Pub Date : 2024-10-05Epub Date: 2024-08-20DOI: 10.1016/j.jhazmat.2024.135513
Xianghui Cheng, Longfei Jiang, Xuan Zhao, Shuang Wang, Jibing Li, Chunling Luo, Gan Zhang
Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.
{"title":"Synergism of endophytic microbiota and plants promotes the removal of polycyclic aromatic hydrocarbons from the Alfalfa rhizosphere.","authors":"Xianghui Cheng, Longfei Jiang, Xuan Zhao, Shuang Wang, Jibing Li, Chunling Luo, Gan Zhang","doi":"10.1016/j.jhazmat.2024.135513","DOIUrl":"10.1016/j.jhazmat.2024.135513","url":null,"abstract":"<p><p>Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135513"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-22DOI: 10.1016/j.jhazmat.2024.135631
Mingping Sheng, Yikai Liu, Guoquan Zeng, Qingquan Zhang, He Peng, Ling Lei, Huakang Liu, Nan He, Heng Xu, Hongyan Guo
Microbial induced carbonate precipitation (MICP) technology was widely applied to immobilize heavy metals, but its long-term stability is tough to maintain, particularly under acid attack. This study successfully converted Pseudochrobactrum sp. DL-1 induced vaterite (a rare crystalline phase of CaCO3) to hydroxyapatite (HAP) at 30 ℃. The predominant conversion mechanism was the dissolution of CdCO3-containing vaterite and the simultaneous recrystallization of Ca4.03Cd0.97(PO4)3(OH)-containing HAP. For aqueous Cd immobilization, stability test at pH 2.0-10.0 showed that the Cd2+ desorption rate of Cd-adsorbed vaterite (3.96-4.35 ‱) were 7.13-20.84 times greater than that of Cd-adsorbed HAP (0.19-0.61 ‱). For soil Cd immobilization under 60 days of acid-rain erosion, the highest immobilization rate (51.00 %) of exchangeable-Cd and the lowest dissolution rate (-0.18 %) of carbonate-Cd were achieved with 2 % vaterite, while the corresponding rates were 16.78 % and 1.31 % with 2 % HAP, respectively. Furthermore, vaterite outperformed HAP in terms of soil ecological thorough evaluation. In conclusion, for Cd immobilization by MICP under acid attack, DL-1 induced vaterite displayed direct application value due to its exceptional stability in soil and water, while the mineral conversion strategy we presented is useful for further enhancing the stability in water.
{"title":"For aqueous/soil cadmium immobilization under acid attack, does the hydroxyapatite converted from Pseudochrobactrum sp. DL-1 induced vaterite necessarily show higher stability?","authors":"Mingping Sheng, Yikai Liu, Guoquan Zeng, Qingquan Zhang, He Peng, Ling Lei, Huakang Liu, Nan He, Heng Xu, Hongyan Guo","doi":"10.1016/j.jhazmat.2024.135631","DOIUrl":"10.1016/j.jhazmat.2024.135631","url":null,"abstract":"<p><p>Microbial induced carbonate precipitation (MICP) technology was widely applied to immobilize heavy metals, but its long-term stability is tough to maintain, particularly under acid attack. This study successfully converted Pseudochrobactrum sp. DL-1 induced vaterite (a rare crystalline phase of CaCO<sub>3</sub>) to hydroxyapatite (HAP) at 30 ℃. The predominant conversion mechanism was the dissolution of CdCO<sub>3</sub>-containing vaterite and the simultaneous recrystallization of Ca<sub>4.03</sub>Cd<sub>0.97</sub>(PO4)<sub>3</sub>(OH)-containing HAP. For aqueous Cd immobilization, stability test at pH 2.0-10.0 showed that the Cd<sup>2+</sup> desorption rate of Cd-adsorbed vaterite (3.96-4.35 ‱) were 7.13-20.84 times greater than that of Cd-adsorbed HAP (0.19-0.61 ‱). For soil Cd immobilization under 60 days of acid-rain erosion, the highest immobilization rate (51.00 %) of exchangeable-Cd and the lowest dissolution rate (-0.18 %) of carbonate-Cd were achieved with 2 % vaterite, while the corresponding rates were 16.78 % and 1.31 % with 2 % HAP, respectively. Furthermore, vaterite outperformed HAP in terms of soil ecological thorough evaluation. In conclusion, for Cd immobilization by MICP under acid attack, DL-1 induced vaterite displayed direct application value due to its exceptional stability in soil and water, while the mineral conversion strategy we presented is useful for further enhancing the stability in water.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135631"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-13DOI: 10.1016/j.jhazmat.2024.135516
Ahmed Aboelezz, Maria Beltran, Michael J Hargather, Mostafa Hassanalian, Pedram Roghanchi
This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation. The core of our research emphasizes the deployment of the Aerosol Lung Deposition Apparatus (ALDA) alongside a custom dust injection system to measure particle distributions within the test section. This setup enabled us to simulate the inhalation of coal dust particles, providing a realistic scenario for assessing potential hazards to miners. Validation of the tunnel's performance was achieved through extensive testing with dust sensors and a hot-wire anemometer, which verified the airflow velocity and turbulence against the initial design specifications. The findings affirm the wind tunnel's capability to effectively model dust deposition and its impacts, thereby offering opportunities for enhancing miner safety and health standards.
{"title":"Comprehensive design and performance validation of a wind tunnel for advanced respirable dust deposition investigations.","authors":"Ahmed Aboelezz, Maria Beltran, Michael J Hargather, Mostafa Hassanalian, Pedram Roghanchi","doi":"10.1016/j.jhazmat.2024.135516","DOIUrl":"10.1016/j.jhazmat.2024.135516","url":null,"abstract":"<p><p>This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation. The core of our research emphasizes the deployment of the Aerosol Lung Deposition Apparatus (ALDA) alongside a custom dust injection system to measure particle distributions within the test section. This setup enabled us to simulate the inhalation of coal dust particles, providing a realistic scenario for assessing potential hazards to miners. Validation of the tunnel's performance was achieved through extensive testing with dust sensors and a hot-wire anemometer, which verified the airflow velocity and turbulence against the initial design specifications. The findings affirm the wind tunnel's capability to effectively model dust deposition and its impacts, thereby offering opportunities for enhancing miner safety and health standards.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135516"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-18DOI: 10.1016/j.jhazmat.2024.135565
Bin Hu, Panwen Li, Ruihui Chen, Yinan Zheng, Jiao Li, Yi Li
The joint groundwater pollution prevention and control (GPPC) strategy has been extensively implemented to address the coastal region groundwater pollution challenges in China. However, regional groundwater pollution control and treatment efficiency cannot achieve the expected results due to the lack of regional priority control orders and accurate restoration levels. Thus, this study developed a new region demarcation framework method for delineating GPPC zones, in tandem with a comprehensive pollution index method, the DRASTIC model, source apportionment. To validate the new methodological framework, a case study of groundwater pollution in Qinhuangdao, the western of Bohai Bay, China, was implemented to calculate pollution prevention and control zoning. In total, 340 groundwater samples from shallow aquifers with 9 target pollutants (NO3-, NO2-, NH4+, As, Cd, Cr, Cu, Pb, and Ni) were selected as the dataset for GPPC regionalization. The results showed that GPPC zoning further clarified the direction of groundwater pollution protection and management in Qinhuangdao. Compared to the traditional method, the new GPPC zoning better reflects groundwater mobility characteristics and pollution transport and enrichment patterns in terms of groundwater functional integrity and delineation. This new regional demarcation framework method contributes to providing support for the fine division of groundwater pollution zoning and precise pollution control for groundwater resource management in China.
{"title":"The new region demarcation framework for implementing the joint prevention and control of groundwater pollution: A case study in western of Bohai Bay, China.","authors":"Bin Hu, Panwen Li, Ruihui Chen, Yinan Zheng, Jiao Li, Yi Li","doi":"10.1016/j.jhazmat.2024.135565","DOIUrl":"10.1016/j.jhazmat.2024.135565","url":null,"abstract":"<p><p>The joint groundwater pollution prevention and control (GPPC) strategy has been extensively implemented to address the coastal region groundwater pollution challenges in China. However, regional groundwater pollution control and treatment efficiency cannot achieve the expected results due to the lack of regional priority control orders and accurate restoration levels. Thus, this study developed a new region demarcation framework method for delineating GPPC zones, in tandem with a comprehensive pollution index method, the DRASTIC model, source apportionment. To validate the new methodological framework, a case study of groundwater pollution in Qinhuangdao, the western of Bohai Bay, China, was implemented to calculate pollution prevention and control zoning. In total, 340 groundwater samples from shallow aquifers with 9 target pollutants (NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, As, Cd, Cr, Cu, Pb, and Ni) were selected as the dataset for GPPC regionalization. The results showed that GPPC zoning further clarified the direction of groundwater pollution protection and management in Qinhuangdao. Compared to the traditional method, the new GPPC zoning better reflects groundwater mobility characteristics and pollution transport and enrichment patterns in terms of groundwater functional integrity and delineation. This new regional demarcation framework method contributes to providing support for the fine division of groundwater pollution zoning and precise pollution control for groundwater resource management in China.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135565"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-17DOI: 10.1016/j.jhazmat.2024.135570
Zheng Liu, Ying Bai, Xiaojiong Zhao, Xianyu Liu, Huijuan Wei, Mingxia Wei, Yang Ma
Urban regions are suggested to be the main source of microplastic pollution in rivers. Thus, we investigated the spatiotemporal distribution of microplastics in the surface water of the Lanzhou section of the Yellow River in a semiarid region and the contributions of typical sources. The average concentration of microplastics in the surface water of the river was 0.98 particles (p) L-1. The daily quantity flux and mass flux were 3.63 × 109 p d-1 and 95.38 kg d-1, respectively. Most of the microplastics in the river were fibers and fragments, composed of polyethylene terephthalate, polyamide, polypropylene and polyethylene. A large quantity and mass of microplastics were found in the high-flow period of the river. The hotspots of microplastic pollution were residential and tourist reaches. The spatial distribution of microplastics was influenced by anthropogenic factors. However, the main factor influencing the temporal distribution of microplastics was precipitation seasonality. Most of the microplastics in the surface water originated from drainage ditches. The direct contribution of microplastics from atmospheric deposition was also considerable. Our results suggest that the contribution of microplastics from atmospheric deposition to urban rivers is worthy of attention.
城市地区被认为是河流中微塑料污染的主要来源。因此,我们研究了半干旱地区黄河兰州段地表水中微塑料的时空分布及典型污染源的贡献。该河段地表水中微塑料的平均浓度为 0.98 粒子(p)L-1。日通量和质量通量分别为 3.63 × 109 p d-1 和 95.38 kg d-1。河流中的微塑料大部分是纤维和碎片,由聚对苯二甲酸乙二酯、聚酰胺、聚丙烯和聚乙烯组成。在河流的高流量期发现了大量的微塑料。微塑料污染的热点地区是居民区和旅游区。微塑料的空间分布受到人为因素的影响。然而,影响微塑料时间分布的主要因素是降水的季节性。地表水中的微塑料大多来自排水沟。大气沉降对微塑料的直接影响也相当大。我们的研究结果表明,大气沉积物中的微塑料对城市河流的影响值得关注。
{"title":"Contributions from typical sources to microplastics in surface water of a semiarid urban river.","authors":"Zheng Liu, Ying Bai, Xiaojiong Zhao, Xianyu Liu, Huijuan Wei, Mingxia Wei, Yang Ma","doi":"10.1016/j.jhazmat.2024.135570","DOIUrl":"10.1016/j.jhazmat.2024.135570","url":null,"abstract":"<p><p>Urban regions are suggested to be the main source of microplastic pollution in rivers. Thus, we investigated the spatiotemporal distribution of microplastics in the surface water of the Lanzhou section of the Yellow River in a semiarid region and the contributions of typical sources. The average concentration of microplastics in the surface water of the river was 0.98 particles (p) L<sup>-1</sup>. The daily quantity flux and mass flux were 3.63 × 10<sup>9</sup> p d<sup>-1</sup> and 95.38 kg d<sup>-1</sup>, respectively. Most of the microplastics in the river were fibers and fragments, composed of polyethylene terephthalate, polyamide, polypropylene and polyethylene. A large quantity and mass of microplastics were found in the high-flow period of the river. The hotspots of microplastic pollution were residential and tourist reaches. The spatial distribution of microplastics was influenced by anthropogenic factors. However, the main factor influencing the temporal distribution of microplastics was precipitation seasonality. Most of the microplastics in the surface water originated from drainage ditches. The direct contribution of microplastics from atmospheric deposition was also considerable. Our results suggest that the contribution of microplastics from atmospheric deposition to urban rivers is worthy of attention.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135570"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-22DOI: 10.1016/j.jhazmat.2024.135598
Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong
Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.
{"title":"Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study.","authors":"Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong","doi":"10.1016/j.jhazmat.2024.135598","DOIUrl":"10.1016/j.jhazmat.2024.135598","url":null,"abstract":"<p><p>Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)<sub>3</sub> hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)<sub>3</sub> dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135598"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-22DOI: 10.1016/j.jhazmat.2024.135612
Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
硫(S)供应和豆科植物-根瘤菌共生都能显著提高重金属(HMs)的植物修复效率。然而,决定豆科植物在铅(Pb)暴露下表现的调控机制尚未阐明。在此,我们将豆科木本先锋物种黑刺槐(Robinia pseudoacacia L.)与根瘤菌接种一起,在三种S供应水平(即缺S、中S和高S)下进行栽培,并研究了这些处理在铅暴露时的相互作用。我们的研究结果表明,刺槐根系具有很强的铅积累和抗氧化能力,能保护叶片免受铅的毒性。与中等S供应量相比,高S供应量通过促进还原型S化合物(即硫醇、植物螯合物)的合成,显著增加了根系的铅积累,同时也加强了叶片的抗氧化系统。在缺乏 S 供应的情况下,氧化损伤加剧,表明防御能力减弱。接种根瘤菌可固定铅,减少根细胞对铅的吸收,从而减轻刺槐宿主的氧化损伤。这些机制与叶片中增强的铅螯合作用一起,加强了刺槐-根瘤菌共生中的铅解毒作用。我们的研究结果表明,适当的 S 供应可提高豆科植物-根瘤菌共生体对 HM 毒性的防御能力。
{"title":"Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure.","authors":"Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg","doi":"10.1016/j.jhazmat.2024.135612","DOIUrl":"10.1016/j.jhazmat.2024.135612","url":null,"abstract":"<p><p>Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135612"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-16DOI: 10.1016/j.jhazmat.2024.135558
Feng Wang, Chun Zhang, Yi Ge, Ruiling Zhang, Bijie Huang, Guoliang Shi, Xiaoli Wang, Yinchang Feng
As the two important ambient air pollutants, particulate matter (PM2.5) and ozone (O3) can both originate from gas nitrogen oxides. In this study, applied by theoretical analysis and machine learning method, we examined the effects of atmospheric reactive nitrogen on PM2.5-O3 pollution, in which nitric oxide (NO), nitrogen dioxide (NO2), gaseous nitric acid (HNO3) and particle nitrate (pNO3-) conversion process has the co-directional and contra-directional effects on PM2.5-O3 pollution. Of which, HNO3 and SO2 are the co-directional driving factors resulting in PM2.5 and O3 growing or decreasing simultaneously; while NO, NO2, and temperature represent the contra-directional factors, which can promote the growth of one pollutant and reduce another one. Our findings suggest that designing the suitable co-controlling strategies for PM2.5-O3 sustainable reduction should target at driving factors by considering the contra-directional and co-directional effects under suitable sensitivity regions. For co-directional driving factors, the design of suitable mitigation strategies will jointly achieve effective reduction in PM2.5 and O3; while for contra-directional driving factors, it should be more patient, otherwise, it is possible to reduce one item but increase another one at the same time.
{"title":"Atmospheric reactive nitrogen conversion kicks off the co-directional and contra-directional effects on PM<sub>2.5</sub>-O<sub>3</sub> pollution.","authors":"Feng Wang, Chun Zhang, Yi Ge, Ruiling Zhang, Bijie Huang, Guoliang Shi, Xiaoli Wang, Yinchang Feng","doi":"10.1016/j.jhazmat.2024.135558","DOIUrl":"10.1016/j.jhazmat.2024.135558","url":null,"abstract":"<p><p>As the two important ambient air pollutants, particulate matter (PM<sub>2.5</sub>) and ozone (O<sub>3</sub>) can both originate from gas nitrogen oxides. In this study, applied by theoretical analysis and machine learning method, we examined the effects of atmospheric reactive nitrogen on PM<sub>2.5</sub>-O<sub>3</sub> pollution, in which nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), gaseous nitric acid (HNO<sub>3</sub>) and particle nitrate (pNO<sub>3</sub><sup>-</sup>) conversion process has the co-directional and contra-directional effects on PM<sub>2.5</sub>-O<sub>3</sub> pollution. Of which, HNO<sub>3</sub> and SO<sub>2</sub> are the co-directional driving factors resulting in PM<sub>2.5</sub> and O<sub>3</sub> growing or decreasing simultaneously; while NO, NO<sub>2</sub>, and temperature represent the contra-directional factors, which can promote the growth of one pollutant and reduce another one. Our findings suggest that designing the suitable co-controlling strategies for PM<sub>2.5</sub>-O<sub>3</sub> sustainable reduction should target at driving factors by considering the contra-directional and co-directional effects under suitable sensitivity regions. For co-directional driving factors, the design of suitable mitigation strategies will jointly achieve effective reduction in PM<sub>2.5</sub> and O<sub>3</sub>; while for contra-directional driving factors, it should be more patient, otherwise, it is possible to reduce one item but increase another one at the same time.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135558"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-13DOI: 10.1016/j.jhazmat.2024.135509
Tengfei He, Zifeng Luo, Baosheng Jin
Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl2 vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO2 and H2O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO2 negatively impacted PbCl2 adsorption due to competitive adsorption, while H2O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl2 into oxides. DFT revealed the presence of CO2 enhanced the adsorption stability of PbCl2 via the formation of covalent bonds between O in CO2 and Pb, and active O on the aluminosilicate surface. H2O increased PbCl2 adsorption energy, as O in H2O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.
{"title":"Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture.","authors":"Tengfei He, Zifeng Luo, Baosheng Jin","doi":"10.1016/j.jhazmat.2024.135509","DOIUrl":"10.1016/j.jhazmat.2024.135509","url":null,"abstract":"<p><p>Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl<sub>2</sub> vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO<sub>2</sub> and H<sub>2</sub>O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO<sub>2</sub> negatively impacted PbCl<sub>2</sub> adsorption due to competitive adsorption, while H<sub>2</sub>O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl<sub>2</sub> into oxides. DFT revealed the presence of CO<sub>2</sub> enhanced the adsorption stability of PbCl<sub>2</sub> via the formation of covalent bonds between O in CO<sub>2</sub> and Pb, and active O on the aluminosilicate surface. H<sub>2</sub>O increased PbCl<sub>2</sub> adsorption energy, as O in H<sub>2</sub>O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135509"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05Epub Date: 2024-08-22DOI: 10.1016/j.jhazmat.2024.135580
Huanhuan Wang, Xudan Liu, Yao Chen, Wanying Li, Yanhong Ge, Huning Liang, Bin Xu, Xin Li
Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.
{"title":"The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.","authors":"Huanhuan Wang, Xudan Liu, Yao Chen, Wanying Li, Yanhong Ge, Huning Liang, Bin Xu, Xin Li","doi":"10.1016/j.jhazmat.2024.135580","DOIUrl":"10.1016/j.jhazmat.2024.135580","url":null,"abstract":"<p><p>Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135580"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}