We investigated the potential of tailings from phosphate mining, consisting of phlogopite, carbonate minerals calcite and dolomite, and residues of apatite, to serve as a stabilizing agent in the remediation of Pb-contaminated soil in situ or on-site. In a 2.5-year field trial, test plots located in a former shooting range area were surface-treated with the tailings and analyzed for tailings-induced changes in Pb solubility and thus potential mobility within the soil profile. The factors and mechanisms controlling tailings-induced changes in Pb solubility in various soil types, and the susceptibility of Pb to leaching down the soil profile following the treatment, were investigated in supplementary laboratory-scale experiments carried out with horizon-specific soil samples collected from the field site. In the tailings-treated soil, the dissolution of the carbonate fraction of the tailings and the subsequent increase in soil pH contributed to the displacement of shot-derived Pb2+ ions by the carbonate-derived calcium ions (Ca2+) and the adsorption of Pb2+ by soil organic matter and Al, Fe, and Mn (hydr)oxide surfaces. Moreover, the apatite fraction of the tailings formed poorly-soluble compounds with Pb, particularly in soils high in exchangeable Pb2+ with respect to their cation exchange capacity. Consequently, the Pb solubility in tailings-treated soils substantially decreased. The reduction in Pb solubility was most evident in the organic topsoil high in Pb. Despite the liming effect of the tailings, and the susceptibility of Pb to form organic complexes conducive to solubilization upon an increase in pH, we found no evidence of tailings-induced leaching of Pb down the soil profile.
Reducing the oral bioavailability of metal contaminants including As, Cd, , and Pb in foods can protect human health. Studies showed reduced metal bioavailability with elevated Ca and Fe intake; however, the effectiveness of enhancing food Ca and Fe bioavailability remains unknown. Based on a mouse bioassay and using metal accumulation in mouse tissues (kidneys and liver) as the bioavailability endpoint, this study investigated the roles of casein phosphopeptides (CPP, food nutrition fortifier) in lowering the As, Cd, and Pb bioavailability from consuming a metal-contaminated wheat. The CPP amendment at 0.10–0.50% in wheat promoted its Ca bioavailability, causing 33–62% and 59–80% decreases in the gene expression encoding for duodenal Ca and phosphate transporters in mice. This limited transcellular transport of Cd2+ and inorganic arsenate via Ca and phosphate transporters respectively, thus leading to 27% and 34% decreases in Cd and As contents in mouse kidneys fed with wheat at 0.50% CPP amendment. In addition, CPP promoted the colonization of Feacalibaculum and Bifidobacterium in mouse gut, likely promoting As excretion in feces by 81–112%. In contrast to As, and Cd, CPP failed to reduce Pb contents in mouse tissue after consuming CPP-amended wheat, probably by elevating wheat-Pb solubility in the intestinal fluid by 48–136%. However, co-amendment of 0.30% CPP and 500 μg g−1 Ca as Ca gluconate lowered the As, Cd, and Pb contents in mouse kidneys by 38–71%. The data indicate that fortifying Ca together with CPP in wheat can reduce human exposure to multi-metals via dietary intake.