首页 > 最新文献

Genomics, proteomics & bioinformatics最新文献

英文 中文
Reprogramming of RNA m6A Modification Is Required for Acute Myeloid Leukemia Development. 急性髓性白血病的发展需要对 RNA m6A 修饰进行重编程。
Pub Date : 2024-06-24 DOI: 10.1093/gpbjnl/qzae049
Weidong Liu, Yuhua Wang, Shuxin Yao, Guoqiang Han, Jin Hu, Rong Yin, Fuling Zhou, Ying Cheng, Haojian Zhang

Hematopoietic homeostasis is maintained by hematopoietic stem cells (HSCs), and it is tightly controlled at multiple levels to sustain the self-renewal capacity and differentiation potential of HSCs. Dysregulation of self-renewal and differentiation of HSCs leads to the development of hematologic diseases, including acute myeloid leukemia (AML). Thus, understanding the underlying mechanisms of HSC maintenance and the development of hematologic malignancies is one of the fundamental scientific endeavors in stem cell biology. N  6-methyladenosine (m6A) is a common modification in mammalian messenger RNAs (mRNAs) and plays important roles in various biological processes. In this study, we performed a comparative analysis of the dynamics of the RNA m6A methylome of hematopoietic stem and progenitor cells (HSPCs) and leukemia-initiating cells (LICs) in AML. We found that RNA m6A modification regulates the transformation of long-term HSCs into short-term HSCs and determines the lineage commitment of HSCs. Interestingly, m6A modification leads to reprogramming that promotes cellular transformation during AML development, and LIC-specific m6A targets are recognized by different m6A readers. Moreover, the very long chain fatty acid transporter ATP-binding cassette subfamily D member 2 (ABCD2) is a key factor that promotes AML development, and deletion of ABCD2 damages clonogenic ability, inhibits proliferation, and promotes apoptosis of human leukemia cells. This study provides a comprehensive understanding of the role of m6A in regulating cell state transition in normal hematopoiesis and leukemogenesis, and identifies ABCD2 as a key factor in AML development.

造血稳态由造血干细胞(HSCs)维持,它受到多层次的严格控制,以维持造血干细胞的自我更新能力和分化潜能。造血干细胞自我更新和分化失调会导致血液病的发生,包括急性髓性白血病(AML)。因此,了解造血干细胞维持和血液恶性肿瘤发展的内在机制是干细胞生物学的基础科学研究之一。N 6-甲基腺苷(m6A)是哺乳动物信使核糖核酸(mRNA)中的一种常见修饰,在各种生物过程中发挥着重要作用。在这项研究中,我们对急性髓细胞性白血病中造血干细胞和祖细胞(HSPCs)以及白血病启动细胞(LICs)的RNA m6A甲基组的动态进行了比较分析。我们发现,RNA m6A修饰调控长期造血干细胞向短期造血干细胞的转化,并决定造血干细胞的系承。有趣的是,m6A修饰会导致重编程,从而促进急性髓细胞性白血病发育过程中的细胞转化,而LIC特异性m6A靶点会被不同的m6A阅读器识别。此外,超长链脂肪酸转运体 ATP 结合盒 D 亚家族成员 2(ABCD2)是促进急性髓细胞性白血病发展的关键因素,缺失 ABCD2 会损害人类白血病细胞的克隆生成能力、抑制增殖并促进凋亡。这项研究全面了解了 m6A 在正常造血和白血病发生过程中调控细胞状态转变的作用,并发现 ABCD2 是急性髓细胞性白血病发生的关键因素。
{"title":"Reprogramming of RNA m6A Modification Is Required for Acute Myeloid Leukemia Development.","authors":"Weidong Liu, Yuhua Wang, Shuxin Yao, Guoqiang Han, Jin Hu, Rong Yin, Fuling Zhou, Ying Cheng, Haojian Zhang","doi":"10.1093/gpbjnl/qzae049","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae049","url":null,"abstract":"<p><p>Hematopoietic homeostasis is maintained by hematopoietic stem cells (HSCs), and it is tightly controlled at multiple levels to sustain the self-renewal capacity and differentiation potential of HSCs. Dysregulation of self-renewal and differentiation of HSCs leads to the development of hematologic diseases, including acute myeloid leukemia (AML). Thus, understanding the underlying mechanisms of HSC maintenance and the development of hematologic malignancies is one of the fundamental scientific endeavors in stem cell biology. N  6-methyladenosine (m6A) is a common modification in mammalian messenger RNAs (mRNAs) and plays important roles in various biological processes. In this study, we performed a comparative analysis of the dynamics of the RNA m6A methylome of hematopoietic stem and progenitor cells (HSPCs) and leukemia-initiating cells (LICs) in AML. We found that RNA m6A modification regulates the transformation of long-term HSCs into short-term HSCs and determines the lineage commitment of HSCs. Interestingly, m6A modification leads to reprogramming that promotes cellular transformation during AML development, and LIC-specific m6A targets are recognized by different m6A readers. Moreover, the very long chain fatty acid transporter ATP-binding cassette subfamily D member 2 (ABCD2) is a key factor that promotes AML development, and deletion of ABCD2 damages clonogenic ability, inhibits proliferation, and promotes apoptosis of human leukemia cells. This study provides a comprehensive understanding of the role of m6A in regulating cell state transition in normal hematopoiesis and leukemogenesis, and identifies ABCD2 as a key factor in AML development.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bioinformatic Applications of Hi-C and Linked Reads. Hi-C 和关联读数的生物信息学应用
Pub Date : 2024-06-21 DOI: 10.1093/gpbjnl/qzae048
Libo Jiang, Michael A Quail, Jack Fraser-Govi, Haipeng Wang, Xuequn Shi, Karen Oliver, Esther Mellado Gomez, Fengtang Yang, Zemin Ning

Long-range sequencing grants insight into additional genetic information beyond that which can be accessed by both short reads and modern long-read technology. Several new sequencing technologies are available for long-range datasets such as "Hi-C" and "Linked Reads" with high-throughput and high-resolution genome analysis, and are rapidly advancing the field of genome assembly, genome scaffolding, and more comprehensive variant identification. In this article, we focused on five major long-range sequencing technologies: high-throughput chromosome conformation capture (Hi-C), 10x Genomics Linked Reads, haplotagging, transposase enzyme linked long-read sequencing (TELL-seq), and single tube long fragment read (stLFR). We detailed the mechanisms and data products of the five platforms, introduced several of the most important applications, evaluated the quality of sequencing data from different platforms, and discussed the currently available bioinformatics tools. We hope this work will benefit the selection of appropriate long-range technology for specific biological studies.

长程测序可以深入了解短读数和现代长读数技术无法获取的额外遗传信息。目前有几种新的测序技术可用于长程数据集,如 "Hi-C "和 "链接读数",具有高通量和高分辨率的基因组分析能力,正在快速推动基因组组装、基因组支架和更全面的变异鉴定领域的发展。在这篇文章中,我们重点介绍了五种主要的长程测序技术:高通量染色体构象捕获(Hi-C)、10倍基因组学关联读数(10x Genomics Linked Reads)、单体标记(haplotagging)、转座酶酶联长读数测序(TELL-seq)和单管长片段读数(stLFR)。我们详细介绍了这五种平台的机制和数据产品,介绍了几种最重要的应用,评估了不同平台的测序数据质量,并讨论了目前可用的生物信息学工具。我们希望这项工作有助于为特定的生物学研究选择合适的长程技术。
{"title":"The Bioinformatic Applications of Hi-C and Linked Reads.","authors":"Libo Jiang, Michael A Quail, Jack Fraser-Govi, Haipeng Wang, Xuequn Shi, Karen Oliver, Esther Mellado Gomez, Fengtang Yang, Zemin Ning","doi":"10.1093/gpbjnl/qzae048","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae048","url":null,"abstract":"<p><p>Long-range sequencing grants insight into additional genetic information beyond that which can be accessed by both short reads and modern long-read technology. Several new sequencing technologies are available for long-range datasets such as \"Hi-C\" and \"Linked Reads\" with high-throughput and high-resolution genome analysis, and are rapidly advancing the field of genome assembly, genome scaffolding, and more comprehensive variant identification. In this article, we focused on five major long-range sequencing technologies: high-throughput chromosome conformation capture (Hi-C), 10x Genomics Linked Reads, haplotagging, transposase enzyme linked long-read sequencing (TELL-seq), and single tube long fragment read (stLFR). We detailed the mechanisms and data products of the five platforms, introduced several of the most important applications, evaluated the quality of sequencing data from different platforms, and discussed the currently available bioinformatics tools. We hope this work will benefit the selection of appropriate long-range technology for specific biological studies.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Amplicon Sequencing Reveals Culture Selection of Mycobacterium Tuberculosis by Clinical Samples. 深度扩增子测序揭示了临床样本对结核分枝杆菌培养的选择。
Pub Date : 2024-06-13 DOI: 10.1093/gpbjnl/qzae046
Jiuxin Qu, Wanfei Liu, Shuyan Chen, Chi Wu, Wenjie Lai, Rui Qin, Feidi Ye, Yuanchun Li, Liang Fu, Guofang Deng, Lei Liu, Qiang Lin, Peng Cui

The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clone/subclone selection. We developed a targeted deep amplification sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations associated with 20 anti-tuberculosis drugs with an initial amount of 4 pg DNA and reduced clinical testing time from 20 days to two days. A prospective study was conducted using 115 clinical specimens mainly with Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay positive to evaluate drug-resistant mutation detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS showed better sensitivity (93.03% vs. 92.16%), specificity (96.10% vs. 95.02%), and accuracy (91.33% vs. 90.62%) than Mykrobe software using WGS. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancy in Mycobacterium tuberculosis before and after culture.

常用的药敏试验(DST)依赖于细菌培养,面临着周转时间长和克隆/亚克隆选择等缺点。我们开发了一种直接应用于临床标本的靶向深度扩增测序(DAS)方法。在这一 DAS 面板中,我们检测了与 20 种抗结核药物相关的 941 个耐药突变,初始 DNA 量为 4 pg,并将临床检测时间从 20 天缩短至两天。一项前瞻性研究使用了 115 份临床标本,主要是 Xpert® 结核分枝杆菌/利福平(Xpert MTB/RIF)检测呈阳性的标本,以评估耐药突变的检测情况。DAS在无培养标本上进行,而依赖培养的分离株则用于表型DST、DAS和全基因组测序(WGS)。在硅分子 DST 方面,我们基于 DAS 面板得出的结果与已发表的三篇基于 WGS 的报告具有相似的准确性。对于 82 个分离物,应用 DAS 的灵敏度(93.03% 对 92.16%)、特异性(96.10% 对 95.02%)和准确性(91.33% 对 90.62%)均优于使用 WGS 的 Mykrobe 软件。与依赖培养基的 WGS 相比,无培养基 DAS 能提供群体水平上序列变异的全貌,详细展示细菌培养引起的增减变异。我们的研究系统地验证了 DAS 在临床应用中的优势,并全面说明了培养前后结核分枝杆菌的差异。
{"title":"Deep Amplicon Sequencing Reveals Culture Selection of Mycobacterium Tuberculosis by Clinical Samples.","authors":"Jiuxin Qu, Wanfei Liu, Shuyan Chen, Chi Wu, Wenjie Lai, Rui Qin, Feidi Ye, Yuanchun Li, Liang Fu, Guofang Deng, Lei Liu, Qiang Lin, Peng Cui","doi":"10.1093/gpbjnl/qzae046","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae046","url":null,"abstract":"<p><p>The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clone/subclone selection. We developed a targeted deep amplification sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations associated with 20 anti-tuberculosis drugs with an initial amount of 4 pg DNA and reduced clinical testing time from 20 days to two days. A prospective study was conducted using 115 clinical specimens mainly with Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay positive to evaluate drug-resistant mutation detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS showed better sensitivity (93.03% vs. 92.16%), specificity (96.10% vs. 95.02%), and accuracy (91.33% vs. 90.62%) than Mykrobe software using WGS. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancy in Mycobacterium tuberculosis before and after culture.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CBioProfiler: A Web and Standalone Pipeline for Cancer Biomarker and Subtype Characterization. CBioProfiler:用于癌症生物标记物和亚型特征描述的网络和独立管道。
Pub Date : 2024-06-12 DOI: 10.1093/gpbjnl/qzae045
Xiaoping Liu, Zisong Wang, Hongjie Shi, Sheng Li, Xinghuan Wang

Cancer is a leading cause of death worldwide, and the identification of biomarkers and subtypes that can predict the long-term survival of cancer patients is essential for their risk stratification, treatment, and prognosis. However, there are currently no standardized tools for exploring cancer biomarkers or subtypes. In this study, we introduced Cancer Biomarker and Subtype Profiler (CBioProfiler), a web server and standalone application that includes two pipelines for analyzing cancer biomarkers and subtypes. The cancer biomarker pipeline consists of five modules for identifying and annotating cancer survival-related biomarkers using multiple survival-related machine learning algorithms. The cancer subtype pipeline includes three modules for data preprocessing, subtype identification using multiple unsupervised machine learning methods, as well as subtype evaluation and validation. CBioProfiler also includes CuratedCancerPrognosisData, a novel R package that integrates reviewed and curated gene expression and clinical data from 268 studies. These studies cover 43 common blood and solid tumors and draw upon 47,686 clinical samples. The web server is available at https://www.cbioprofiler.com/ and https://cbioprofiler.znhospital.cn/CBioProfiler/, and the standalone app and source code can be found at https://github.com/liuxiaoping2020/CBioProfiler.

癌症是导致全球死亡的主要原因之一,而确定能够预测癌症患者长期生存的生物标志物和亚型对于癌症患者的风险分层、治疗和预后至关重要。然而,目前还没有用于探索癌症生物标志物或亚型的标准化工具。在这项研究中,我们介绍了癌症生物标记物和亚型分析器(CBioProfiler),它是一个网络服务器和独立应用程序,包括两个用于分析癌症生物标记物和亚型的管道。癌症生物标志物管道由五个模块组成,用于使用多种与生存相关的机器学习算法识别和注释与癌症生存相关的生物标志物。癌症亚型管道包括三个模块,分别用于数据预处理、使用多种无监督机器学习方法进行亚型识别以及亚型评估和验证。CBioProfiler 还包括 CuratedCancerPrognosisData,这是一个新颖的 R 软件包,整合了来自 268 项研究的经过审查和整理的基因表达和临床数据。这些研究涵盖 43 种常见的血液肿瘤和实体瘤,提取了 47,686 份临床样本。网络服务器位于 https://www.cbioprofiler.com/ 和 https://cbioprofiler.znhospital.cn/CBioProfiler/,独立应用程序和源代码位于 https://github.com/liuxiaoping2020/CBioProfiler。
{"title":"CBioProfiler: A Web and Standalone Pipeline for Cancer Biomarker and Subtype Characterization.","authors":"Xiaoping Liu, Zisong Wang, Hongjie Shi, Sheng Li, Xinghuan Wang","doi":"10.1093/gpbjnl/qzae045","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae045","url":null,"abstract":"<p><p>Cancer is a leading cause of death worldwide, and the identification of biomarkers and subtypes that can predict the long-term survival of cancer patients is essential for their risk stratification, treatment, and prognosis. However, there are currently no standardized tools for exploring cancer biomarkers or subtypes. In this study, we introduced Cancer Biomarker and Subtype Profiler (CBioProfiler), a web server and standalone application that includes two pipelines for analyzing cancer biomarkers and subtypes. The cancer biomarker pipeline consists of five modules for identifying and annotating cancer survival-related biomarkers using multiple survival-related machine learning algorithms. The cancer subtype pipeline includes three modules for data preprocessing, subtype identification using multiple unsupervised machine learning methods, as well as subtype evaluation and validation. CBioProfiler also includes CuratedCancerPrognosisData, a novel R package that integrates reviewed and curated gene expression and clinical data from 268 studies. These studies cover 43 common blood and solid tumors and draw upon 47,686 clinical samples. The web server is available at https://www.cbioprofiler.com/ and https://cbioprofiler.znhospital.cn/CBioProfiler/, and the standalone app and source code can be found at https://github.com/liuxiaoping2020/CBioProfiler.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgments to Reviewers 2023. 鸣谢审稿人 2023.
Pub Date : 2024-05-09 DOI: 10.1093/gpbjnl/qzae038
{"title":"Acknowledgments to Reviewers 2023.","authors":"","doi":"10.1093/gpbjnl/qzae038","DOIUrl":"10.1093/gpbjnl/qzae038","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNase P: Beyond Precursor tRNA Processing. RNase P:超越前体 tRNA 处理。
Pub Date : 2024-05-09 DOI: 10.1093/gpbjnl/qzae016
Peipei Wang, Juntao Lin, Xiangyang Zheng, Xingzhi Xu

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.

核糖核酸酶 P(RNase P)最早于 20 世纪 70 年代被描述为一种内切核糖核酸酶,在前体转运核糖核酸(tRNA)的成熟过程中发挥作用。然而,最近的研究发现了 RNase P 及其成分的非典型作用。在此,我们回顾了 RNase P 参与染色质组装、DNA 损伤反应和维持基因组稳定性的最新进展,以及对肿瘤发生的影响。我们还讨论了将 RNase P 作为癌症治疗靶点的可能性。
{"title":"RNase P: Beyond Precursor tRNA Processing.","authors":"Peipei Wang, Juntao Lin, Xiangyang Zheng, Xingzhi Xu","doi":"10.1093/gpbjnl/qzae016","DOIUrl":"10.1093/gpbjnl/qzae016","url":null,"abstract":"<p><p>Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KoNA: Korean Nucleotide Archive as A New Data Repository for Nucleotide Sequence Data. KoNA:作为核苷酸序列数据新数据储存库的韩国核苷酸档案。
Pub Date : 2024-05-09 DOI: 10.1093/gpbjnl/qzae017
Gunhwan Ko, Jae Ho Lee, Young Mi Sim, Wangho Song, Byung-Ha Yoon, Iksu Byeon, Bang Hyuck Lee, Sang-Ok Kim, Jinhyuk Choi, Insoo Jang, Hyerin Kim, Jin Ok Yang, Kiwon Jang, Sora Kim, Jong-Hwan Kim, Jongbum Jeon, Jaeeun Jung, Seungwoo Hwang, Ji-Hwan Park, Pan-Gyu Kim, Seon-Young Kim, Byungwook Lee

During the last decade, the generation and accumulation of petabase-scale high-throughput sequencing data have resulted in great challenges, including access to human data, as well as transfer, storage, and sharing of enormous amounts of data. To promote data-driven biological research, the Korean government announced that all biological data generated from government-funded research projects should be deposited at the Korea BioData Station (K-BDS), which consists of multiple databases for individual data types. Here, we introduce the Korean Nucleotide Archive (KoNA), a repository of nucleotide sequence data. As of July 2022, the Korean Read Archive in KoNA has collected over 477 TB of raw next-generation sequencing data from national genome projects. To ensure data quality and prepare for international alignment, a standard operating procedure was adopted, which is similar to that of the International Nucleotide Sequence Database Collaboration. The standard operating procedure includes quality control processes for submitted data and metadata using an automated pipeline, followed by manual examination. To ensure fast and stable data transfer, a high-speed transmission system called GBox is used in KoNA. Furthermore, the data uploaded to or downloaded from KoNA through GBox can be readily processed using a cloud computing service called Bio-Express. This seamless coupling of KoNA, GBox, and Bio-Express enhances the data experience, including submission, access, and analysis of raw nucleotide sequences. KoNA not only satisfies the unmet needs for a national sequence repository in Korea but also provides datasets to researchers globally and contributes to advances in genomics. The KoNA is available at https://www.kobic.re.kr/kona/.

过去十年间,千万亿次规模的高通量测序数据的产生和积累带来了巨大挑战,包括人类数据的获取,以及海量数据的传输、存储和共享。为了促进数据驱动的生物研究,韩国政府宣布,所有由政府资助的研究项目产生的生物数据都应存入韩国生物数据站(Korea BioData Station,K-BDS)。在此,我们将介绍韩国核苷酸档案(KoNA),这是一个核苷酸序列数据储存库。截至 2022 年 7 月,KoNA 中的韩国读取档案已从国家基因组项目中收集了超过 477 TB 的下一代测序原始数据。为确保数据质量并为国际比对做准备,采用了与国际核苷酸序列数据库合作组织类似的标准操作程序。标准操作程序包括使用自动流水线对提交的数据和元数据进行质量控制,然后进行人工检查。为确保快速稳定的数据传输,KoNA 采用了名为 GBox 的高速传输系统。此外,通过 GBox 上传到 KoNA 或从 KoNA 下载的数据可通过名为 Bio-Express 的云计算服务随时进行处理。KoNA、GBox和Bio-Express的这种无缝耦合增强了数据体验,包括原始核苷酸序列的提交、访问和分析。KoNA 不仅满足了韩国对国家序列库的需求,还为全球研究人员提供了数据集,为基因组学的发展做出了贡献。KoNA 可在 https://www.kobic.re.kr/kona/ 上查阅。
{"title":"KoNA: Korean Nucleotide Archive as A New Data Repository for Nucleotide Sequence Data.","authors":"Gunhwan Ko, Jae Ho Lee, Young Mi Sim, Wangho Song, Byung-Ha Yoon, Iksu Byeon, Bang Hyuck Lee, Sang-Ok Kim, Jinhyuk Choi, Insoo Jang, Hyerin Kim, Jin Ok Yang, Kiwon Jang, Sora Kim, Jong-Hwan Kim, Jongbum Jeon, Jaeeun Jung, Seungwoo Hwang, Ji-Hwan Park, Pan-Gyu Kim, Seon-Young Kim, Byungwook Lee","doi":"10.1093/gpbjnl/qzae017","DOIUrl":"10.1093/gpbjnl/qzae017","url":null,"abstract":"<p><p>During the last decade, the generation and accumulation of petabase-scale high-throughput sequencing data have resulted in great challenges, including access to human data, as well as transfer, storage, and sharing of enormous amounts of data. To promote data-driven biological research, the Korean government announced that all biological data generated from government-funded research projects should be deposited at the Korea BioData Station (K-BDS), which consists of multiple databases for individual data types. Here, we introduce the Korean Nucleotide Archive (KoNA), a repository of nucleotide sequence data. As of July 2022, the Korean Read Archive in KoNA has collected over 477 TB of raw next-generation sequencing data from national genome projects. To ensure data quality and prepare for international alignment, a standard operating procedure was adopted, which is similar to that of the International Nucleotide Sequence Database Collaboration. The standard operating procedure includes quality control processes for submitted data and metadata using an automated pipeline, followed by manual examination. To ensure fast and stable data transfer, a high-speed transmission system called GBox is used in KoNA. Furthermore, the data uploaded to or downloaded from KoNA through GBox can be readily processed using a cloud computing service called Bio-Express. This seamless coupling of KoNA, GBox, and Bio-Express enhances the data experience, including submission, access, and analysis of raw nucleotide sequences. KoNA not only satisfies the unmet needs for a national sequence repository in Korea but also provides datasets to researchers globally and contributes to advances in genomics. The KoNA is available at https://www.kobic.re.kr/kona/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: dbDEMC 3.0: Functional Exploration of Differentially Expressed miRNAs in Cancers of Human and Model Organisms. 更正为:dbDEMC 3.0:人类和模式生物癌症中差异表达 miRNA 的功能探索。
Pub Date : 2024-05-09 DOI: 10.1093/gpbjnl/qzae037
{"title":"Correction to: dbDEMC 3.0: Functional Exploration of Differentially Expressed miRNAs in Cancers of Human and Model Organisms.","authors":"","doi":"10.1093/gpbjnl/qzae037","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae037","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T2T-YAO, T2T-SHUN, and more. T2T-YAO、T2T-SHUN等。
Pub Date : 2023-12-01 Epub Date: 2023-09-22 DOI: 10.1016/j.gpb.2023.09.002
Jingfa Xiao, Jun Yu
{"title":"T2T-YAO, T2T-SHUN, and more.","authors":"Jingfa Xiao, Jun Yu","doi":"10.1016/j.gpb.2023.09.002","DOIUrl":"10.1016/j.gpb.2023.09.002","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T2T-YAO Reference Genome of Han Chinese - New Step in Advancing Precision Medicine in China. 汉族T2T-YAO参考基因组-中国精准医学发展的新步伐。
Pub Date : 2023-12-01 Epub Date: 2023-09-22 DOI: 10.1016/j.gpb.2023.09.001
Xue Zhang
{"title":"T2T-YAO Reference Genome of Han Chinese - New Step in Advancing Precision Medicine in China.","authors":"Xue Zhang","doi":"10.1016/j.gpb.2023.09.001","DOIUrl":"10.1016/j.gpb.2023.09.001","url":null,"abstract":"","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41109240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genomics, proteomics & bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1