Altug Kuçukgul, S. Erdogan, Ramazan Gonenci, Gonca Ozan
In this study, the anti-oxidant and anti-inflammatory efficacy of ozone oxidative preconditioning (OOP) were investigated on hydrogen peroxide (H2O2)-induced human lung alveolar cells. In MTT and trypan blue viability tests, while 100 μmol/L H2O2 caused a 17.3% and 21.9% decrease in the number of living cells, respectively, ozone at 20 μmol/L regenerated cell proliferation and prevented 9.6% and 11.0% of cell loss, respectively. In addition, H2O2 decreased the transcription levels of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) 5.43-, 2.89-, and 5.33-fold, respectively, while it increased Bax, NF-κβ, TNF-α, and iNOS expression 1.57-, 1.32-, 1.40-, and 1.41-fold, respectively. Ozone pretreatment, however, increased CAT, GPx, and SOD transcription levels 7.08-, 5.17-, and 6.49-fold and decreased Bax, NF-κβ, TNF-α, and iNOS transcriptions by 1.25-, 0.76-, 3.63-, and 7.91-fold, respectively. Moreover, intracellular glutathione (GSH) level and SOD activity were decreased by 46.2% and 45.0% in the H2O2 treatment group, and OOP recovered 58.5% and 20.1% of the decreases caused by H2O2. H2O2 also increased nitrite levels 7.84-fold, and OOP reduced this increase by half. Consequently, OOP demonstrated potent anti-oxidant and anti-inflammatory effects on in vitro model of oxidative stress-induced lung injury.
{"title":"Beneficial effects of nontoxic ozone on H2O2-induced stress and inflammation.","authors":"Altug Kuçukgul, S. Erdogan, Ramazan Gonenci, Gonca Ozan","doi":"10.1139/BCB-2016-0033","DOIUrl":"https://doi.org/10.1139/BCB-2016-0033","url":null,"abstract":"In this study, the anti-oxidant and anti-inflammatory efficacy of ozone oxidative preconditioning (OOP) were investigated on hydrogen peroxide (H2O2)-induced human lung alveolar cells. In MTT and trypan blue viability tests, while 100 μmol/L H2O2 caused a 17.3% and 21.9% decrease in the number of living cells, respectively, ozone at 20 μmol/L regenerated cell proliferation and prevented 9.6% and 11.0% of cell loss, respectively. In addition, H2O2 decreased the transcription levels of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) 5.43-, 2.89-, and 5.33-fold, respectively, while it increased Bax, NF-κβ, TNF-α, and iNOS expression 1.57-, 1.32-, 1.40-, and 1.41-fold, respectively. Ozone pretreatment, however, increased CAT, GPx, and SOD transcription levels 7.08-, 5.17-, and 6.49-fold and decreased Bax, NF-κβ, TNF-α, and iNOS transcriptions by 1.25-, 0.76-, 3.63-, and 7.91-fold, respectively. Moreover, intracellular glutathione (GSH) level and SOD activity were decreased by 46.2% and 45.0% in the H2O2 treatment group, and OOP recovered 58.5% and 20.1% of the decreases caused by H2O2. H2O2 also increased nitrite levels 7.84-fold, and OOP reduced this increase by half. Consequently, OOP demonstrated potent anti-oxidant and anti-inflammatory effects on in vitro model of oxidative stress-induced lung injury.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"7 1","pages":"577-583"},"PeriodicalIF":0.0,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79580201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2'-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.
{"title":"MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme.","authors":"A. Ghasemi, S. Fallah, M. Ansari","doi":"10.1139/BCB-2015-0064","DOIUrl":"https://doi.org/10.1139/BCB-2015-0064","url":null,"abstract":"Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2'-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"8 1","pages":"569-576"},"PeriodicalIF":0.0,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82739867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Meeting report from the 58th Annual Meeting of the CSMB: Lipids - the membrane and beyond.","authors":"B. Karten, J. Rainey","doi":"10.1139/BCB-2015-0170","DOIUrl":"https://doi.org/10.1139/BCB-2015-0170","url":null,"abstract":"","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"20 1","pages":"vii-x"},"PeriodicalIF":0.0,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84428027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mohammed, E. Abdel-Gawad, Sameh A. Awwad, E. Kandil, Basma El-Agamya
{"title":"Corrigendum: Therapeutic role of a synthesized calcium phosphate nanocomposite material on hepatocarcinogenesis in rats.","authors":"M. Mohammed, E. Abdel-Gawad, Sameh A. Awwad, E. Kandil, Basma El-Agamya","doi":"10.1139/BCB-2016-0181","DOIUrl":"https://doi.org/10.1139/BCB-2016-0181","url":null,"abstract":"","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"8 1","pages":"498"},"PeriodicalIF":0.0,"publicationDate":"2016-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73420856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.
{"title":"Cost-effective elimination of lipofuscin fluorescence from formalin-fixed brain tissue by white phosphor light emitting diode array.","authors":"Yulong Sun, A. Chakrabartty","doi":"10.1139/BCB-2016-0125","DOIUrl":"https://doi.org/10.1139/BCB-2016-0125","url":null,"abstract":"Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"60 1","pages":"545-550"},"PeriodicalIF":0.0,"publicationDate":"2016-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77888918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endolysosomal and autophagosomal degradation pathways are highly connected at various levels, sharing multiple molecular effectors that modulate them individually or simultaneously. These two lysosomal degradative pathways are primarily involved in the disposal of cargo internalized from the cell surface or long-lived proteins or aggregates and aged organelles present in the cytosol. Both of these pathways involve a number of carefully regulated vesicular fusion events that are dependent on ESCRT proteins. The ESCRT proteins especially ESCRT-I and III participate in the regulation of fusion events between autophagosome/amphisome and lysosome. Along with these, a number of functionally diverse ESCRT associated and regulatory proteins such as, endosomal PtdIns (3) P 5-kinase Fab1, ALIX, mahogunin ring finger 1, atrogin 1, syntaxin 17, ATG12-ATG3 complex, and protein kinase CK2α are involved in fusion events in either or both the lysosomal degradative pathways.
{"title":"ESCRTs and associated proteins in lysosomal fusion with endosomes and autophagosomes.","authors":"P. Majumder, Oishee Chakrabarti","doi":"10.1139/bcb-2016-0099","DOIUrl":"https://doi.org/10.1139/bcb-2016-0099","url":null,"abstract":"Endolysosomal and autophagosomal degradation pathways are highly connected at various levels, sharing multiple molecular effectors that modulate them individually or simultaneously. These two lysosomal degradative pathways are primarily involved in the disposal of cargo internalized from the cell surface or long-lived proteins or aggregates and aged organelles present in the cytosol. Both of these pathways involve a number of carefully regulated vesicular fusion events that are dependent on ESCRT proteins. The ESCRT proteins especially ESCRT-I and III participate in the regulation of fusion events between autophagosome/amphisome and lysosome. Along with these, a number of functionally diverse ESCRT associated and regulatory proteins such as, endosomal PtdIns (3) P 5-kinase Fab1, ALIX, mahogunin ring finger 1, atrogin 1, syntaxin 17, ATG12-ATG3 complex, and protein kinase CK2α are involved in fusion events in either or both the lysosomal degradative pathways.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"79 1","pages":"443-450"},"PeriodicalIF":0.0,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85735666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aglaia Mantsou, E. Koutsogiannouli, Costas Haitoglou, A. Papavassiliou, N. Papanikolaou
Using mouse double minute 2 (MDM2) protein-specific affinity chromatography and mass spectrometry, we have isolated the protein product of the oncogene znf217, which is a transcription factor and a component of a Hela-S-derived HDAC1 complex, as a novel MDM2-interacting protein. When co-expressed in cultured cancer cells, ZNF217 forms a complex with MDM2 and its ectopic over-expression reduces the steady-state levels of acetylated p53 in cell lines, suppressing its ability to activate the expression of a p21 promoter construct. In-silico analysis of the p21 promoter revealed the presence of several ZNF217-binding sites. These findings suggest that MDM2 controls p21 expression by at least 2 mechanisms: through ZNF217-mediated recruitment of HDAC1/MDM2 activity, which inhibits p53 acetylation; and through direct interaction with its binding site(s) on the p21 promoter.
{"title":"Regulation of expression of the p21CIP1 gene by the transcription factor ZNF217 and MDM2.","authors":"Aglaia Mantsou, E. Koutsogiannouli, Costas Haitoglou, A. Papavassiliou, N. Papanikolaou","doi":"10.1139/BCB-2016-0026","DOIUrl":"https://doi.org/10.1139/BCB-2016-0026","url":null,"abstract":"Using mouse double minute 2 (MDM2) protein-specific affinity chromatography and mass spectrometry, we have isolated the protein product of the oncogene znf217, which is a transcription factor and a component of a Hela-S-derived HDAC1 complex, as a novel MDM2-interacting protein. When co-expressed in cultured cancer cells, ZNF217 forms a complex with MDM2 and its ectopic over-expression reduces the steady-state levels of acetylated p53 in cell lines, suppressing its ability to activate the expression of a p21 promoter construct. In-silico analysis of the p21 promoter revealed the presence of several ZNF217-binding sites. These findings suggest that MDM2 controls p21 expression by at least 2 mechanisms: through ZNF217-mediated recruitment of HDAC1/MDM2 activity, which inhibits p53 acetylation; and through direct interaction with its binding site(s) on the p21 promoter.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"12 1","pages":"560-568"},"PeriodicalIF":0.0,"publicationDate":"2016-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86544153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shumaila Khan, Sabahuddin Ahmad, M. Siddiqi, B. Bano
This study describes the isolation and purification of a phytocystatin from seeds of Brassica juncea (Indian mustard; cultivar RoAgro 5444), which is an important oilseed crop both agriculturally and economically. The protein was purified by gel filtration chromatography with 24.3% yield and 204-fold purification, and visualised by 2D gel electrophoresis. The 18.1 kDa mustard cystatin was highly specific for cysteine proteinases. The plant cystatin inhibited cathepsin B, confirming its role in conferring pest resistance. The inhibitor was highly stable over a pH range of 3-10 and retained significant inhibitory potential up to 70 °C. The stoichiometry of its interaction with papain, determined by isothermal calorimetry, suggests a 1:1 complex. Secondary structural elements calculated by far-UV circular dichroism (CD) spectroscopy show an 18.8% α-helical and 21% β-sheet structure. The protein was a non-competitive inhibitor of thiol proteinases. The Stokes radius and frictional co-efficient were used to describe the shape and size of the protein. Homology modelling and docking studies proposed a prototype illustrating the Brassica phytocystatin mediated papain inhibition. Molecular dynamics (MD) study revealed the excellent stability of the papain-phytocystatin complex during a simulation for 100 ns. Detailed results identify the mustard cystatin as an important member of the phytocystatin family.
{"title":"Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444.","authors":"Shumaila Khan, Sabahuddin Ahmad, M. Siddiqi, B. Bano","doi":"10.1139/BCB-2016-0029","DOIUrl":"https://doi.org/10.1139/BCB-2016-0029","url":null,"abstract":"This study describes the isolation and purification of a phytocystatin from seeds of Brassica juncea (Indian mustard; cultivar RoAgro 5444), which is an important oilseed crop both agriculturally and economically. The protein was purified by gel filtration chromatography with 24.3% yield and 204-fold purification, and visualised by 2D gel electrophoresis. The 18.1 kDa mustard cystatin was highly specific for cysteine proteinases. The plant cystatin inhibited cathepsin B, confirming its role in conferring pest resistance. The inhibitor was highly stable over a pH range of 3-10 and retained significant inhibitory potential up to 70 °C. The stoichiometry of its interaction with papain, determined by isothermal calorimetry, suggests a 1:1 complex. Secondary structural elements calculated by far-UV circular dichroism (CD) spectroscopy show an 18.8% α-helical and 21% β-sheet structure. The protein was a non-competitive inhibitor of thiol proteinases. The Stokes radius and frictional co-efficient were used to describe the shape and size of the protein. Homology modelling and docking studies proposed a prototype illustrating the Brassica phytocystatin mediated papain inhibition. Molecular dynamics (MD) study revealed the excellent stability of the papain-phytocystatin complex during a simulation for 100 ns. Detailed results identify the mustard cystatin as an important member of the phytocystatin family.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"43 1","pages":"584-596"},"PeriodicalIF":0.0,"publicationDate":"2016-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84079806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Rivera-Casas, R. González-Romero, Ángel Vizoso-Vázquez, Manjinder S. Cheema, M. Cerdán, J. Méndez, J. Ausió, J. Eirín-López
Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.
{"title":"Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.","authors":"C. Rivera-Casas, R. González-Romero, Ángel Vizoso-Vázquez, Manjinder S. Cheema, M. Cerdán, J. Méndez, J. Ausió, J. Eirín-López","doi":"10.1139/BCB-2016-0056","DOIUrl":"https://doi.org/10.1139/BCB-2016-0056","url":null,"abstract":"Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"45 1","pages":"480-490"},"PeriodicalIF":0.0,"publicationDate":"2016-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87047001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl2. Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl2-induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.
{"title":"Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes.","authors":"A. Singh, Sandeep Singh, Geetika Garg, S. Rizvi","doi":"10.1139/BCB-2016-0048","DOIUrl":"https://doi.org/10.1139/BCB-2016-0048","url":null,"abstract":"An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl2. Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl2-induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"214 1","pages":"471-479"},"PeriodicalIF":0.0,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89183339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}