首页 > 最新文献

Journal of hazardous materials最新文献

英文 中文
Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis. 通过基因型和表型综合分析研究环境多媒体界面的抗生素耐药性。
Pub Date : 2024-12-05 Epub Date: 2024-10-15 DOI: 10.1016/j.jhazmat.2024.136160
Chen-Xi Fu, Chen Chen, Qian Xiang, Yi-Fei Wang, Lu Wang, Feng-Yuan Qi, Dong Zhu, Hong-Zhe Li, Li Cui, Wei-Li Hong, Matthias C Rillig, Yong-Guan Zhu, Min Qiao

Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D2O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.

目前,抗生素耐药性正在成为威胁全球人类健康的全球性危机。众所周知,抗生素耐药性基因(ARGs)普遍存在于环境介质中,但抗生素耐药性在两种或多种相邻介质界面上的发生情况却大多不为人知。在此,我们设计了一个模拟稻田土壤中塑料污染的微观世界研究,并使用一种新方法--刺激拉曼散射与氧化氘(D2O)标记相结合--来比较单一介质中的抗生素耐药性与多种环境介质(塑料、土壤、水)界面上的抗生素耐药性。结果表明,界面上的环境介质种类越多,活性耐药菌的比例就越高。基因型分析表明,ARGs(尤其是高风险 ARGs)和移动基因元件(MGEs)在界面处都高度富集。重金属(砷)和抗生素(环丙沙星)的共同作用进一步增强了这种富集。我们的研究首次应用受激拉曼散射来阐明环境界面上的抗生素耐药性,揭示了抗生素耐药性在环境中传播的新途径,以及对人类健康的潜在风险。
{"title":"Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis.","authors":"Chen-Xi Fu, Chen Chen, Qian Xiang, Yi-Fei Wang, Lu Wang, Feng-Yuan Qi, Dong Zhu, Hong-Zhe Li, Li Cui, Wei-Li Hong, Matthias C Rillig, Yong-Guan Zhu, Min Qiao","doi":"10.1016/j.jhazmat.2024.136160","DOIUrl":"10.1016/j.jhazmat.2024.136160","url":null,"abstract":"<p><p>Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D<sub>2</sub>O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136160"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enrichment and catalysis effect of 2D/2D g-C3N4/Ti3C2 for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism. 2D/2D g-C3N4/Ti3C2 在等离子体系统中促进有机物降解和重金属还原的富集和催化作用:揭示促进和氧化还原机制。
Pub Date : 2024-12-05 Epub Date: 2024-11-15 DOI: 10.1016/j.jhazmat.2024.136510
Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo

This work proposes a novel plasma-assisted 2D/2D g-C3N4/Ti3C2 system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C3N4/Ti3C2 not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5 % and 73.1 % respectively when introducing 2D/2D g-C3N4/Ti3C2. Roles of·OH,·H,·O2-, 1O2, e-, and h+ in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and 1O2 dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.

本研究提出了一种新型等离子体辅助 2D/2D g-C3N4/Ti3C2 系统,用于处理有机物-重金属复合废水。与等离子体系统中的传统材料不同,2D/2D g-C3N4/Ti3C2 不仅能将活性物种和污染物聚集到等离子体表面,提高等离子体的传质效率,还能诱导光催化反应。此外,更高的比表面积和更快的载流子分离速率可以提高氧化和还原活性,进而促进有机物降解和重金属还原。引入 2D/2D g-C3N4/Ti3C2 后,磺胺甲噁唑(SMX)和六价铬的去除率分别显著提高了 16.5% 和 73.1%。阐明了 OH、-H、-O2-、1O2、e- 和 h+ 在 SMX 氧化和 Cr(VI) 还原中的作用。初级聚集的-OH 和 1O2 主导了 SMX 的降解。阐明了影响因素、等离子体与催化剂之间的协同机制以及氧化还原机制。这项工作为有机物-重金属复合废水的处理提供了一个突破性的思路。
{"title":"Enrichment and catalysis effect of 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism.","authors":"Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo","doi":"10.1016/j.jhazmat.2024.136510","DOIUrl":"10.1016/j.jhazmat.2024.136510","url":null,"abstract":"<p><p>This work proposes a novel plasma-assisted 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5 % and 73.1 % respectively when introducing 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>. Roles of·OH,·H,·O<sub>2</sub><sup>-</sup>, <sup>1</sup>O<sub>2</sub>, e<sup>-</sup>, and h<sup>+</sup> in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and <sup>1</sup>O<sub>2</sub> dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136510"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polystyrene nanoplastics enhance thrombosis through adsorption of plasma proteins. 聚苯乙烯纳米塑料通过吸附血浆蛋白促进血栓形成。
Pub Date : 2024-12-05 Epub Date: 2024-10-15 DOI: 10.1016/j.jhazmat.2024.136168
Chao Sheng, Guozhen Wang, Zijia Liu, Yuchen Zheng, Zijie Zhao, Duo Tang, Wenzhuo Li, Ao Li, Qi Zong, Renhang Zhou, Xiaonan Hou, Mengfei Yao, Zhixiang Zhou

Plastic products offer remarkable convenience for modern life. However, growing concerns are emerging regarding the potential health hazards posed by nanoplastics, which formed as plastics break down. Currently, the biological effects and mechanisms induced by nanoplastics are largely underexplored. In this study, we report that polystyrene nanoplastics can enter the bloodstream and enhance thrombus formation. Our findings show that polystyrene nanoplastics adsorb plasma proteins, particularly coagulation factor XII and plasminogen activator inhibitor-1, play a key role in this process, as demonstrated by proteomics, bioinformatic analyses, and molecular dynamics simulations. The adsorption of these proteins by nanoplastics is an essential factor in thrombosis enhancement. This newly uncovered pathway of protein adsorption leading to enhanced thrombosis provides new insights into the biological effects of nanoplastics, which may inform future safety and environmental risk assessment of plastics.

塑料产品为现代生活提供了极大的便利。然而,人们越来越关注塑料分解过程中形成的纳米塑料对健康造成的潜在危害。目前,人们对纳米塑料的生物效应和机理还缺乏深入研究。在本研究中,我们报告了聚苯乙烯纳米塑料可进入血液并促进血栓形成。我们的研究结果表明,聚苯乙烯纳米塑料吸附血浆蛋白,尤其是凝血因子 XII 和纤溶酶原激活剂抑制剂-1,在这一过程中发挥了关键作用,这一点已通过蛋白质组学、生物信息学分析和分子动力学模拟得到证实。纳米塑料对这些蛋白质的吸附是增强血栓形成的一个重要因素。这种新发现的导致血栓形成增强的蛋白质吸附途径为了解纳米塑料的生物效应提供了新的视角,可为未来塑料的安全和环境风险评估提供参考。
{"title":"Polystyrene nanoplastics enhance thrombosis through adsorption of plasma proteins.","authors":"Chao Sheng, Guozhen Wang, Zijia Liu, Yuchen Zheng, Zijie Zhao, Duo Tang, Wenzhuo Li, Ao Li, Qi Zong, Renhang Zhou, Xiaonan Hou, Mengfei Yao, Zhixiang Zhou","doi":"10.1016/j.jhazmat.2024.136168","DOIUrl":"10.1016/j.jhazmat.2024.136168","url":null,"abstract":"<p><p>Plastic products offer remarkable convenience for modern life. However, growing concerns are emerging regarding the potential health hazards posed by nanoplastics, which formed as plastics break down. Currently, the biological effects and mechanisms induced by nanoplastics are largely underexplored. In this study, we report that polystyrene nanoplastics can enter the bloodstream and enhance thrombus formation. Our findings show that polystyrene nanoplastics adsorb plasma proteins, particularly coagulation factor XII and plasminogen activator inhibitor-1, play a key role in this process, as demonstrated by proteomics, bioinformatic analyses, and molecular dynamics simulations. The adsorption of these proteins by nanoplastics is an essential factor in thrombosis enhancement. This newly uncovered pathway of protein adsorption leading to enhanced thrombosis provides new insights into the biological effects of nanoplastics, which may inform future safety and environmental risk assessment of plastics.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136168"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment. 用于超快降解地表水处理中新出现污染物的双层结构催化膜。
Pub Date : 2024-12-05 Epub Date: 2024-10-31 DOI: 10.1016/j.jhazmat.2024.136333
Qieyuan Gao, Xinyao Jin, Xi Zhang, Junwei Li, Peng Liu, Peijie Li, Xinsheng Luo, Weijia Gong, Daliang Xu, Raf Dewil, Heng Liang, Bart Van der Bruggen

The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.

基于催化膜的氧化-过滤过程集物理分离和化学氧化于一体,是一种高效的水净化策略。然而,由于催化层内的停留时间短至几毫秒,加上实际水中共存的有机污染物的干扰,氧化-过滤过程在实际应用中受到限制。在此,我们采用双刃刀原位共铸法制造了一种包含顶部选择层和底部催化层的双层膜。实验结果表明,选择层可阻挡大分子有机污染物,从而减轻其对双酚 A(BPA)降解的干扰。同时,催化层激活了过乙酸氧化剂,并在几毫秒内利用活性氧(尤其是-OH)实现了超过 90% 的双酚 A 降解。有限元分析证实,高浓度反应场占据了催化层的孔腔,提高了活性氧与双酚 A 之间的碰撞概率,即纳米聚集效应。此外,双层膜在地表水处理中实现了长期稳定的新污染物降解性能。这项研究强调了用于高性能氧化-过滤过程的新型催化膜结构设计,并阐明了其超快降解的机理。
{"title":"Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment.","authors":"Qieyuan Gao, Xinyao Jin, Xi Zhang, Junwei Li, Peng Liu, Peijie Li, Xinsheng Luo, Weijia Gong, Daliang Xu, Raf Dewil, Heng Liang, Bart Van der Bruggen","doi":"10.1016/j.jhazmat.2024.136333","DOIUrl":"10.1016/j.jhazmat.2024.136333","url":null,"abstract":"<p><p>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136333"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines. 三聚氰胺促进铜-芬顿反应降解蒽环类化合物。
Pub Date : 2024-12-05 Epub Date: 2024-10-02 DOI: 10.1016/j.jhazmat.2024.136035
Yixuan Zhao, Jiahui Zhao, Shuqin Liu, Dunqing Wang, Jian Liu, Fei Zhang, Xiangshu Chen

Melamine (MA) enhanced Cu-Fenton process was developed for the degradation of anthracyclines. Taking daunorubicin (DNR) degradation as an example, we found that the initial first-order apparent constant of Cu2+/MA/H2O2 system with a molar ratio of 1:8 for Cu2+:MA was 5.2 times higher than that of conventional Cu2+/H2O2 system. The in-situ reductive coordination between Cu2+ and MA facilitated the generation and stabilization of Cu+ species, thereby accelerating the rate-limiting step of Cu2+/Cu+ conversion and maintaining high levels of Cu+ during the degradation process. Moreover, pre-synthesized Cu+-MA complexes (e.g., CM-250) further enhanced the efficiency of the Cu-Fenton reaction by increasing both the Cu+ proportion and MA chelation. The apparent activation energy for DNR degradation in CM-250 mediated Fenton reaction (15.9 kJ mol-1) was lower than that in systems involving Cu2+/MA (41.2 kJ mol-1) and Cu2+ (65.6 kJ mol-1). Enhanced generation of various reactive oxygen species (·OH,·O2-, and 1O2) was confirmed, with 1O2 playing a dominant role, significantly improving both degradation rate and mineralization degree for DNR. MA-enhanced Cu-Fenton process also offers a convenient alternative to effectively remove other anthracyclines and organic micropollutants, holding great promise for advancing advanced oxidation processes as well as practical large-scale degradation applications targeting multiple pollutants.

我们开发了三聚氰胺(MA)增强型 Cu-Fenton 工艺来降解蒽环类药物。以daunorubicin(DNR)降解为例,我们发现Cu2+:MA摩尔比为1:8的Cu2+/MA/H2O2体系的初始一阶表观常数是传统Cu2+/H2O2体系的5.2倍。Cu2+ 与 MA 之间的原位还原配位促进了 Cu+ 物种的生成和稳定,从而加快了 Cu2+/Cu+ 转化的限速步骤,并在降解过程中保持了高水平的 Cu+。此外,预合成的 Cu+-MA 复合物(如 CM-250)通过增加 Cu+ 比例和 MA 螯合作用,进一步提高了 Cu-Fenton 反应的效率。在 CM-250 介导的芬顿反应中,DNR 降解的表观活化能(15.9 kJ mol-1)低于 Cu2+/MA 体系(41.2 kJ mol-1)和 Cu2+ 体系(65.6 kJ mol-1)。各种活性氧(-OH、-O2- 和 1O2)的生成都得到了增强,其中 1O2 起着主导作用,显著提高了 DNR 的降解率和矿化度。MA 增强 Cu-Fenton 工艺也为有效去除其他蒽环类化合物和有机微污染物提供了一种便捷的替代方法,为推进高级氧化工艺以及针对多种污染物的大规模降解实际应用带来了巨大希望。
{"title":"Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines.","authors":"Yixuan Zhao, Jiahui Zhao, Shuqin Liu, Dunqing Wang, Jian Liu, Fei Zhang, Xiangshu Chen","doi":"10.1016/j.jhazmat.2024.136035","DOIUrl":"10.1016/j.jhazmat.2024.136035","url":null,"abstract":"<p><p>Melamine (MA) enhanced Cu-Fenton process was developed for the degradation of anthracyclines. Taking daunorubicin (DNR) degradation as an example, we found that the initial first-order apparent constant of Cu<sup>2+</sup>/MA/H<sub>2</sub>O<sub>2</sub> system with a molar ratio of 1:8 for Cu<sup>2+</sup>:MA was 5.2 times higher than that of conventional Cu<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> system. The in-situ reductive coordination between Cu<sup>2+</sup> and MA facilitated the generation and stabilization of Cu<sup>+</sup> species, thereby accelerating the rate-limiting step of Cu<sup>2+</sup>/Cu<sup>+</sup> conversion and maintaining high levels of Cu<sup>+</sup> during the degradation process. Moreover, pre-synthesized Cu<sup>+</sup>-MA complexes (e.g., CM-250) further enhanced the efficiency of the Cu-Fenton reaction by increasing both the Cu<sup>+</sup> proportion and MA chelation. The apparent activation energy for DNR degradation in CM-250 mediated Fenton reaction (15.9 kJ mol<sup>-1</sup>) was lower than that in systems involving Cu<sup>2+</sup>/MA (41.2 kJ mol<sup>-1</sup>) and Cu<sup>2+</sup> (65.6 kJ mol<sup>-1</sup>). Enhanced generation of various reactive oxygen species (·OH,·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub>) was confirmed, with <sup>1</sup>O<sub>2</sub> playing a dominant role, significantly improving both degradation rate and mineralization degree for DNR. MA-enhanced Cu-Fenton process also offers a convenient alternative to effectively remove other anthracyclines and organic micropollutants, holding great promise for advancing advanced oxidation processes as well as practical large-scale degradation applications targeting multiple pollutants.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136035"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. 原位生长的铜镍-MOF/镍泡沫催化剂,用于高效电化学硝酸盐还原成氨。
Pub Date : 2024-12-05 Epub Date: 2024-10-03 DOI: 10.1016/j.jhazmat.2024.136036
Chenxia Yang, Ying Tang, Qian Yang, Bo Wang, Xianghao Liu, Yuxiang Li, Weixia Yang, Kunxuan Zhao, Gang Wang, Zongyuan Wang, Feng Yu

Reducing nitrate (NO3-) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH3-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi0.75-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi0.75-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO3RR). The CuNi0.75-MOF/NF catalyst exhibited excellent electrocatalytic NO3RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH3 yield of 51.78 mg h-1 cm-2. The 15N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO3RR was the NO3- in the electrolyte. The reaction pathway for the electrocatalytic NO3RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi0.75-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO3RR.

在环境条件下将水溶液中的硝酸盐(NO3-)还原成氨气,可提供一种绿色、可持续的 NH3 合成技术,并缓解全球能源和污染问题。本研究采用一锅法制备了一种原位生长的铜镍0.75-1,3,5-苯三羧酸/泡沫镍(CuNi0.75-MOF/NF)催化剂,作为电催化硝酸盐还原反应(NO3RR)的高效阴极材料。与可逆氢电极相比,CuNi0.75-MOF/NF催化剂在-1.0 V电压下表现出优异的电催化NO3RR性能,远红外效率达到95.88%,NH3产率为51.78 mg h-1 cm-2。15N 同位素标记实验证实,电催化 NO3RR 中 N 的唯一来源是电解质中的 NO3-。电催化 NO3RR 的反应途径是通过原位傅立叶变换红外光谱法和原位差分电化学质谱法得出的。密度泛函理论计算表明,CuNi0.75-MOF/NF 催化剂中的镍元素具有优异的 O-H 活化能力和较强的 *H 吸附能力。这些 *H 物种从 Ni 位点转移到位于 Cu 位点上的 *NO 吸附中间体,为 Cu 提供了源源不断的 *H,从而促进了 *NOH 中间体的形成,增强了电催化 NO3RR 的氢化过程。
{"title":"Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia.","authors":"Chenxia Yang, Ying Tang, Qian Yang, Bo Wang, Xianghao Liu, Yuxiang Li, Weixia Yang, Kunxuan Zhao, Gang Wang, Zongyuan Wang, Feng Yu","doi":"10.1016/j.jhazmat.2024.136036","DOIUrl":"10.1016/j.jhazmat.2024.136036","url":null,"abstract":"<p><p>Reducing nitrate (NO<sub>3</sub><sup>-</sup>) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH<sub>3</sub>-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi<sub>0.75</sub>-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi<sub>0.75</sub>-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR). The CuNi<sub>0.75</sub>-MOF/NF catalyst exhibited excellent electrocatalytic NO<sub>3</sub>RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH<sub>3</sub> yield of 51.78 mg h<sup>-1</sup> cm<sup>-2</sup>. The <sup>15</sup>N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO<sub>3</sub>RR was the NO<sub>3</sub><sup>-</sup> in the electrolyte. The reaction pathway for the electrocatalytic NO<sub>3</sub>RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi<sub>0.75</sub>-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO<sub>3</sub>RR.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136036"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation. 对 pH 值驱动的 Fe(II)/nCP 在地下水修复中的自由基转化机理的深入研究。
Pub Date : 2024-12-05 Epub Date: 2024-11-13 DOI: 10.1016/j.jhazmat.2024.136334
Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu

Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H2O2 source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H2O2 and O2 from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H2O2 production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H2O2 was dramatically decreased. While the O2 released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O2-), which subsequently generate singlet oxygen (1O2). The formation pathway of •O2- was tracked by O18 isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.

过氧化钙纳米粒子(nCP)作为一种多功能、安全的固体 H2O2 源,其在地下水修复中的应用潜力吸引了大量研究人员的关注。与传统的 Fenton 系统相比,基于 nCP 的类 Fenton 系统具有更宽的污染物降解 pH 值工作窗口。这是因为在不同的 pH 值下,自由基转化占主导地位。传统的芬顿系统只在酸性条件下有效,其主要活性物质是羟基自由基(-OH),而 nCP 则不同,它释放的 H2O2 和 O2 提供了多种污染物降解途径。在酸性环境中,-OH 和 Fe(IV)是主要的活性物质,大量 H2O2 的产生激活了芬顿反应。而在中性或碱性条件下,H2O2 的产生量则大幅减少。而从 nCP 中释放出的 O2 可在 Fe(II)的催化下形成超氧自由基(-O2-),随后产生单线态氧(1O2)。O18 同位素标记实验跟踪了 -O2- 的形成途径。此外,还研究了水基质对 Fe(II)/nCP Fenton-like 系统中自由基生成的影响。这项研究加深了人们对基于 nCP 的 Fenton-like 系统中自由基形成机制的理解,为其在污染地下水修复中的应用提供了启示。
{"title":"Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation.","authors":"Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu","doi":"10.1016/j.jhazmat.2024.136334","DOIUrl":"10.1016/j.jhazmat.2024.136334","url":null,"abstract":"<p><p>Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H<sub>2</sub>O<sub>2</sub> source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H<sub>2</sub>O<sub>2</sub> production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H<sub>2</sub>O<sub>2</sub> was dramatically decreased. While the O<sub>2</sub> released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O<sub>2</sub><sup>-</sup>), which subsequently generate singlet oxygen (<sup>1</sup>O<sub>2</sub>). The formation pathway of •O<sub>2</sub><sup>-</sup> was tracked by O<sup>18</sup> isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136334"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters. 首次了解 N-乙酰化磺酰胺从废水消毒到太阳照射受纳水体的环境归宿。
Pub Date : 2024-12-05 Epub Date: 2024-10-16 DOI: 10.1016/j.jhazmat.2024.136172
Shuiqin Shi, Zhantu Ye, Jiayan Jiang, Junmei Yan, Xin Yu, Mingbao Feng

The worldwide detection of emerging transformation products of organic micropollutants has raised accumulating concerns owing to their unknown environmental fate and undesired toxicity. This work first explored the reaction kinetics and mechanisms of the prevalent N-acetylated sulfonamides (N4-AcSAs, the typical sulfonamide metabolites) from wastewater disinfection to solar-irradiated receiving waters. The transformation scenarios included chlorination/bromination, photodegradation, and solar/chlorine treatment. The halogenations of two N4-AcSAs (N4-acetylated sulfadiazine, N4-AcSDZ; N4-acetylated sulfamethoxazole, N4-AcSMX) were pH-dependent at pH 5.0-8.0, and the reactions between the neutral forms of oxidants and anionic N4-AcSAs dominated the process. Furthermore, solar-based photolysis significantly eliminated N4-AcSAs in small water bodies with low dissolved organic carbon levels, while the indirect photolysis mediated by hydroxyl radicals and carbonate radicals contributed the most. The presence of chlorine residues in solar-irradiated wastewater effluents promoted the decay of N4-AcSAs, in which the generated hydroxyl radicals and ozone played a major role. Product analysis suggested the main transformation patterns of N4-AcSAs during the above scenarios included electrophilic attack, bond cleavage, SO2 extrusion, hydroxylation, and rearrangement. Multiple secondary products maintained higher persistence, mobility, and toxicity to aquatic organisms than N4-AcSAs. Overall, the natural and engineered transformations of such micropollutants underlined the necessity of including their degradation products in future chemical management and risk assessment.

在全球范围内发现的新出现的有机微污染物转化产物因其未知的环境归宿和不良毒性而引发了越来越多的关注。这项研究首先探讨了普遍存在的 N-乙酰化磺酰胺(N4-AcSAs,典型的磺酰胺代谢物)从废水消毒到太阳照射受纳水体的反应动力学和机理。转化方案包括氯化/溴化、光降解和太阳能/氯处理。在 pH 值为 5.0-8.0 时,两种 N4-AcSA(N4-乙酰化磺胺嘧啶,N4-AcSDZ;N4-乙酰化磺胺甲噁唑,N4-AcSMX)的卤化反应与 pH 值有关,中性氧化剂与阴离子 N4-AcSA 之间的反应在整个过程中占主导地位。此外,在溶解有机碳含量较低的小水体中,太阳能光解显著消除了 N4-AcSAs,而由羟基自由基和碳酸自由基介导的间接光解则贡献最大。经太阳照射的废水中残留的氯促进了 N4-AcSAs 的衰变,其中生成的羟基自由基和臭氧发挥了主要作用。产物分析表明,在上述情况下,N4-AcSAs 的主要转化模式包括亲电攻击、键裂解、SO2 挤压、羟基化和重排。与 N4-AcSAs 相比,多种次级产物具有更高的持久性、流动性和对水生生物的毒性。总之,此类微污染物的自然和工程转化强调了将其降解产物纳入未来化学品管理和风险评估的必要性。
{"title":"First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters.","authors":"Shuiqin Shi, Zhantu Ye, Jiayan Jiang, Junmei Yan, Xin Yu, Mingbao Feng","doi":"10.1016/j.jhazmat.2024.136172","DOIUrl":"10.1016/j.jhazmat.2024.136172","url":null,"abstract":"<p><p>The worldwide detection of emerging transformation products of organic micropollutants has raised accumulating concerns owing to their unknown environmental fate and undesired toxicity. This work first explored the reaction kinetics and mechanisms of the prevalent N-acetylated sulfonamides (N<sup>4</sup>-AcSAs, the typical sulfonamide metabolites) from wastewater disinfection to solar-irradiated receiving waters. The transformation scenarios included chlorination/bromination, photodegradation, and solar/chlorine treatment. The halogenations of two N<sup>4</sup>-AcSAs (N<sup>4</sup>-acetylated sulfadiazine, N<sup>4</sup>-AcSDZ; N<sup>4</sup>-acetylated sulfamethoxazole, N<sup>4</sup>-AcSMX) were pH-dependent at pH 5.0-8.0, and the reactions between the neutral forms of oxidants and anionic N<sup>4</sup>-AcSAs dominated the process. Furthermore, solar-based photolysis significantly eliminated N<sup>4</sup>-AcSAs in small water bodies with low dissolved organic carbon levels, while the indirect photolysis mediated by hydroxyl radicals and carbonate radicals contributed the most. The presence of chlorine residues in solar-irradiated wastewater effluents promoted the decay of N<sup>4</sup>-AcSAs, in which the generated hydroxyl radicals and ozone played a major role. Product analysis suggested the main transformation patterns of N<sup>4</sup>-AcSAs during the above scenarios included electrophilic attack, bond cleavage, SO<sub>2</sub> extrusion, hydroxylation, and rearrangement. Multiple secondary products maintained higher persistence, mobility, and toxicity to aquatic organisms than N<sup>4</sup>-AcSAs. Overall, the natural and engineered transformations of such micropollutants underlined the necessity of including their degradation products in future chemical management and risk assessment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136172"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phototransformation and photoreactivity of MPs-DOM in aqueous environment: Key role of MPs structure decoded by optical and molecular signatures. MPs-DOM 在水环境中的光转化和光活性:通过光学和分子特征解读 MPs 结构的关键作用。
Pub Date : 2024-12-05 Epub Date: 2024-10-31 DOI: 10.1016/j.jhazmat.2024.136331
Saisai Guo, Linan Liu, Lan Wang, Jingchun Tang

The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of 1O2 than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less 1O2 than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially 1O2) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.

来自微塑料的溶解有机物(DOM)(MPs-DOM)可能是 DOM 中具有光活性的成分之一。然而,有关 MPs-DOM 在光转化过程中的性质和光活性的信息非常有限。在此,我们研究了来自聚烯烃的 MPs-DOM(MPs-DOM-POs)、来自含苯聚合物的 MPs-DOM(MPs-DOM-BCPs)和苏瓦尼河天然有机物(SR-NOM)在 168 小时光转化过程中的性质和光活性。光转化后,所有受检类型的 DOM 的浓度和分子量都有所下降。值得注意的是,MPs-DOM-POs 的芳香度和饱和度都有所提高,而 MPs-DOM-BCPs 和 SR-NOM 的芳香度和饱和度都有所降低。与 MPs-DOM-BCPs 相比,MPs-DOM-POs 的 -OH 稳态浓度更高,但 1O2 稳态浓度却低得多。相比之下,与 SR-NOM 相比,MPs-DOM 产生的 -OH 更多,但 1O2 更少。本研究首次提出,反应性中间产物(尤其是 -OH)使脂肪族 C─H 键多样化(芳基化和羰基化)是 MPs-DOM-POs 光转化的主要途径。另一方面,反应性中间产物(尤其是 1O2)对芳香族羧酸的裂解是 MPs-DOM-BCPs 和 SR-NOM 光转化的主要机制。我们的研究结果为了解 MPs-DOM 的光转化和光活性提供了新的视角,有助于理解 MPs 在水环境中的潜在风险。
{"title":"Phototransformation and photoreactivity of MPs-DOM in aqueous environment: Key role of MPs structure decoded by optical and molecular signatures.","authors":"Saisai Guo, Linan Liu, Lan Wang, Jingchun Tang","doi":"10.1016/j.jhazmat.2024.136331","DOIUrl":"10.1016/j.jhazmat.2024.136331","url":null,"abstract":"<p><p>The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of <sup>1</sup>O<sub>2</sub> than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less <sup>1</sup>O<sub>2</sub> than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially <sup>1</sup>O<sub>2</sub>) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136331"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. 评估土壤环境中戊硫磷的立体选择性生物活性和生物毒性,以提高药效和减少危害。
Pub Date : 2024-12-05 Epub Date: 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136476
Kuan Fang, Tong Liu, Guo Tian, Wei Sun, Xiangwei You, Xiuguo Wang

Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.

Penthiopyrad 是一种手性杀虫剂,已被广泛应用于农业生产。然而,对戊噻菌胺在土壤环境中的立体选择性生物活性和生物毒性的系统评价尚不充分。本研究考察了苯噻菌胺对三种土传病原菌的立体选择性生物活性及其对土壤非靶标生物的立体选择性生物毒性。结果表明,由于 S-penthiopyrad 与不同目标病原体中 SDH 的作用模式不同,其生物活性分别是 R-penthiopyrad 的 546 倍、76 倍和 1.1 倍。与 R-penthiopyrad 相比,S-penthiopyrad 在土壤环境中的持久性更强,生物累积性也更强。苯噻菌胺在蚯蚓体内的积累诱导了解毒系统的反应,导致 GST、CarE 和 CYP450 等解毒酶的活性显著增加。此外,S-吡噻菌胺和 R-吡噻菌胺都能诱导蚯蚓细胞凋亡、肠道损伤和不同基因的表达,尤其是 S-吡噻菌胺。此外,S-吡蚜酮与 COL6A 和 ACE 蛋白的结合能力更强,而 R-吡蚜酮与 CYP450 家族蛋白的结合能力更强,这可能是 PEN 对映体之间生物毒性不同的主要原因。考虑到 Penthiopyrad 对映体在生物活性和生物毒性方面的差异,以及农药对目标生物和非目标生物的作用模式,S-penthiopyrad 具有更大的未来开发潜力。
{"title":"Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction.","authors":"Kuan Fang, Tong Liu, Guo Tian, Wei Sun, Xiangwei You, Xiuguo Wang","doi":"10.1016/j.jhazmat.2024.136476","DOIUrl":"10.1016/j.jhazmat.2024.136476","url":null,"abstract":"<p><p>Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136476"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of hazardous materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1