Pub Date : 2025-02-04DOI: 10.1158/0008-5472.can-24-0707
Brandon J. Metge, Li'an Williams, Courtney A. Swain, Dominique C. Hinshaw, Amr R. Elhamamsy, Dongquan Chen, Rajeev S. Samant, Lalita A. Shevde
Macrophages are important cellular components of the innate immune system, serving as the first line of immune defense. They are also among the first immune cells to be reprogrammed by the evolving tumor milieu into tumor-supportive macrophages that facilitate tumor progression and promote therapeutic evasion. Here, we uncovered that macrophages from preneoplastic breast lesions were enriched for ribosome biosynthesis genes, indicating that this is an early event that is maintained in the tumor tissue. Furthermore, following treatment with irradiation or chemotherapy, breast tumors featured an abundance of tumor-supporting macrophages that displayed an enrichment of signatures of ribosomal RNA expression and ribosome biosynthesis. Consistently, rRNA synthesis was increased in tumor-supportive macrophages. In preclinical models of mammary cancer, a low dose of the RNA biogenesis inhibitor BMH-21 converted pro-tumor macrophages to tumor-suppressive macrophages and supported an inflammatory tumor microenvironment. Inhibition of rRNA transcription stimulated a nucleolar stress response that activated the p53 and NF-κB pathways, which orchestrated impaired ribosome biogenesis checkpoint signaling that induced an inflammatory program in macrophages. Finally, inhibiting ribosome biogenesis augmented the effectiveness of neoadjuvant therapy. Together, these findings provide evidence that ribosome biogenesis is a targetable dependency to reprogram the tumor immune microenvironment.
{"title":"Ribosomal RNA Biosynthesis Functionally Programs Tumor-Associated Macrophages to Support Breast Cancer Progression","authors":"Brandon J. Metge, Li'an Williams, Courtney A. Swain, Dominique C. Hinshaw, Amr R. Elhamamsy, Dongquan Chen, Rajeev S. Samant, Lalita A. Shevde","doi":"10.1158/0008-5472.can-24-0707","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-0707","url":null,"abstract":"Macrophages are important cellular components of the innate immune system, serving as the first line of immune defense. They are also among the first immune cells to be reprogrammed by the evolving tumor milieu into tumor-supportive macrophages that facilitate tumor progression and promote therapeutic evasion. Here, we uncovered that macrophages from preneoplastic breast lesions were enriched for ribosome biosynthesis genes, indicating that this is an early event that is maintained in the tumor tissue. Furthermore, following treatment with irradiation or chemotherapy, breast tumors featured an abundance of tumor-supporting macrophages that displayed an enrichment of signatures of ribosomal RNA expression and ribosome biosynthesis. Consistently, rRNA synthesis was increased in tumor-supportive macrophages. In preclinical models of mammary cancer, a low dose of the RNA biogenesis inhibitor BMH-21 converted pro-tumor macrophages to tumor-suppressive macrophages and supported an inflammatory tumor microenvironment. Inhibition of rRNA transcription stimulated a nucleolar stress response that activated the p53 and NF-κB pathways, which orchestrated impaired ribosome biogenesis checkpoint signaling that induced an inflammatory program in macrophages. Finally, inhibiting ribosome biogenesis augmented the effectiveness of neoadjuvant therapy. Together, these findings provide evidence that ribosome biogenesis is a targetable dependency to reprogram the tumor immune microenvironment.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"10 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143125444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.can-24-3879
Hannah E. Trembath, Philip M. Spanheimer
Racial disparities in cancer outcomes are well documented across tumor types. For patients with breast cancer, Black women are more likely to present with more aggressive molecular features and more likely to die from disease, even after accounting for those features. Recent efforts have been aimed at developing translational model systems for precision medicine strategies, and a major focus has been on patient-derived organoids. Organoids allow for robust in vitro experimental platforms, including drug and CRISPR screens while maintaining more complex cancer and tumor microenvironment subpopulations than cell lines. For results that are broadly translationally relevant, it is important that cancer models are derived from the spectrum of human disease and humans with disease. In this issue of Cancer Research, Madorsky Rowdo and colleagues derive breast cancer organoids from patients with African ancestry and use CRISPR-Cas9 screens to identify novel therapeutic vulnerabilities. These findings demonstrate the promise of representative cancer model systems to facilitate discoveries that are most likely to translate to improved therapy for all patients. See related article by Madorsky Rowdo et al., p. 551
{"title":"In Search of Representative Translational Cancer Model Systems","authors":"Hannah E. Trembath, Philip M. Spanheimer","doi":"10.1158/0008-5472.can-24-3879","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-3879","url":null,"abstract":"Racial disparities in cancer outcomes are well documented across tumor types. For patients with breast cancer, Black women are more likely to present with more aggressive molecular features and more likely to die from disease, even after accounting for those features. Recent efforts have been aimed at developing translational model systems for precision medicine strategies, and a major focus has been on patient-derived organoids. Organoids allow for robust in vitro experimental platforms, including drug and CRISPR screens while maintaining more complex cancer and tumor microenvironment subpopulations than cell lines. For results that are broadly translationally relevant, it is important that cancer models are derived from the spectrum of human disease and humans with disease. In this issue of Cancer Research, Madorsky Rowdo and colleagues derive breast cancer organoids from patients with African ancestry and use CRISPR-Cas9 screens to identify novel therapeutic vulnerabilities. These findings demonstrate the promise of representative cancer model systems to facilitate discoveries that are most likely to translate to improved therapy for all patients. See related article by Madorsky Rowdo et al., p. 551","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"157 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.CAN-23-4027
Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech
Tumor-associated macrophages (TAM) are a heterogeneous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment. In this study, we unveiled a mechanism by which scavenger receptor cluster of differentiation 36 (CD36) suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I IFN (IFNI) production, mirroring the inverse correlation between CD36 and IFNI response observed in patients with cancer. IFNI, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFNI signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacologic inhibition of CD36 to rejuvenate antitumor immunity. Significance: CD36 in tumor-associated macrophages mediates immunosuppression and can be targeted as a therapeutic avenue for stimulating interferon production and increasing the efficacy of immunotherapy.
肿瘤相关巨噬细胞(TAMs)是髓系细胞的一个异质群体,它决定着肿瘤微环境(TME)的炎症基调。本研究揭示了清道夫受体 CD36 抑制 TAM 炎症状态的机制。CD36在TAMs中上调并与免疫抑制特征相关,髓系特异性删除CD36可显著降低肿瘤生长。此外,CD36缺失的TAM获得了炎症特征,包括I型干扰素(IFN-I)分泌升高,这反映了在癌症患者中观察到的CD36与IFN-I反应之间的反相关性。CD36缺陷TAMs产生的IFN-I,尤其是IFNβ,直接诱导肿瘤细胞静止并延缓肿瘤生长。从机理上讲,CD36 通过氧化脂质信号下游的 p38 激活,对巨噬细胞中的 IFN-I 信号起到天然抑制作用。这些发现确定了 CD36 是 TAM 功能和肿瘤炎症微环境的关键调节因子,为药物抑制 CD36 以恢复抗肿瘤免疫力提供了更多的依据。
{"title":"Scavenger Receptor CD36 in Tumor-Associated Macrophages Promotes Cancer Progression by Dampening Type-I IFN Signaling.","authors":"Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech","doi":"10.1158/0008-5472.CAN-23-4027","DOIUrl":"10.1158/0008-5472.CAN-23-4027","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAM) are a heterogeneous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment. In this study, we unveiled a mechanism by which scavenger receptor cluster of differentiation 36 (CD36) suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I IFN (IFNI) production, mirroring the inverse correlation between CD36 and IFNI response observed in patients with cancer. IFNI, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFNI signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacologic inhibition of CD36 to rejuvenate antitumor immunity. Significance: CD36 in tumor-associated macrophages mediates immunosuppression and can be targeted as a therapeutic avenue for stimulating interferon production and increasing the efficacy of immunotherapy.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"462-476"},"PeriodicalIF":12.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.CAN-24-0577
Fengxian Zhai, Guozheng Pan, Lei Xue, Can Cheng, Jiabei Wang, Yao Liu, Lianxin Liu
Internal tandem duplication (ITD) in the FMS-like receptor tyrosine kinase-3 (FLT3) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with poor prognosis. FLT3-ITD mutations result in endoplasmic reticulum (ER) retention and constitutive autophosphorylation of FLT3. The PR/SET domain 16 (PRDM16) is highly expressed in patients with FLT3-ITD+ AML, suggesting it might play a role in leukemogenesis. Here, we revealed that genetic and pharmacologic suppression of PRDM16 greatly slowed the progression of FLT3-ITD-driven leukemia, sensitized leukemic cells to tyrosine kinase inhibitors, and extended the survival of leukemic mice. PRDM16 enhanced activation of oncogenic FLT3-ITD and ligand-dependent activation of wild-type FLT3 in leukemic cells. Mechanistically, PRDM16 mediated monomethylation of FLT3-ITD at lysine-614 and promoted its ER localization, resulting in enhanced FLT3 signaling in leukemia cells. Moreover, pharmacologic suppression of FLT3-ITD methylation in combination with tyrosine kinase inhibitors increased the elimination of FLT3-ITD+ AML cells. Altogether, these results suggest that PRDM16 boosts oncogenic FLT3 signaling in leukemic cells by prompting FLT3-ITD methylation. Therefore, PRDM16 may serve as a therapeutic target for AML. Significance: Monomethylation of FLT3-ITD at lysine-614 by PRDM16 induces FLT3 ER localization and enhanced signaling, which can be inhibited by targeting PRDM16 to suppress survival of FLT3-ITD+ AML cells and increase chemosensitivity.
{"title":"PRDM16 Induces Methylation of FLT3 to Promote FLT3-ITD Signaling and Leukemia Progression.","authors":"Fengxian Zhai, Guozheng Pan, Lei Xue, Can Cheng, Jiabei Wang, Yao Liu, Lianxin Liu","doi":"10.1158/0008-5472.CAN-24-0577","DOIUrl":"10.1158/0008-5472.CAN-24-0577","url":null,"abstract":"<p><p>Internal tandem duplication (ITD) in the FMS-like receptor tyrosine kinase-3 (FLT3) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with poor prognosis. FLT3-ITD mutations result in endoplasmic reticulum (ER) retention and constitutive autophosphorylation of FLT3. The PR/SET domain 16 (PRDM16) is highly expressed in patients with FLT3-ITD+ AML, suggesting it might play a role in leukemogenesis. Here, we revealed that genetic and pharmacologic suppression of PRDM16 greatly slowed the progression of FLT3-ITD-driven leukemia, sensitized leukemic cells to tyrosine kinase inhibitors, and extended the survival of leukemic mice. PRDM16 enhanced activation of oncogenic FLT3-ITD and ligand-dependent activation of wild-type FLT3 in leukemic cells. Mechanistically, PRDM16 mediated monomethylation of FLT3-ITD at lysine-614 and promoted its ER localization, resulting in enhanced FLT3 signaling in leukemia cells. Moreover, pharmacologic suppression of FLT3-ITD methylation in combination with tyrosine kinase inhibitors increased the elimination of FLT3-ITD+ AML cells. Altogether, these results suggest that PRDM16 boosts oncogenic FLT3 signaling in leukemic cells by prompting FLT3-ITD methylation. Therefore, PRDM16 may serve as a therapeutic target for AML. Significance: Monomethylation of FLT3-ITD at lysine-614 by PRDM16 induces FLT3 ER localization and enhanced signaling, which can be inhibited by targeting PRDM16 to suppress survival of FLT3-ITD+ AML cells and increase chemosensitivity.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"535-550"},"PeriodicalIF":12.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.CAN-24-4442
Namgyu Lee, Dohoon Kim
During metastasis, cancer cells detach from the primary tumor, circulate through the bloodstream, and establish themselves at distant sites, facing increased levels of reactive oxygen species that act as significant barriers to metastatic progression. Adapting to and surviving in these high reactive oxygen species environments are thus crucial for successful metastasis. A recent study by Nease and colleagues identified FTSJ1 as the methyltransferase responsible for methylation of the U34 position wobble uridine modification of selenocysteine (Sec) tRNA. This methylation enables efficient Sec insertion, leading to increased translation of a subset of stress-responsive selenoproteins that combat the oxidative stress encountered during the metastatic process. This study establishes FTSJ1 as an essential redox regulator during metastasis through its role in enhancing Sec insertion efficiency and introduces a potential therapeutic strategy against metastasis.
{"title":"Adapt or Perish: Efficient Selenocysteine Insertion Is Critical for Metastasizing Cancer Cells.","authors":"Namgyu Lee, Dohoon Kim","doi":"10.1158/0008-5472.CAN-24-4442","DOIUrl":"10.1158/0008-5472.CAN-24-4442","url":null,"abstract":"<p><p>During metastasis, cancer cells detach from the primary tumor, circulate through the bloodstream, and establish themselves at distant sites, facing increased levels of reactive oxygen species that act as significant barriers to metastatic progression. Adapting to and surviving in these high reactive oxygen species environments are thus crucial for successful metastasis. A recent study by Nease and colleagues identified FTSJ1 as the methyltransferase responsible for methylation of the U34 position wobble uridine modification of selenocysteine (Sec) tRNA. This methylation enables efficient Sec insertion, leading to increased translation of a subset of stress-responsive selenoproteins that combat the oxidative stress encountered during the metastatic process. This study establishes FTSJ1 as an essential redox regulator during metastasis through its role in enhancing Sec insertion efficiency and introduces a potential therapeutic strategy against metastasis.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"410-412"},"PeriodicalIF":12.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.CAN-24-1609
Hazrat Bilal, Muhammad Nadeen Khan, Sabir Khan, Muhammad Shafiq, Wenjie Fang, Yuebin Zeng, Yangzhong Guo, Xiaohui Li, Bing Zhao, Qiao-Li Lv, Bin Xu
Fungal dysbiosis is increasingly recognized as a key factor in cancer, influencing tumor initiation, progression, and treatment outcomes. This review explores the role of fungi in carcinogenesis, with a focus on mechanisms such as immunomodulation, inflammation induction, tumor microenvironment remodeling, and interkingdom interactions. Fungal metabolites are involved in oncogenesis, and antifungals can interact with anticancer drugs, including eliciting potential adverse effects and influencing immune responses. Furthermore, mycobiota profiles have potential as diagnostic and prognostic biomarkers, emphasizing their clinical relevance. The interplay between fungi and cancer therapies can affect drug resistance, therapeutic efficacy, and risk of invasive fungal infections associated with targeted therapies. Finally, emerging strategies for modulating mycobiota in cancer care are promising approaches to improve patient outcomes.
{"title":"Fungal Influences on Cancer Initiation, Progression, and Response to Treatment.","authors":"Hazrat Bilal, Muhammad Nadeen Khan, Sabir Khan, Muhammad Shafiq, Wenjie Fang, Yuebin Zeng, Yangzhong Guo, Xiaohui Li, Bing Zhao, Qiao-Li Lv, Bin Xu","doi":"10.1158/0008-5472.CAN-24-1609","DOIUrl":"10.1158/0008-5472.CAN-24-1609","url":null,"abstract":"<p><p>Fungal dysbiosis is increasingly recognized as a key factor in cancer, influencing tumor initiation, progression, and treatment outcomes. This review explores the role of fungi in carcinogenesis, with a focus on mechanisms such as immunomodulation, inflammation induction, tumor microenvironment remodeling, and interkingdom interactions. Fungal metabolites are involved in oncogenesis, and antifungals can interact with anticancer drugs, including eliciting potential adverse effects and influencing immune responses. Furthermore, mycobiota profiles have potential as diagnostic and prognostic biomarkers, emphasizing their clinical relevance. The interplay between fungi and cancer therapies can affect drug resistance, therapeutic efficacy, and risk of invasive fungal infections associated with targeted therapies. Finally, emerging strategies for modulating mycobiota in cancer care are promising approaches to improve patient outcomes.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"413-423"},"PeriodicalIF":12.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1158/0008-5472.can-24-0775
Florencia P. Madorsky Rowdo, Rachel Martini, Sarah E. Ackermann, Colin P. Tang, Marvel Tranquille, Adriana Irizarry, Ilkay Us, Omar Alawa, Jenna E. Moyer, Michael Sigouros, John Nguyen, Majd Al Assaad, Esther Cheng, Paula S. Ginter, Jyothi Manohar, Brian Stonaker, Richard Boateng, Joseph K. Oppong, Ernest K. Adjei, Baffour Awuah, Ishmael Kyei, Francis S. Aitpillah, Michael O. Adinku, Kwasi Ankomah, Ernest B. Osei-Bonsu, Kofi K. Gyan, Syed Hoda, Lisa Newman, Juan Miguel Mosquera, Andrea Sboner, Olivier Elemento, Lukas E. Dow, Melissa B. Davis, M. Laura Martin
Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407
{"title":"Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition","authors":"Florencia P. Madorsky Rowdo, Rachel Martini, Sarah E. Ackermann, Colin P. Tang, Marvel Tranquille, Adriana Irizarry, Ilkay Us, Omar Alawa, Jenna E. Moyer, Michael Sigouros, John Nguyen, Majd Al Assaad, Esther Cheng, Paula S. Ginter, Jyothi Manohar, Brian Stonaker, Richard Boateng, Joseph K. Oppong, Ernest K. Adjei, Baffour Awuah, Ishmael Kyei, Francis S. Aitpillah, Michael O. Adinku, Kwasi Ankomah, Ernest B. Osei-Bonsu, Kofi K. Gyan, Syed Hoda, Lisa Newman, Juan Miguel Mosquera, Andrea Sboner, Olivier Elemento, Lukas E. Dow, Melissa B. Davis, M. Laura Martin","doi":"10.1158/0008-5472.can-24-0775","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-0775","url":null,"abstract":"Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"17 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1158/0008-5472.CAN-24-1954
Michael J Buckenmeyer, Elizabeth A Brooks, Madison S Taylor, Ireolu K Orenuga, Liping Yang, Ronald J Holewinski, Thomas J Meyer, Melissa Galloux, Marcial Garmendia-Cedillos, Thomas J Pohida, Thorkell Andresson, Brad St Croix, Matthew T Wolf
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment (TME). However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. Here, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer (CRC) MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically-mimicked CRC tumor ECM compared to traditional formulations like Matrigel. Solubilized ECM, at sub-gelation concentrations, was organized by CRC cells into intercellular stroma-like regions within 5 days, displaying morphological similarity to CRC clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with scRNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications.
{"title":"A 3D Self-Assembly Platform Integrating Decellularized Matrix Recapitulates In Vivo Tumor Phenotypes and Heterogeneity.","authors":"Michael J Buckenmeyer, Elizabeth A Brooks, Madison S Taylor, Ireolu K Orenuga, Liping Yang, Ronald J Holewinski, Thomas J Meyer, Melissa Galloux, Marcial Garmendia-Cedillos, Thomas J Pohida, Thorkell Andresson, Brad St Croix, Matthew T Wolf","doi":"10.1158/0008-5472.CAN-24-1954","DOIUrl":"10.1158/0008-5472.CAN-24-1954","url":null,"abstract":"<p><p>Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment (TME). However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. Here, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D \"MatriSpheres\" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer (CRC) MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically-mimicked CRC tumor ECM compared to traditional formulations like Matrigel. Solubilized ECM, at sub-gelation concentrations, was organized by CRC cells into intercellular stroma-like regions within 5 days, displaying morphological similarity to CRC clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with scRNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1158/0008-5472.can-24-1788
Sarah C. Van Alsten, Michael I. Love, Benjamin C. Calhoun, Eboneé N. Butler, Charles M. Perou, Katherine A. Hoadley, Melissa A. Troester
Cancer genomics consortia have identified somatic drivers of breast cancer subtypes. However, these studies have predominantly included older, non-Black women, and the related socioeconomic status (SES) data is limited. Increased representation and depth of social data are crucial for understanding how health inequity is intertwined with somatic landscapes. Here, we conducted targeted sequencing on primary tumors from the Carolina Breast Cancer Study (N = 357; 52% Black, 47% <50) and compared the results to The Cancer Genome Atlas (N = 948; 18% Black, 27% <50). Race (Black vs. non-Black), age, and SES were evaluated in association with mutations, copy number alterations, and aneuploidy using generalized linear models. Pathway dysfunction was also assessed by aggregating mutation and copy number alterations. Adjusting for age, Black participants (N =350) were significantly more likely to have TP53 and FAT1 mutations and less likely to have PIK3CA, CDH1, DDR2, and GATA3 mutations than non-Black participants. Younger participants had more GATA3 alterations and fewer KMT2C, PTEN, MAP3K1 and CDH1 alterations. Black participants had significant enrichment for MYC (8q) and PIK3CA (3q26) amplifications and higher total aneuploidy, but age was not associated with copy number variation. SES was associated with different patterns of alteration in Black versus non-Black women. Overall, Black participants showed modest differences in TP53, PIK3CA, and other alterations that further varied by SES. Race is a social construct, and varying distributions of etiologic factors across social strata may predispose Black, young, and low SES women to cancer subtypes characterized by these alterations.
{"title":"Genomic Analysis Reveals Racial and Age-Related Differences in the Somatic Landscape of Breast Cancer and the Association with Socioeconomic Factors","authors":"Sarah C. Van Alsten, Michael I. Love, Benjamin C. Calhoun, Eboneé N. Butler, Charles M. Perou, Katherine A. Hoadley, Melissa A. Troester","doi":"10.1158/0008-5472.can-24-1788","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1788","url":null,"abstract":"Cancer genomics consortia have identified somatic drivers of breast cancer subtypes. However, these studies have predominantly included older, non-Black women, and the related socioeconomic status (SES) data is limited. Increased representation and depth of social data are crucial for understanding how health inequity is intertwined with somatic landscapes. Here, we conducted targeted sequencing on primary tumors from the Carolina Breast Cancer Study (N = 357; 52% Black, 47% &lt;50) and compared the results to The Cancer Genome Atlas (N = 948; 18% Black, 27% &lt;50). Race (Black vs. non-Black), age, and SES were evaluated in association with mutations, copy number alterations, and aneuploidy using generalized linear models. Pathway dysfunction was also assessed by aggregating mutation and copy number alterations. Adjusting for age, Black participants (N =350) were significantly more likely to have TP53 and FAT1 mutations and less likely to have PIK3CA, CDH1, DDR2, and GATA3 mutations than non-Black participants. Younger participants had more GATA3 alterations and fewer KMT2C, PTEN, MAP3K1 and CDH1 alterations. Black participants had significant enrichment for MYC (8q) and PIK3CA (3q26) amplifications and higher total aneuploidy, but age was not associated with copy number variation. SES was associated with different patterns of alteration in Black versus non-Black women. Overall, Black participants showed modest differences in TP53, PIK3CA, and other alterations that further varied by SES. Race is a social construct, and varying distributions of etiologic factors across social strata may predispose Black, young, and low SES women to cancer subtypes characterized by these alterations.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"45 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1158/0008-5472.can-24-2464
Dingchang Li, Xianqiang Liu, Wenxing Gao, Wen Zhao, Shuaifei Ji, Sizhe Wang, Jinran Yang, Dingling Li, Zhengyao Chang, Yi Chen, Xu Sun, Jingcheng Zhou, Yanan Jiao, Xiaohui Du, Guanglong Dong
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways. A model constructed through machine learning based on immune subtypes could accurately predict the sensitivity of CRC patients to immunotherapy. Validation of this model across public datasets and clinical samples confirmed its high precision and reliability. Furthermore, drug screening based on the immune subtypes identified the IGF1R inhibitor I-OMe-AG-538 (AG-538) as a potent enhancer of antitumor immunity. Mechanistic investigations revealed that AG-538 induced reactive oxygen species (ROS)-dependent DNA damage and downregulated the expression of multiple repair genes, triggering cGAS/STING-mediated type I IFN signaling within tumor cells. This signaling cascade increased tumor immunogenicity and refined the tumor immune microenvironment, thereby enhancing efficacy of immune checkpoint blockade treatment. In summary, these findings present a predictive model for immune response and highlight the potential of AG-538 combined with anti-PD1 antibodies as a chemoimmunotherapeutic strategy.
{"title":"An Immune Subtype Classification System Enables the Development of Strategies to Predict and Enhance Immunotherapy Responses in Colorectal Cancer","authors":"Dingchang Li, Xianqiang Liu, Wenxing Gao, Wen Zhao, Shuaifei Ji, Sizhe Wang, Jinran Yang, Dingling Li, Zhengyao Chang, Yi Chen, Xu Sun, Jingcheng Zhou, Yanan Jiao, Xiaohui Du, Guanglong Dong","doi":"10.1158/0008-5472.can-24-2464","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-2464","url":null,"abstract":"Colorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways. A model constructed through machine learning based on immune subtypes could accurately predict the sensitivity of CRC patients to immunotherapy. Validation of this model across public datasets and clinical samples confirmed its high precision and reliability. Furthermore, drug screening based on the immune subtypes identified the IGF1R inhibitor I-OMe-AG-538 (AG-538) as a potent enhancer of antitumor immunity. Mechanistic investigations revealed that AG-538 induced reactive oxygen species (ROS)-dependent DNA damage and downregulated the expression of multiple repair genes, triggering cGAS/STING-mediated type I IFN signaling within tumor cells. This signaling cascade increased tumor immunogenicity and refined the tumor immune microenvironment, thereby enhancing efficacy of immune checkpoint blockade treatment. In summary, these findings present a predictive model for immune response and highlight the potential of AG-538 combined with anti-PD1 antibodies as a chemoimmunotherapeutic strategy.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"16 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}