proteins and, as a result, regulating diverse cellular processes in prokaryotic and eukaryotic organisms. Phosphorylation modification is a vital PTM that occurs in most proteins and plays a significant role in many biological processes. Disorders in the phosphorylation process lead to multiple diseases, including neurological disorders and cancers. The purpose of this review is to organize this body of knowledge associated with phosphorylation site (p-site) prediction to facilitate future research in this field. At first, we comprehensively review all related databases and introduce all steps regarding dataset creation, data preprocessing, and method evaluation in p-site prediction. Next, we investigate p-site prediction methods, which are divided into two computational groups: algorithmic and machine learning (ML). Additionally, it is shown that there are basically two main approaches for p-site prediction by ML: conventional and end-to-end deep learning methods, both of which are given an overview. Moreover, this review introduces the most important feature extraction techniques, which have mostly been used in p-site prediction. Finally, we create three test sets from new proteins related to the released version of the database of protein post-translational modifications (dbPTM) in 2022 based on general and human species. Evaluating online p-site prediction tools on newly added proteins introduced in the dbPTM 2022 release, distinct from those in the dbPTM 2019 release, reveals their limitations. In other words, the actual performance of these online p-site prediction tools on unseen proteins is notably lower than the results reported in their respective research papers.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"1266-1285"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A fundamental principle of biology is that proteins tend to form complexes to play important roles in the core functions of cells. For a complete understanding of human cellular functions, it is crucial to have a comprehensive atlas of human protein complexes. Unfortunately, we still lack such a comprehensive atlas of experimentally validated protein complexes, which prevents us from gaining a complete understanding of the compositions and functions of human protein complexes, as well as the underlying biological mechanisms. To fill this gap, we built Human Protein Complexes Atlas (HPC-Atlas), as far as we know, the most accurate and comprehensive atlas of human protein complexes available to date. We integrated two latest protein interaction networks, and developed a novel computational method to identify nearly 9000 protein complexes, including many previously uncharacterized complexes. Compared with the existing methods, our method achieved outstanding performance on both testing and independent datasets. Furthermore, with HPC-Atlas we identified 751 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-affected human protein complexes, and 456 multifunctional proteins that contain many potential moonlighting proteins. These results suggest that HPC-Atlas can serve as not only a computing framework to effectively identify biologically meaningful protein complexes by integrating multiple protein data sources, but also a valuable resource for exploring new biological findings. The HPC-Atlas webserver is freely available at http://www.yulpan.top/HPC-Atlas.
{"title":"HPC-Atlas: Computationally Constructing A Comprehensive Atlas of Human Protein Complexes.","authors":"Yuliang Pan, Ruiyi Li, Wengen Li, Liuzhenghao Lv, Jihong Guan, Shuigeng Zhou","doi":"10.1016/j.gpb.2023.05.001","DOIUrl":"10.1016/j.gpb.2023.05.001","url":null,"abstract":"<p><p>A fundamental principle of biology is that proteins tend to form complexes to play important roles in the core functions of cells. For a complete understanding of human cellular functions, it is crucial to have a comprehensive atlas of human protein complexes. Unfortunately, we still lack such a comprehensive atlas of experimentally validated protein complexes, which prevents us from gaining a complete understanding of the compositions and functions of human protein complexes, as well as the underlying biological mechanisms. To fill this gap, we built Human Protein Complexes Atlas (HPC-Atlas), as far as we know, the most accurate and comprehensive atlas of human protein complexes available to date. We integrated two latest protein interaction networks, and developed a novel computational method to identify nearly 9000 protein complexes, including many previously uncharacterized complexes. Compared with the existing methods, our method achieved outstanding performance on both testing and independent datasets. Furthermore, with HPC-Atlas we identified 751 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-affected human protein complexes, and 456 multifunctional proteins that contain many potential moonlighting proteins. These results suggest that HPC-Atlas can serve as not only a computing framework to effectively identify biologically meaningful protein complexes by integrating multiple protein data sources, but also a valuable resource for exploring new biological findings. The HPC-Atlas webserver is freely available at http://www.yulpan.top/HPC-Atlas.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"976-990"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41124619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the development of artificial intelligence (AI) technologies, biomedical imaging data play an important role in scientific research and clinical application, but the available resources are limited. Here we present Open Biomedical Imaging Archive (OBIA), a repository for archiving biomedical imaging and related clinical data. OBIA adopts five data objects (Collection, Individual, Study, Series, and Image) for data organization, and accepts the submission of biomedical images of multiple modalities, organs, and diseases. In order to protect personal privacy, OBIA has formulated a unified de-identification and quality control process. In addition, OBIA provides friendly and intuitive web interfaces for data submission, browsing, and retrieval, as well as image retrieval. As of September 2023, OBIA has housed data for a total of 937 individuals, 4136 studies, 24,701 series, and 1,938,309 images covering 9 modalities and 30 anatomical sites. Collectively, OBIA provides a reliable platform for biomedical imaging data management and offers free open access to all publicly available data to support research activities throughout the world. OBIA can be accessed at https://ngdc.cncb.ac.cn/obia.
{"title":"OBIA: An Open Biomedical Imaging Archive.","authors":"Enhui Jin, Dongli Zhao, Gangao Wu, Junwei Zhu, Zhonghuang Wang, Zhiyao Wei, Sisi Zhang, Anke Wang, Bixia Tang, Xu Chen, Yanling Sun, Zhe Zhang, Wenming Zhao, Yuanguang Meng","doi":"10.1016/j.gpb.2023.09.003","DOIUrl":"10.1016/j.gpb.2023.09.003","url":null,"abstract":"<p><p>With the development of artificial intelligence (AI) technologies, biomedical imaging data play an important role in scientific research and clinical application, but the available resources are limited. Here we present Open Biomedical Imaging Archive (OBIA), a repository for archiving biomedical imaging and related clinical data. OBIA adopts five data objects (Collection, Individual, Study, Series, and Image) for data organization, and accepts the submission of biomedical images of multiple modalities, organs, and diseases. In order to protect personal privacy, OBIA has formulated a unified de-identification and quality control process. In addition, OBIA provides friendly and intuitive web interfaces for data submission, browsing, and retrieval, as well as image retrieval. As of September 2023, OBIA has housed data for a total of 937 individuals, 4136 studies, 24,701 series, and 1,938,309 images covering 9 modalities and 30 anatomical sites. Collectively, OBIA provides a reliable platform for biomedical imaging data management and offers free open access to all publicly available data to support research activities throughout the world. OBIA can be accessed at https://ngdc.cncb.ac.cn/obia.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"1059-1065"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-10-12DOI: 10.1016/j.gpb.2023.10.001
Yiming Bao, Yongbiao Xue
{"title":"From BIG Data Center to China National Center for Bioinformation.","authors":"Yiming Bao, Yongbiao Xue","doi":"10.1016/j.gpb.2023.10.001","DOIUrl":"10.1016/j.gpb.2023.10.001","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"900-903"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.gpb.2023.10.005
Zhang Zhang, Songnian Hu, Jun Yu
Twenty years after the completion and forty years after the proposal of the Human Genome Project (HGP), genomics, together with its twin field – bioinformatics, has entered a new paradigm, where its bioscience-related, discipline-centric applications have been creating many new research frontiers. Beijing Institute of Genomics (BIG) and now also known as China National Center for Bioinformation (CNCB), will play key roles in supporting and participating in these frontier research activities. On the 20th anniversary of the establishment of BIG, we provide a brief retrospective of its historic events and ascertain strategic research directions with a broader vision for future genomics, where digital genome, digital medicine, and digital health are so structured to meet the needs of human life and healthcare, as well as their related metaverses.
{"title":"Toward A New Paradigm of Genomics Research","authors":"Zhang Zhang, Songnian Hu, Jun Yu","doi":"10.1016/j.gpb.2023.10.005","DOIUrl":"https://doi.org/10.1016/j.gpb.2023.10.005","url":null,"abstract":"Twenty years after the completion and forty years after the proposal of the Human Genome Project (HGP), genomics, together with its twin field – bioinformatics, has entered a new paradigm, where its bioscience-related, discipline-centric applications have been creating many new research frontiers. Beijing Institute of Genomics (BIG) and now also known as China National Center for Bioinformation (CNCB), will play key roles in supporting and participating in these frontier research activities. On the 20th anniversary of the establishment of BIG, we provide a brief retrospective of its historic events and ascertain strategic research directions with a broader vision for future genomics, where digital genome, digital medicine, and digital health are so structured to meet the needs of human life and healthcare, as well as their related metaverses.","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136128324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-20DOI: 10.1016/j.gpb.2023.06.003
Qiang Shi, Xueyan Chen, Zemin Zhang
Over the past decade, advances in single-cell omics (SCO) technologies have enabled the investigation of cellular heterogeneity at an unprecedented resolution and scale, opening a new avenue for understanding human biology and disease. In this review, we summarize the developments of sequencing-based SCO technologies and computational methods, and focus on considerable insights acquired from SCO sequencing studies to understand normal and diseased properties, with a particular emphasis on cancer research. We also discuss the technological improvements of SCO and its possible contribution to fundamental research of the human, as well as its great potential in clinical diagnoses and personalized therapies of human disease.
{"title":"Decoding Human Biology and Disease Using Single-cell Omics Technologies.","authors":"Qiang Shi, Xueyan Chen, Zemin Zhang","doi":"10.1016/j.gpb.2023.06.003","DOIUrl":"10.1016/j.gpb.2023.06.003","url":null,"abstract":"<p><p>Over the past decade, advances in single-cell omics (SCO) technologies have enabled the investigation of cellular heterogeneity at an unprecedented resolution and scale, opening a new avenue for understanding human biology and disease. In this review, we summarize the developments of sequencing-based SCO technologies and computational methods, and focus on considerable insights acquired from SCO sequencing studies to understand normal and diseased properties, with a particular emphasis on cancer research. We also discuss the technological improvements of SCO and its possible contribution to fundamental research of the human, as well as its great potential in clinical diagnoses and personalized therapies of human disease.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"926-949"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.
{"title":"RCoV19: A One-stop Hub for SARS-CoV-2 Genome Data Integration, Variant Monitoring, and Risk Pre-warning.","authors":"Cuiping Li, Lina Ma, Dong Zou, Rongqin Zhang, Xue Bai, Lun Li, Gangao Wu, Tianhao Huang, Wei Zhao, Enhui Jin, Yiming Bao, Shuhui Song","doi":"10.1016/j.gpb.2023.10.004","DOIUrl":"10.1016/j.gpb.2023.10.004","url":null,"abstract":"<p><p>The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"1066-1079"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66784787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-22DOI: 10.1016/j.gpb.2023.03.006
Jennifer A Karlow, Erica C Pehrsson, Xiaoyun Xing, Mark Watson, Siddhartha Devarakonda, Ramaswamy Govindan, Ting Wang
Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.
{"title":"Non-small Cell Lung Cancer Epigenomes Exhibit Altered DNA Methylation in Smokers and Never-smokers.","authors":"Jennifer A Karlow, Erica C Pehrsson, Xiaoyun Xing, Mark Watson, Siddhartha Devarakonda, Ramaswamy Govindan, Ting Wang","doi":"10.1016/j.gpb.2023.03.006","DOIUrl":"10.1016/j.gpb.2023.03.006","url":null,"abstract":"<p><p>Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"991-1013"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-10-24DOI: 10.1016/j.gpb.2023.10.003
Jun Yu
{"title":"Toward Inclusiveness and Thoroughness: A Paradigm Shift from More-ever-omics to Holovivology.","authors":"Jun Yu","doi":"10.1016/j.gpb.2023.10.003","DOIUrl":"10.1016/j.gpb.2023.10.003","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"895-896"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-11-03DOI: 10.1016/j.gpb.2023.10.006
Runsheng Chen
{"title":"A Historic Retrospective on the Early Bioinformatics Research in China.","authors":"Runsheng Chen","doi":"10.1016/j.gpb.2023.10.006","DOIUrl":"10.1016/j.gpb.2023.10.006","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":"897-899"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}