首页 > 最新文献

Cancer research最新文献

英文 中文
spatialGE is a User-Friendly Web Application that Facilitates Spatial Transcriptomics Data Analysis
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-05 DOI: 10.1158/0008-5472.can-24-2346
Oscar E. Ospina, Roberto Manjarres-Betancur, Guillermo Gonzalez-Calderon, Alex C. Soupir, Inna Smalley, Kenneth Y. Tsai, Joseph Markowitz, Ethan Vallebuona, Anders E. Berglund, Steven A. Eschrich, Xiaoqing Yu, Brooke L. Fridley
Spatial transcriptomics (ST) is a powerful tool for understanding tissue biology and disease mechanisms. However, the advanced data analysis and programming skills required can hinder researchers from realizing of the full potential of ST. To address this, we developed spatialGE, a web application that simplifies the analysis of ST data. The application spatialGE provided a user-friendly interface that guides users without programming expertise through various analysis pipelines, including quality control, normalization, domain detection, phenotyping, and multiple spatial analyses. It also enabled comparative analysis among samples and supported various ST technologies. The utility of spatialGE was demonstrated through its application in studying the tumor microenvironment of two data sets: 10X Visium samples from a cohort of melanoma metastasis and Nanostring CosMx fields of vision from a cohort of Merkel cell carcinoma samples. These results support the ability of spatialGE to identify spatial gene expression patterns that provide valuable insights into the tumor microenvironment and highlight its utility in democratizing ST data analysis for the wider scientific community.
{"title":"spatialGE is a User-Friendly Web Application that Facilitates Spatial Transcriptomics Data Analysis","authors":"Oscar E. Ospina, Roberto Manjarres-Betancur, Guillermo Gonzalez-Calderon, Alex C. Soupir, Inna Smalley, Kenneth Y. Tsai, Joseph Markowitz, Ethan Vallebuona, Anders E. Berglund, Steven A. Eschrich, Xiaoqing Yu, Brooke L. Fridley","doi":"10.1158/0008-5472.can-24-2346","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-2346","url":null,"abstract":"Spatial transcriptomics (ST) is a powerful tool for understanding tissue biology and disease mechanisms. However, the advanced data analysis and programming skills required can hinder researchers from realizing of the full potential of ST. To address this, we developed spatialGE, a web application that simplifies the analysis of ST data. The application spatialGE provided a user-friendly interface that guides users without programming expertise through various analysis pipelines, including quality control, normalization, domain detection, phenotyping, and multiple spatial analyses. It also enabled comparative analysis among samples and supported various ST technologies. The utility of spatialGE was demonstrated through its application in studying the tumor microenvironment of two data sets: 10X Visium samples from a cohort of melanoma metastasis and Nanostring CosMx fields of vision from a cohort of Merkel cell carcinoma samples. These results support the ability of spatialGE to identify spatial gene expression patterns that provide valuable insights into the tumor microenvironment and highlight its utility in democratizing ST data analysis for the wider scientific community.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"abs/2206.03626 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-05 DOI: 10.1158/0008-5472.can-23-2814
Catriona A. Ford, Dana Koludrovic, Patricia P. Centeno, Mona Foth, Elpida Tsonou, Nikola Vlahov, Nathalie Sphyris, Kathryn Gilroy, Courtney Bull, Colin Nixon, Bryan Serrels, Alison F. Munro, John C. Dawson, Neil O. Carragher, Valeria Pavet, David C. Hornigold, Philip D. Dunne, Julian Downward, Heidi C. Welch, Simon T. Barry, Owen J. Sansom, Andrew D. Campbell
Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. While PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacological targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically.
{"title":"Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma","authors":"Catriona A. Ford, Dana Koludrovic, Patricia P. Centeno, Mona Foth, Elpida Tsonou, Nikola Vlahov, Nathalie Sphyris, Kathryn Gilroy, Courtney Bull, Colin Nixon, Bryan Serrels, Alison F. Munro, John C. Dawson, Neil O. Carragher, Valeria Pavet, David C. Hornigold, Philip D. Dunne, Julian Downward, Heidi C. Welch, Simon T. Barry, Owen J. Sansom, Andrew D. Campbell","doi":"10.1158/0008-5472.can-23-2814","DOIUrl":"https://doi.org/10.1158/0008-5472.can-23-2814","url":null,"abstract":"Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. While PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacological targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"79 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Stress-induced CircEPB41(2) Promotes Lipogenesis in Hepatocellular Carcinoma
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-05 DOI: 10.1158/0008-5472.can-24-1630
Yang Yang, Jingjing Luo, Zhongyu Wang, Kaiyue Liu, Keyi Feng, Fang Wang, Yide Mei
The tumor microenvironment plays a pivotal role in the metabolic reprogramming of cancer cells. A better understanding of the underlying mechanisms regulating cancer metabolism could help identify potential therapeutic targets. Here, we identified circEPB41(2) as a metabolically regulated circular RNA that mediates lipid metabolism in hepatocellular carcinoma (HCC). CircEPB41(2) was induced in response to glucose deprivation via HNRNPA1-dependent alternative splicing. Upregulation of circEPB41(2) led to enhanced lipogenic gene expression that promoted lipogenesis. Mechanistically, circEPB41(2) cooperated with the m6A demethylase FTO to decrease the mRNA stability of the histone deacetylase SIRT6, thereby increasing H3K9ac and H3K27ac levels to activate lipogenic gene expression. Silencing of circEPB41(2) inhibited both in vitro proliferation of HCC cells and in vivo growth of tumor xenografts. Clinically, circEPB41(2) was elevated in HCC, and high circEPB41(2) expression was associated with poor patient prognosis. Overall, this study reveals that circEPB41(2) is an important regulator of lipid metabolic reprogramming and indicates that targeting the circEPB41(2)-FTO-SIRT6 axis could represent a promising anti-cancer strategy for treating HCC.
{"title":"Energy Stress-induced CircEPB41(2) Promotes Lipogenesis in Hepatocellular Carcinoma","authors":"Yang Yang, Jingjing Luo, Zhongyu Wang, Kaiyue Liu, Keyi Feng, Fang Wang, Yide Mei","doi":"10.1158/0008-5472.can-24-1630","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1630","url":null,"abstract":"The tumor microenvironment plays a pivotal role in the metabolic reprogramming of cancer cells. A better understanding of the underlying mechanisms regulating cancer metabolism could help identify potential therapeutic targets. Here, we identified circEPB41(2) as a metabolically regulated circular RNA that mediates lipid metabolism in hepatocellular carcinoma (HCC). CircEPB41(2) was induced in response to glucose deprivation via HNRNPA1-dependent alternative splicing. Upregulation of circEPB41(2) led to enhanced lipogenic gene expression that promoted lipogenesis. Mechanistically, circEPB41(2) cooperated with the m6A demethylase FTO to decrease the mRNA stability of the histone deacetylase SIRT6, thereby increasing H3K9ac and H3K27ac levels to activate lipogenic gene expression. Silencing of circEPB41(2) inhibited both in vitro proliferation of HCC cells and in vivo growth of tumor xenografts. Clinically, circEPB41(2) was elevated in HCC, and high circEPB41(2) expression was associated with poor patient prognosis. Overall, this study reveals that circEPB41(2) is an important regulator of lipid metabolic reprogramming and indicates that targeting the circEPB41(2)-FTO-SIRT6 axis could represent a promising anti-cancer strategy for treating HCC.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"133 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LTβR Agonism Promotes Antitumor Immune Responses via Modulation of the Tumor Microenvironment. LTβR激动通过调节肿瘤微环境促进抗肿瘤免疫反应
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-23-2716
Disi An, Guoying Chen, Wei-Yi Cheng, Katja Mohrs, Christina Adler, Namita T Gupta, Gurinder S Atwal, David J DiLillo, Christopher Daly, John C Lin, Frank Kuhnert

The presence of high endothelial venules (HEV) and tertiary lymphoid structures (TLS) in solid tumors is correlated with favorable prognosis and better responses to immune checkpoint blockade in many cancer types. Elucidation of the molecular mechanisms underlying intratumoral HEV and TLS formation and their contribution to antitumor responses may facilitate the development of improved treatment strategies. Lymphotoxin β receptor (LTβR) signaling is a critical regulator of lymph node organogenesis and can cooperate with antiangiogenic and immune checkpoint blockade treatment to augment tumor-associated HEV formation. In this study, we demonstrated that LTβR signaling modulates the tumor microenvironment via multiple mechanisms to promote antitumor T-cell responses. Systemic activation of the LTβR pathway via agonistic antibody treatment induced tumor-specific HEV formation, upregulated the expression of TLS-related chemokines, and enhanced dendritic cell (DC) and T-cell infiltration and activation in syngeneic tumor models. In vitro studies confirmed direct effects of LTβR agonism on DC activation and maturation and associated DC-mediated T-cell activation. Single-agent LTβR agonist treatment inhibited syngeneic tumor growth in a CD8+ T-cell-dependent and HEV-dependent manner, and the LTβR agonist enhanced antitumor effects of anti-PD-1 and CAR T-cell therapies. An in vivo tumor screen for TLS-inducing cytokines revealed that the combination of LTβR agonism and lymphotoxin ⍺ expression promoted robust intratumoral TLS induction and enhanced tumor responses to anti-CTLA4 treatment. Collectively, this study highlights crucial functions of LTβR signaling in modulating the tumor microenvironment and could inform future HEV/TLS-based strategies for cancer treatments. Significance: LTβR mediates tumor-specific  high endothelial venule formation and immunomodulation of the tumor microenvironment that promotes antitumor immune responses, supporting LTβR agonism as an approach to enhance the antitumor efficacy of immunotherapies.

在许多癌症类型中,实体瘤中高内皮静脉(HEV)和三级淋巴结构(TLS)的存在与良好的预后和对免疫检查点阻断(ICB)更好的反应相关。阐明瘤内 HEV 和 TLS 形成的分子机制及其对抗肿瘤反应的贡献可能有助于开发出更好的治疗策略。淋巴毒素β受体(LTβR)信号传导是淋巴结器官形成的关键调节因子,可与抗血管生成和ICB治疗合作,增强肿瘤相关HEV的形成。在这里,我们证明了 LTβR 信号通过多种机制调节肿瘤微环境以促进抗肿瘤 T 细胞反应。通过激动抗体治疗全身激活 LTβR 通路可诱导肿瘤特异性 HEV 的形成,上调 TLS 相关趋化因子的表达,并增强树突状细胞(DC)和 T 细胞在合成肿瘤模型中的浸润和活化。体外研究证实了 LTβR 激动对 DC 活化和成熟以及相关的 DC 介导的 T 细胞活化的直接影响。单剂 LTβR 激动剂治疗能以 CD8+ T 细胞和 HEV 依赖性方式抑制合成肿瘤的生长,LTβR 激动剂还能增强抗 PD-1 和 CAR T 细胞疗法的抗肿瘤效果。对体内肿瘤TLS诱导细胞因子的筛选显示,LTβR激动和淋巴毒素α(LT⍺)表达的结合促进了肿瘤内TLS的强效诱导,增强了肿瘤对抗CTLA-4治疗的反应。总之,这项研究强调了LTβR信号在调节肿瘤微环境中的关键功能,并为未来基于HEV/TLS的癌症治疗策略提供了参考。
{"title":"LTβR Agonism Promotes Antitumor Immune Responses via Modulation of the Tumor Microenvironment.","authors":"Disi An, Guoying Chen, Wei-Yi Cheng, Katja Mohrs, Christina Adler, Namita T Gupta, Gurinder S Atwal, David J DiLillo, Christopher Daly, John C Lin, Frank Kuhnert","doi":"10.1158/0008-5472.CAN-23-2716","DOIUrl":"10.1158/0008-5472.CAN-23-2716","url":null,"abstract":"<p><p>The presence of high endothelial venules (HEV) and tertiary lymphoid structures (TLS) in solid tumors is correlated with favorable prognosis and better responses to immune checkpoint blockade in many cancer types. Elucidation of the molecular mechanisms underlying intratumoral HEV and TLS formation and their contribution to antitumor responses may facilitate the development of improved treatment strategies. Lymphotoxin β receptor (LTβR) signaling is a critical regulator of lymph node organogenesis and can cooperate with antiangiogenic and immune checkpoint blockade treatment to augment tumor-associated HEV formation. In this study, we demonstrated that LTβR signaling modulates the tumor microenvironment via multiple mechanisms to promote antitumor T-cell responses. Systemic activation of the LTβR pathway via agonistic antibody treatment induced tumor-specific HEV formation, upregulated the expression of TLS-related chemokines, and enhanced dendritic cell (DC) and T-cell infiltration and activation in syngeneic tumor models. In vitro studies confirmed direct effects of LTβR agonism on DC activation and maturation and associated DC-mediated T-cell activation. Single-agent LTβR agonist treatment inhibited syngeneic tumor growth in a CD8+ T-cell-dependent and HEV-dependent manner, and the LTβR agonist enhanced antitumor effects of anti-PD-1 and CAR T-cell therapies. An in vivo tumor screen for TLS-inducing cytokines revealed that the combination of LTβR agonism and lymphotoxin ⍺ expression promoted robust intratumoral TLS induction and enhanced tumor responses to anti-CTLA4 treatment. Collectively, this study highlights crucial functions of LTβR signaling in modulating the tumor microenvironment and could inform future HEV/TLS-based strategies for cancer treatments. Significance: LTβR mediates tumor-specific  high endothelial venule formation and immunomodulation of the tumor microenvironment that promotes antitumor immune responses, supporting LTβR agonism as an approach to enhance the antitumor efficacy of immunotherapies.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"3984-4001"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NUAK1-Mediated Phosphorylation of NADK Mitigates ROS Accumulation to Promote Osimertinib Resistance in Non-Small Cell Lung Carcinoma. NUAK1 介导的 NADK 磷酸化缓解了 ROS 的积累,从而促进了非小细胞肺癌对奥希替尼的耐药性。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-24-0249
Wei Lin, Na Wang, Shihao Wu, Mingxin Diao, Quanfu Huang, Kuo Li, Peiyuan Mei, Xiaojun Wang, Yongde Liao, Yunchong Meng

Osimertinib, a third generation epidermal growth factor receptor tyrosine kinase inhibitor, is approved as a first-line therapy in patients with advanced non-small cell lung carcinoma (NSCLC) with EGFR-activating mutations or the T790M resistance mutation. However, the efficacy of osimertinib is limited due to acquired resistance, highlighting the need to elucidate resistance mechanisms to facilitate the development of improved treatment strategies. Here, we screened for significantly upregulated genes encoding protein kinases in osimertinib-resistant NSCLC cells and identified NUAK1 as a pivotal regulator of osimertinib resistance. NUAK1 was highly expressed in osimertinib-resistant NSCLC and promoted the emergence of osimertinib resistance. Genetic or pharmacological blockade of NUAK1 restored the sensitivity of resistant NSCLC cells to osimertinib in vitro and in vivo. Mechanistically, NUAK1 directly interacted with and phosphorylated nicotinamide adenine dinucleotide kinase (NADK) at serine 64 (S64), which mitigated osimertinib-induced accumulation of reactive oxygen species (ROS) and contributed to the acquisition of osimertinib resistance in NSCLC. Furthermore, virtual drug screening identified T21195 as an inhibitor of NADK-S64 phosphorylation, and T21195 synergized with osimertinib to reverse acquired resistance by inducing ROS accumulation. Collectively, these findings highlight the role of the NUAK1-NADK axis in governing osimertinib resistance in NSCLC and indicate the potential of targeting this axis as a strategy for circumventing resistance. Significance: Phosphorylation of NADK by NUAK1 diminishes ROS accumulation and confers resistance to osimertinib, identifying NUAK1-NADK signaling as a potential therapeutic target for improving the response to EGFR inhibition in lung cancer.

奥希替尼是第三代表皮生长因子受体酪氨酸激酶抑制剂,已被批准作为表皮生长因子受体激活突变或T790M耐药突变晚期非小细胞肺癌(NSCLC)患者的一线疗法。然而,奥希替尼的疗效因获得性耐药而受到限制,这凸显了阐明耐药机制以促进改良治疗策略开发的必要性。在此,我们筛选了奥希替尼耐药的NSCLC细胞中编码蛋白激酶的明显上调基因,发现NUAK1是奥希替尼耐药的关键调控因子。NUAK1在奥希替尼耐药的NSCLC中高表达,并促进了奥希替尼耐药的出现。通过基因或药物阻断NUAK1,可以在体外和体内恢复耐药NSCLC细胞对奥希替尼的敏感性。从机理上讲,NUAK1直接与NADK相互作用并使其丝氨酸64(S64)磷酸化,从而缓解了奥希替尼诱导的活性氧(ROS)积累,并促使NSCLC获得奥希替尼耐药性。此外,虚拟药物筛选发现T21195是NADK-S64磷酸化的抑制剂,T21195与奥希替尼协同作用,通过诱导ROS积累逆转获得性耐药性。总之,这些发现强调了NUAK1-NADK轴在NSCLC中调控奥希替尼耐药性的作用,并表明靶向该轴作为一种规避耐药性策略的潜力。
{"title":"NUAK1-Mediated Phosphorylation of NADK Mitigates ROS Accumulation to Promote Osimertinib Resistance in Non-Small Cell Lung Carcinoma.","authors":"Wei Lin, Na Wang, Shihao Wu, Mingxin Diao, Quanfu Huang, Kuo Li, Peiyuan Mei, Xiaojun Wang, Yongde Liao, Yunchong Meng","doi":"10.1158/0008-5472.CAN-24-0249","DOIUrl":"10.1158/0008-5472.CAN-24-0249","url":null,"abstract":"<p><p>Osimertinib, a third generation epidermal growth factor receptor tyrosine kinase inhibitor, is approved as a first-line therapy in patients with advanced non-small cell lung carcinoma (NSCLC) with EGFR-activating mutations or the T790M resistance mutation. However, the efficacy of osimertinib is limited due to acquired resistance, highlighting the need to elucidate resistance mechanisms to facilitate the development of improved treatment strategies. Here, we screened for significantly upregulated genes encoding protein kinases in osimertinib-resistant NSCLC cells and identified NUAK1 as a pivotal regulator of osimertinib resistance. NUAK1 was highly expressed in osimertinib-resistant NSCLC and promoted the emergence of osimertinib resistance. Genetic or pharmacological blockade of NUAK1 restored the sensitivity of resistant NSCLC cells to osimertinib in vitro and in vivo. Mechanistically, NUAK1 directly interacted with and phosphorylated nicotinamide adenine dinucleotide kinase (NADK) at serine 64 (S64), which mitigated osimertinib-induced accumulation of reactive oxygen species (ROS) and contributed to the acquisition of osimertinib resistance in NSCLC. Furthermore, virtual drug screening identified T21195 as an inhibitor of NADK-S64 phosphorylation, and T21195 synergized with osimertinib to reverse acquired resistance by inducing ROS accumulation. Collectively, these findings highlight the role of the NUAK1-NADK axis in governing osimertinib resistance in NSCLC and indicate the potential of targeting this axis as a strategy for circumventing resistance. Significance: Phosphorylation of NADK by NUAK1 diminishes ROS accumulation and confers resistance to osimertinib, identifying NUAK1-NADK signaling as a potential therapeutic target for improving the response to EGFR inhibition in lung cancer.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"4081-4098"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B7-H3-Targeted CAR-Vδ1T Cells Exhibit Potent Broad-Spectrum Activity against Solid Tumors. B7-H3靶向CAR-Vδ1T细胞对实体瘤具有强效广谱活性
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-24-0195
Licui Jiang, Fengtao You, Hai Wu, Changsong Qi, Shufen Xiang, Ping Zhang, Huimin Meng, Min Wang, Jiequn Huang, Yafen Li, Dan Chen, Gangli An, Nan Yang, Bozhen Zhang, Lin Shen, Lin Yang

Vδ1T cells, a rare subset of γδT cells, hold promise for treating solid tumors. Unlike conventional T cells, they recognize tumor antigens independently of the MHC antigen presentation pathway, making them a potential "off-the-shelf" cell therapy product. However, isolation and activation of Vδ1T cells is challenging, which has limited their clinical investigation. Here, we developed a large-scale clinical-grade manufacturing process for Vδ1T cells and validated the therapeutic potential of B7-H3 chimeric antigen receptor (CAR)-modified Vδ1T cells in treating solid tumors. Coexpression of IL2 with the B7-H3-CAR led to durable antitumor activity of Vδ1T cells in vitro and in vivo. In multiple subcutaneous and orthotopic mouse xenograft tumor models, a single intravenous administration of the CAR-Vδ1T cells resulted in complete tumor regression. These modified cells demonstrated significant in vivo expansion and robust homing ability to tumors, akin to natural tissue-resident immune cells. Additionally, the B7-H3-CAR-Vδ1T cells exhibited a favorable safety profile. In conclusion, B7-H3-CAR-modified Vδ1T cells represent a promising strategy for treating solid tumors. Significance: A clinical-grade expansion protocol enabled generation of B7-H3-targeted CAR-Vδ1T cells with robust anticancer activity and a favorable safety profile, supporting the potential of CAR-Vδ1T cells as an "off-the-shelf" therapy for solid tumors.

Vδ1T细胞是γδT细胞的一个罕见亚群,有望用于治疗实体瘤。与传统的 T 细胞不同,它们能独立于 MHC 抗原递呈途径识别肿瘤抗原,因此有可能成为 "现成的 "细胞疗法产品。然而,Vδ1T 细胞的分离和活化具有挑战性,这限制了它们的临床研究。在这里,我们开发了一种大规模临床级 Vδ1T 细胞制造工艺,并验证了 B7-H3-CAR 修饰的 Vδ1T 细胞在治疗实体瘤方面的治疗潜力。白细胞介素-2与B7-H3-CAR的联合表达使Vδ1T细胞在体外和体内具有持久的抗肿瘤活性。在多个皮下和正位小鼠异种移植肿瘤模型中,单次静脉注射 CAR-Vδ1T 细胞可使肿瘤完全消退。这些经过修饰的细胞在体内具有明显的扩增能力和强大的肿瘤归巢能力,类似于天然组织驻留免疫细胞。此外,B7-H3-CAR-Vδ1T 细胞还具有良好的安全性。总之,B7-H3-CAR修饰的Vδ1T细胞是一种治疗实体瘤的有前途的策略。
{"title":"B7-H3-Targeted CAR-Vδ1T Cells Exhibit Potent Broad-Spectrum Activity against Solid Tumors.","authors":"Licui Jiang, Fengtao You, Hai Wu, Changsong Qi, Shufen Xiang, Ping Zhang, Huimin Meng, Min Wang, Jiequn Huang, Yafen Li, Dan Chen, Gangli An, Nan Yang, Bozhen Zhang, Lin Shen, Lin Yang","doi":"10.1158/0008-5472.CAN-24-0195","DOIUrl":"10.1158/0008-5472.CAN-24-0195","url":null,"abstract":"<p><p>Vδ1T cells, a rare subset of γδT cells, hold promise for treating solid tumors. Unlike conventional T cells, they recognize tumor antigens independently of the MHC antigen presentation pathway, making them a potential \"off-the-shelf\" cell therapy product. However, isolation and activation of Vδ1T cells is challenging, which has limited their clinical investigation. Here, we developed a large-scale clinical-grade manufacturing process for Vδ1T cells and validated the therapeutic potential of B7-H3 chimeric antigen receptor (CAR)-modified Vδ1T cells in treating solid tumors. Coexpression of IL2 with the B7-H3-CAR led to durable antitumor activity of Vδ1T cells in vitro and in vivo. In multiple subcutaneous and orthotopic mouse xenograft tumor models, a single intravenous administration of the CAR-Vδ1T cells resulted in complete tumor regression. These modified cells demonstrated significant in vivo expansion and robust homing ability to tumors, akin to natural tissue-resident immune cells. Additionally, the B7-H3-CAR-Vδ1T cells exhibited a favorable safety profile. In conclusion, B7-H3-CAR-modified Vδ1T cells represent a promising strategy for treating solid tumors. Significance: A clinical-grade expansion protocol enabled generation of B7-H3-targeted CAR-Vδ1T cells with robust anticancer activity and a favorable safety profile, supporting the potential of CAR-Vδ1T cells as an \"off-the-shelf\" therapy for solid tumors.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"4066-4080"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Structural Racism and Social Determinants of Health on Disparities in Breast Cancer Mortality. 结构性种族主义和健康的社会决定因素对乳腺癌死亡率差异的影响。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-24-1359
Mary Falcone, Bodour Salhia, Chanita Hughes Halbert, Evanthia T Roussos Torres, Daphne Stewart, Mariana C Stern, Caryn Lerman

The striking ethnic and racial disparities in breast cancer mortality are not explained fully by pathologic or clinical features. Structural racism contributes to adverse conditions that promote cancer inequities, but the pathways by which this occurs are not fully understood. Social determinants of health, such as economic status and access to care, account for a portion of this variability, yet interventions designed to mitigate these barriers have not consistently led to improved outcomes. Based on the current evidence from multiple disciplines, we describe a conceptual model in which structural racism and racial discrimination contribute to increased mortality risk in diverse groups of patients by promoting adverse social determinants of health that elevate exposure to environmental hazards and stress; these exposures in turn contribute to epigenetic and immune dysregulation, thereby altering breast cancer outcomes. Based on this model, opportunities and challenges arise for interventions to reduce racial and ethnic disparities in breast cancer mortality.

病理或临床特征并不能完全解释乳腺癌死亡率中存在的显著的民族和种族差异。结构性种族主义造成了助长癌症不平等的不利条件,但这种情况发生的途径还不完全清楚。健康的社会决定因素(SDOH),如经济状况和获得医疗服务的机会,是造成这种差异的部分原因,但旨在缓解这些障碍的干预措施并没有持续改善结果。根据目前来自多个学科的证据,我们描述了一个概念模型,在该模型中,结构性种族主义和种族歧视通过促进不利的 SDOH,增加暴露于环境危害和压力的机会,从而导致不同患者群体的死亡风险增加;这些暴露反过来又会导致表观遗传和免疫失调,从而改变乳腺癌的预后。基于这一模式,为减少乳腺癌死亡率中的种族和民族差异而采取的干预措施既面临机遇,也面临挑战。
{"title":"Impact of Structural Racism and Social Determinants of Health on Disparities in Breast Cancer Mortality.","authors":"Mary Falcone, Bodour Salhia, Chanita Hughes Halbert, Evanthia T Roussos Torres, Daphne Stewart, Mariana C Stern, Caryn Lerman","doi":"10.1158/0008-5472.CAN-24-1359","DOIUrl":"10.1158/0008-5472.CAN-24-1359","url":null,"abstract":"<p><p>The striking ethnic and racial disparities in breast cancer mortality are not explained fully by pathologic or clinical features. Structural racism contributes to adverse conditions that promote cancer inequities, but the pathways by which this occurs are not fully understood. Social determinants of health, such as economic status and access to care, account for a portion of this variability, yet interventions designed to mitigate these barriers have not consistently led to improved outcomes. Based on the current evidence from multiple disciplines, we describe a conceptual model in which structural racism and racial discrimination contribute to increased mortality risk in diverse groups of patients by promoting adverse social determinants of health that elevate exposure to environmental hazards and stress; these exposures in turn contribute to epigenetic and immune dysregulation, thereby altering breast cancer outcomes. Based on this model, opportunities and challenges arise for interventions to reduce racial and ethnic disparities in breast cancer mortality.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"3924-3935"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYC Drives mRNA Pseudouridylation to Mitigate Proliferation-Induced Cellular Stress during Cancer Development. MYC 驱动 mRNA 伪酸化,以减轻癌症发展过程中增殖诱导的细胞压力。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-24-1102
Jane Ding, Mohit Bansal, Yuxia Cao, Bingwei Ye, Rui Mao, Anamika Gupta, Sunil Sudarshan, Han-Fei Ding

Pseudouridylation is a common RNA modification that is catalyzed by the family of pseudouridine synthases (PUS). Pseudouridylation can increase RNA stability and rigidity, thereby impacting RNA splicing, processing, and translation. Given that RNA metabolism is frequently altered in cancer, pseudouridylation may be a functionally important process in tumor biology. Here, we show that the MYC family of oncoproteins transcriptionally upregulates PUS7 expression during cancer development. PUS7 is essential for the growth and survival of MYC-driven cancer cells and xenografts by promoting adaptive stress responses and amino acid biosynthesis and import. ATF4, a master regulator of stress responses and cellular metabolism, was identified as a key downstream mediator of PUS7 functional activity. Induction of ATF4 by MYC oncoproteins and cellular stress required PUS7, and ATF4 overexpression overcame the growth inhibition caused by PUS7 deficiency. Mechanistically, PUS7 induced pseudouridylation of MCTS1 mRNA, which enhanced its translation. MCTS1, a noncanonical translation initiation factor, drove stress-induced ATF4 protein expression. A PUS7 consensus pseudouridylation site in the 3' untranslated region of ATF4 mRNA was crucial for the induction of ATF4 by cellular stress. These findings unveil an MYC-activated mRNA pseudouridylation program that mitigates cellular stress induced by MYC stimulation of proliferation and biomass production, suggesting that targeting PUS7 could be a therapeutic strategy selectively against MYC-driven cancers. Significance: Oncogene activation of mRNA pseudouridylation is a mechanism that facilitates metabolic reprogramming and adaptive responses to overcome cellular stress during cancer development.

假尿苷化是一种常见的 RNA 修饰,由假尿苷合成酶(PUS)家族催化。假尿苷化可增加 RNA 的稳定性和刚性,从而影响 RNA 的剪接、加工和翻译。鉴于 RNA 代谢在癌症中经常发生改变,假尿苷化可能是肿瘤生物学中一个重要的功能过程。在这里,我们发现 MYC 癌症蛋白家族在癌症发展过程中会转录上调 PUS7 的表达。通过促进适应性应激反应以及氨基酸的生物合成和输入,PUS7 对 MYC 驱动的癌细胞和异种移植物的生长和存活至关重要。ATF4 是应激反应和细胞新陈代谢的主调节因子,被确定为 PUS7 功能活性的关键下游介质。MYC癌蛋白和细胞应激需要PUS7来诱导ATF4,ATF4的过表达克服了PUS7缺乏所导致的生长抑制。从机制上讲,PUS7诱导了MCTS1 mRNA的假酰化,从而增强了其翻译。MCTS1是一种非规范翻译起始因子,它能驱动应激诱导的ATF4蛋白表达。ATF4 mRNA 3' 非翻译区的一个 PUS7 共识伪酰化位点对细胞应激诱导 ATF4 起着关键作用。这些发现揭示了一种MYC激活的mRNA假酸化程序,该程序可减轻MYC刺激增殖和生物量产生所诱导的细胞应激,这表明针对PUS7的治疗策略可选择性地对抗MYC驱动的癌症。
{"title":"MYC Drives mRNA Pseudouridylation to Mitigate Proliferation-Induced Cellular Stress during Cancer Development.","authors":"Jane Ding, Mohit Bansal, Yuxia Cao, Bingwei Ye, Rui Mao, Anamika Gupta, Sunil Sudarshan, Han-Fei Ding","doi":"10.1158/0008-5472.CAN-24-1102","DOIUrl":"10.1158/0008-5472.CAN-24-1102","url":null,"abstract":"<p><p>Pseudouridylation is a common RNA modification that is catalyzed by the family of pseudouridine synthases (PUS). Pseudouridylation can increase RNA stability and rigidity, thereby impacting RNA splicing, processing, and translation. Given that RNA metabolism is frequently altered in cancer, pseudouridylation may be a functionally important process in tumor biology. Here, we show that the MYC family of oncoproteins transcriptionally upregulates PUS7 expression during cancer development. PUS7 is essential for the growth and survival of MYC-driven cancer cells and xenografts by promoting adaptive stress responses and amino acid biosynthesis and import. ATF4, a master regulator of stress responses and cellular metabolism, was identified as a key downstream mediator of PUS7 functional activity. Induction of ATF4 by MYC oncoproteins and cellular stress required PUS7, and ATF4 overexpression overcame the growth inhibition caused by PUS7 deficiency. Mechanistically, PUS7 induced pseudouridylation of MCTS1 mRNA, which enhanced its translation. MCTS1, a noncanonical translation initiation factor, drove stress-induced ATF4 protein expression. A PUS7 consensus pseudouridylation site in the 3' untranslated region of ATF4 mRNA was crucial for the induction of ATF4 by cellular stress. These findings unveil an MYC-activated mRNA pseudouridylation program that mitigates cellular stress induced by MYC stimulation of proliferation and biomass production, suggesting that targeting PUS7 could be a therapeutic strategy selectively against MYC-driven cancers. Significance: Oncogene activation of mRNA pseudouridylation is a mechanism that facilitates metabolic reprogramming and adaptive responses to overcome cellular stress during cancer development.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"4031-4048"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular Vesicle-Packaged ACSL4 Induces Hepatocyte Senescence to Promote Hepatocellular Carcinoma Progression. 细胞外囊泡包裹的ACSL4诱导肝细胞衰老,促进肝细胞癌进展
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.CAN-24-0832
Pei-Pei Hou, Chong-Ming Zheng, Si-Hong Wu, Xi-Xiao Liu, Guang-Xin Xiang, Wei-Yang Cai, Gang Chen, Yong-Liang Lou

Extracellular vesicles (EV) derived from cancer cells are crucial mediators of intercellular communication during tumor progression. The cargo in tumor-derived EVs that facilitates the establishment of a tumor-supportive microenvironment could serve as a therapeutic target to improve cancer treatment. Here, we demonstrated that hepatocellular carcinoma (HCC) cells secreted the acyl-CoA synthetase long-chain family member 4 (ACSL4) in large EVs (lEV) to modulate tumor-microenvironment interactions that promote HCC progression. HCC-derived lEV ACSL4 increased the intracellular abundance of polyunsaturated fatty acid-containing lipids and remodeled the lipid profile to potentiate lipid peroxidation in peritumoral hepatocytes, resulting in hepatocyte senescence accompanied by the senescence-associated secretory phenotype. Depletion of senescent hepatocytes by senolytic treatment suppressed tumor progression. In HCC cells, SREBP2-mediated transcriptional activation upregulated ACSL4 expression, and Akt-mediated phosphorylation of ACSL4 induced its packaging into lEVs by augmenting its interaction with Annexin A2. This study identified the critical regulatory function of ACSL4 secreted from HCC cells in inducing lipid remodeling and senescence in hepatocytes to support HCC progression, suggesting that targeting lEV ACSL4 is a potential therapeutic strategy for HCC. Significance: Peritumoral hepatocyte senescence mediated by ACSL4 secreted from hepatocellular carcinoma cells in extracellular vesicles promotes tumor progression through a senescence secretome and represents a therapeutic target in liver cancer.

源自癌细胞的胞外囊泡 (EV) 是肿瘤发展过程中细胞间交流的关键媒介。肿瘤衍生EVs中有助于建立肿瘤支持性微环境的载体可作为改善癌症治疗的治疗靶点。在这里,我们证实肝细胞癌(HCC)细胞在大细胞外囊泡(lEVs)中分泌酰基-CoA合成酶ACSL4,以调节肿瘤与微环境之间的相互作用,从而促进HCC的进展。HCC 源性 lEV ACSL4 增加了细胞内含多不饱和脂肪酸脂质的丰度,并重塑了脂质谱,从而增强了瘤周肝细胞的脂质过氧化,导致肝细胞衰老,并伴有衰老相关分泌表型(SASP)。通过溶酶治疗清除衰老肝细胞可抑制肿瘤的进展。在HCC细胞中,SREBP2介导的转录激活上调了ACSL4的表达,Akt介导的ACSL4磷酸化通过增强其与Annexin A2的相互作用诱导其包装成lEVs。这项研究确定了 HCC 细胞分泌的 ACSL4 在诱导肝细胞脂质重塑和衰老以支持 HCC 进展中的关键调控功能,表明针对 lEV 的 ACSL4 是一种潜在的 HCC 治疗策略。
{"title":"Extracellular Vesicle-Packaged ACSL4 Induces Hepatocyte Senescence to Promote Hepatocellular Carcinoma Progression.","authors":"Pei-Pei Hou, Chong-Ming Zheng, Si-Hong Wu, Xi-Xiao Liu, Guang-Xin Xiang, Wei-Yang Cai, Gang Chen, Yong-Liang Lou","doi":"10.1158/0008-5472.CAN-24-0832","DOIUrl":"10.1158/0008-5472.CAN-24-0832","url":null,"abstract":"<p><p>Extracellular vesicles (EV) derived from cancer cells are crucial mediators of intercellular communication during tumor progression. The cargo in tumor-derived EVs that facilitates the establishment of a tumor-supportive microenvironment could serve as a therapeutic target to improve cancer treatment. Here, we demonstrated that hepatocellular carcinoma (HCC) cells secreted the acyl-CoA synthetase long-chain family member 4 (ACSL4) in large EVs (lEV) to modulate tumor-microenvironment interactions that promote HCC progression. HCC-derived lEV ACSL4 increased the intracellular abundance of polyunsaturated fatty acid-containing lipids and remodeled the lipid profile to potentiate lipid peroxidation in peritumoral hepatocytes, resulting in hepatocyte senescence accompanied by the senescence-associated secretory phenotype. Depletion of senescent hepatocytes by senolytic treatment suppressed tumor progression. In HCC cells, SREBP2-mediated transcriptional activation upregulated ACSL4 expression, and Akt-mediated phosphorylation of ACSL4 induced its packaging into lEVs by augmenting its interaction with Annexin A2. This study identified the critical regulatory function of ACSL4 secreted from HCC cells in inducing lipid remodeling and senescence in hepatocytes to support HCC progression, suggesting that targeting lEV ACSL4 is a potential therapeutic strategy for HCC. Significance: Peritumoral hepatocyte senescence mediated by ACSL4 secreted from hepatocellular carcinoma cells in extracellular vesicles promotes tumor progression through a senescence secretome and represents a therapeutic target in liver cancer.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"3953-3966"},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tales of Cancer-Induced Bone Disease from the Senescent Osteocyte Crypt
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-02 DOI: 10.1158/0008-5472.can-24-3611
Jeremy S. Frieling, Conor C. Lynch
Cancer-induced bone disease greatly diminishes the quality of life for patients with bone metastatic breast cancer, resulting in painful skeletal-related events including bone loss and fracture. Improved understanding of the roles of osteoblasts and osteoclasts, and how tumors alter their biology, has led to blockbuster therapies that significantly reduce skeletal-related events, but the disease remains incurable. However, emerging technologies and tools for studying the role of other stromal and immune components in controlling tumor–host interactions have begun to reveal new insights that may yield tractable therapeutic targets to further mitigate the painful effects of bone metastases. In this issue of Cancer Research, Kaur and colleagues study osteocytes, which are terminally differentiated osteoblasts and entombed within the bone matrix, from established bone metastatic breast cancer and report how the disease ages them as characterized by a senescence-associated secretory phenotype. This premature development of osteocyte senescence in turn enhances bone destruction and osteoclastogenic potential. Targeting senescent cells using senolytics suppressed bone resorption and preserved bone mass. Collectively, these findings underscore osteocyte involvement in the “vicious cycle” of bone metastasis, and targeting senescent osteocytes represents a new avenue for managing cancer-induced bone disease.See related article by Kaur et al., p. 3936
{"title":"Tales of Cancer-Induced Bone Disease from the Senescent Osteocyte Crypt","authors":"Jeremy S. Frieling, Conor C. Lynch","doi":"10.1158/0008-5472.can-24-3611","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-3611","url":null,"abstract":"Cancer-induced bone disease greatly diminishes the quality of life for patients with bone metastatic breast cancer, resulting in painful skeletal-related events including bone loss and fracture. Improved understanding of the roles of osteoblasts and osteoclasts, and how tumors alter their biology, has led to blockbuster therapies that significantly reduce skeletal-related events, but the disease remains incurable. However, emerging technologies and tools for studying the role of other stromal and immune components in controlling tumor–host interactions have begun to reveal new insights that may yield tractable therapeutic targets to further mitigate the painful effects of bone metastases. In this issue of Cancer Research, Kaur and colleagues study osteocytes, which are terminally differentiated osteoblasts and entombed within the bone matrix, from established bone metastatic breast cancer and report how the disease ages them as characterized by a senescence-associated secretory phenotype. This premature development of osteocyte senescence in turn enhances bone destruction and osteoclastogenic potential. Targeting senescent cells using senolytics suppressed bone resorption and preserved bone mass. Collectively, these findings underscore osteocyte involvement in the “vicious cycle” of bone metastasis, and targeting senescent osteocytes represents a new avenue for managing cancer-induced bone disease.See related article by Kaur et al., p. 3936","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"20 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1