首页 > 最新文献

Cell Stress & Chaperones最新文献

英文 中文
An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography 低温电子断层扫描技术证实了体外推断的伴侣素加速蛋白质重折叠的过时机制。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1016/j.cstres.2024.11.003
Paolo De Los Rios , Mathieu E. Rebeaud , Pierre Goloubinoff
{"title":"An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography","authors":"Paolo De Los Rios , Mathieu E. Rebeaud , Pierre Goloubinoff","doi":"10.1016/j.cstres.2024.11.003","DOIUrl":"10.1016/j.cstres.2024.11.003","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 764-768"},"PeriodicalIF":3.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress 内质网应激对骨关节炎中软骨细胞凋亡的调节作用
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-11-06 DOI: 10.1016/j.cstres.2024.11.001
Renzhong Li , Kui Sun
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
骨关节炎(OA)是一种常见的关节退行性疾病,以软骨细胞凋亡为主要病理生理变化,其中内质网应激(ERS)起着至关重要的作用。研究表明,内质网(ER)平衡失调可导致ERS,通过未折叠蛋白反应(UPR)激活三种细胞适应性反应途径,以恢复ER平衡。轻度的ERS对细胞有保护作用,而长时间的ERS会破坏内质网的自我调节平衡,激活细胞凋亡信号通路,导致软骨细胞凋亡,加速OA进展。因此,控制 ERS 信号通路及其凋亡因子已成为预防和治疗 OA 的关键重点。本综述旨在阐明ERS通路诱导凋亡的关键机制、相关靶点和调控途径,为加深对OA的机理认识提供有价值的见解。本综述还回顾了用于治疗 OA 的 ERS 相关药物或化合物的研究机制。
{"title":"Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress","authors":"Renzhong Li ,&nbsp;Kui Sun","doi":"10.1016/j.cstres.2024.11.001","DOIUrl":"10.1016/j.cstres.2024.11.001","url":null,"abstract":"<div><div>Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 750-763"},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “The mechanism and therapeutic strategies in doxorubicin induced cardiotoxicity: Role of programmed cell death” [Cell Stress Chaperones. 2024;29:666-680] 多柔比星诱发心脏毒性的机制和治疗策略:细胞应激合子的作用》[Cell Stress Chaperones.]
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.cstres.2024.10.005
Yanzhao Li , Jing Yan , Pingzhen Yang
{"title":"Corrigendum to “The mechanism and therapeutic strategies in doxorubicin induced cardiotoxicity: Role of programmed cell death” [Cell Stress Chaperones. 2024;29:666-680]","authors":"Yanzhao Li ,&nbsp;Jing Yan ,&nbsp;Pingzhen Yang","doi":"10.1016/j.cstres.2024.10.005","DOIUrl":"10.1016/j.cstres.2024.10.005","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Page 720"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience 热休克因子代码:明确转录调控程序的多样性,广泛促进应激恢复能力。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1016/j.cstres.2024.10.006
Milad J. Alasady , Marc L. Mendillo
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss “the heat shock factor code”—our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
热休克因子(HSF)转录因子家族可驱动基因表达程序,从而维持细胞膜蛋白质的平衡(蛋白稳态),以应对各种生理和外源压力。HSF 功能的重要性已在许多生理和病理环境中得到证实。过去二十年积累的证据表明,HSF 家族驱动的调控程序会因激活的环境不同而发生巨大变化。为了在这些情况下广泛维持蛋白稳态,HSF 必须在正确的时间与正确的靶基因结合并进行适当的调控。在这里,我们将讨论 "热休克因子密码"--我们目前对人类细胞如何利用 HSF 准同源物的多样化和相互作用、局部浓度、翻译后修饰(PTM)以及与其他蛋白质的相互作用来实现细胞在多种环境中的恢复能力所需的功能可塑性的理解。
{"title":"The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience","authors":"Milad J. Alasady ,&nbsp;Marc L. Mendillo","doi":"10.1016/j.cstres.2024.10.006","DOIUrl":"10.1016/j.cstres.2024.10.006","url":null,"abstract":"<div><div>The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss “the heat shock factor code”—our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 735-749"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae 酿酒酵母新生多肽相关复合体(NAC)亚基之间的功能异同。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.cstres.2024.10.004
Brenda A. Schilke , Thomas Ziegelhoffer , Przemyslaw Domanski , Jaroslaw Marszalek , Bartlomiej Tomiczek , Elizabeth A. Craig
Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant—equimolar to ribosomes. Saccharomyces cerevisiae has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the S. cerevisiae lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation via its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆acl4 cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆acl4. Our results are consistent with a model in which Nacβ2’s ribosome association per se or its precise positioning is necessary for productive recruitment of CCR4-Not via its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.
蛋白因子在隧道出口附近与核糖体结合,促进蛋白质的运输和折叠。在真核生物中,异源二聚体新生多肽相关复合物(NAC)的含量最高,与核糖体等摩尔。酿酒酵母除了有丰富的 Nacβ1 外,还有一个次要的 β 型亚基(Nacβ2),因此有两个 NAC 异二聚体,即 α/β1 和 α/β12。额外的 beta NAC 基因是在 S. cerevisiae 系发生全基因组复制时产生的。Nacβ2 与调控 CCR4-Not 复合物的 Caf130 亚基相互作用,在翻译过程中调节编码核糖体蛋白 Rpl4 的 mRNA 的命运。我们发现,Nacβ2 在球状结构域 C 端的残基是其与 Caf130 相互作用的必要条件,也是其对缺乏 Acl4(Rpl4 的特化伴侣)的细胞生长产生负面影响的必要条件。将这些 Nacβ2 残基置换到 Nacβ1 的同源位置,可产生一种嵌合蛋白,它能与 Caf130 相互作用,并减缓缺乏 Nacβ2 的 ∆acl4 细胞的生长。此外,改变 Nacβ2 或嵌合 Nacβ1 N 末端的残基也可克服 ∆acl4 的生长缺陷。我们的研究结果符合这样一个模型,即 Nacβ2 与核糖体的结合本身或其精确定位对于 CCR4-Not 通过其与 Caf130 亚基的相互作用进行有效招募以驱动 Rpl4 mRNA 降解是必要的。
{"title":"Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae","authors":"Brenda A. Schilke ,&nbsp;Thomas Ziegelhoffer ,&nbsp;Przemyslaw Domanski ,&nbsp;Jaroslaw Marszalek ,&nbsp;Bartlomiej Tomiczek ,&nbsp;Elizabeth A. Craig","doi":"10.1016/j.cstres.2024.10.004","DOIUrl":"10.1016/j.cstres.2024.10.004","url":null,"abstract":"<div><div>Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant—equimolar to ribosomes. <em>Saccharomyces cerevisiae</em> has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the <em>S. cerevisiae</em> lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation <em>via</em> its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆<em>acl4</em> cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆<em>acl4</em>. Our results are consistent with a model in which Nacβ2’s ribosome association <em>per se</em> or its precise positioning is necessary for productive recruitment of CCR4-Not <em>via</em> its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 721-734"},"PeriodicalIF":3.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In memoriam James S. Clegg (1933–2024) 纪念詹姆斯-克莱格(James S. Clegg,1933-2024 年)。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1016/j.cstres.2024.10.003
Lawrence E. Hightower
{"title":"In memoriam James S. Clegg (1933–2024)","authors":"Lawrence E. Hightower","doi":"10.1016/j.cstres.2024.10.003","DOIUrl":"10.1016/j.cstres.2024.10.003","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 718-719"},"PeriodicalIF":3.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells 流式细胞仪 FRET 揭示翻译后修饰驱动蛋白磷酸酶-5 在哺乳动物细胞中的构象变化
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-10 DOI: 10.1016/j.cstres.2024.10.002
Rebecca A. Sager , Sarah J. Backe , Jennifer Heritz , Mark R. Woodford , Dimitra Bourboulia , Mehdi Mollapour
The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5–TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.
丝氨酸/苏氨酸蛋白磷酸酶 5(PP5)在调节激素和应激诱导的信号网络以及细胞外凋亡途径中发挥着重要作用。与其他蛋白磷酸酶不同,PP5 同时具有调节域和催化域,其功能还可通过翻译后修饰(PTM)进一步调节。PP5 含有一个四重肽重复(TPR)结构域,通常通过阻断活性位点(封闭构象)来抑制其磷酸酶活性。某些激活剂会与 PP5-TPR 结构域结合,从而缓解这种抑制作用,使催化结构域形成活性(开放)构象。虽然这一机制是根据结构和生物物理研究提出的,但 PP5 的构象变化和活性尚未在细胞中观察到。在这里,我们设计并开发了一种基于流式细胞仪的荧光共振能量转移(FC-FRET)方法,可以实时观察哺乳动物活细胞中 PP5 的自动抑制和激活。通过使用敏化发射对 FRET 效率进行量化,我们建立了一套标准化的、适应性强的数据采集工作流程。我们的研究结果表明,在细胞环境中,PP5 存在多种构象状态,其中任何一种状态都不能完全预测其活性。此外,我们还证明了磷酸化和 SUMOylation 等 PTM 对 PP5 构象变化的影响,这表明我们对 PP5 调控机制的理解有了重大进展。
{"title":"Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells","authors":"Rebecca A. Sager ,&nbsp;Sarah J. Backe ,&nbsp;Jennifer Heritz ,&nbsp;Mark R. Woodford ,&nbsp;Dimitra Bourboulia ,&nbsp;Mehdi Mollapour","doi":"10.1016/j.cstres.2024.10.002","DOIUrl":"10.1016/j.cstres.2024.10.002","url":null,"abstract":"<div><div>The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5–TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 709-717"},"PeriodicalIF":3.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ebeiedinone and peimisine inhibit cigarette smoke extract-induced oxidative stress injury and apoptosis in BEAS-2B cells 依贝地农和peimisine可抑制香烟烟雾提取物诱导的BEAS-2B细胞氧化应激损伤和凋亡。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-04 DOI: 10.1016/j.cstres.2024.10.001
Chuanlan Liu , Xiaomu Zhu , Erbu Aga , Wai Ming Tse , Kathy Wai Gaun Tse , Yanyong Liu , Bengui Ye
Ebeiedinone and peimisine are the major active ingredients of Fritillariae Cirrhosae Bulbus. In this study, we looked at how these two forms of isosteroidal alkaloids protect human bronchial epithelial BEAS-2B cells from oxidative stress and apoptosis caused by cigarette smoke extract (CSE). First, the cytotoxicity was determined using the CCK8 assay, and an oxidative stress model was established. Then the antioxidative stress activity and mechanism were investigated by ELISA, flow cytometry, and Western blotting. By the CCK-8 assay, exposure to CSE (20%, 40%, and 100%) reduced the viability of BEAB-2S cells. The flow cytometry findings indicated that CSE-induced production of ROS (0.5% to maximum) and treatments with 10 μM ebeiedinone and 20 μM peimisine attenuated the production of ROS. The western blot assay results indicate that ebeiedinone and peimisine reduce CSE-induced oxidative stress, DNA damage, apoptosis, and autophagy dysregulation by inhibiting ROS, upregulating SOD and GSH/GSSG, and downregulating MDA, 4-HNE, and 8-OHdG through the NRF2/KEAP1 and JNK/MAPK-dependent pathways, thereby delaying the pathological progression of COPD caused by CS.Our data suggest that CSE causes oxidative stress, DNA damage, and apoptosis in BEAS-2B cells, as well as the progression of COPD. Ebeiedinone and peimisine fight CS-induced COPD by suppressing autophagy deregulation and apoptosis.
Ebeiedinone 和 peimisine 是 Fritillariae Cirrhosae Bulbus 的主要活性成分。在本研究中,我们考察了这两种异甾体生物碱如何保护人支气管上皮 BEAS-2B 细胞免受香烟烟雾提取物(CSE)引起的氧化应激和细胞凋亡。首先,利用 CCK8 试验测定了细胞毒性,并建立了氧化应激模型。然后通过酶联免疫吸附试验、流式细胞术和 Western 印迹法研究了烟草烟雾提取物的抗氧化活性和机制。通过 CCK-8 检测法,暴露于 CSE(20%、40% 和 100%)会降低 BEAB-2S 细胞的活力。流式细胞术的结果表明,CSE 诱导了 ROS 的产生(0.5% 至最大值),而 10μM 依贝地农和 20μM 培米星的处理可减轻 ROS 的产生。Western印迹检测结果表明,依贝酮和培米星通过NRF2/KEAP1和JNK/MAPK依赖途径抑制ROS,上调SOD和GSH/GSSG,下调MDA、4-HNE和8-OHdG,从而减少CSE诱导的氧化应激、DNA损伤、细胞凋亡和自噬失调,从而延缓CS导致的慢性阻塞性肺病的病理进展。我们的数据表明,CSE 会导致 BEAS-2B 细胞氧化应激、DNA 损伤和细胞凋亡,并导致慢性阻塞性肺病的进展。依贝地农和peimisine通过抑制自噬失调和细胞凋亡来对抗CSE诱导的慢性阻塞性肺病。
{"title":"Ebeiedinone and peimisine inhibit cigarette smoke extract-induced oxidative stress injury and apoptosis in BEAS-2B cells","authors":"Chuanlan Liu ,&nbsp;Xiaomu Zhu ,&nbsp;Erbu Aga ,&nbsp;Wai Ming Tse ,&nbsp;Kathy Wai Gaun Tse ,&nbsp;Yanyong Liu ,&nbsp;Bengui Ye","doi":"10.1016/j.cstres.2024.10.001","DOIUrl":"10.1016/j.cstres.2024.10.001","url":null,"abstract":"<div><div>Ebeiedinone and peimisine are the major active ingredients of Fritillariae Cirrhosae Bulbus. In this study, we looked at how these two forms of isosteroidal alkaloids protect human bronchial epithelial BEAS-2B cells from oxidative stress and apoptosis caused by cigarette smoke extract (CSE). First, the cytotoxicity was determined using the CCK8 assay, and an oxidative stress model was established. Then the antioxidative stress activity and mechanism were investigated by ELISA, flow cytometry, and Western blotting. By the CCK-8 assay, exposure to CSE (20%, 40%, and 100%) reduced the viability of BEAB-2S cells. The flow cytometry findings indicated that CSE-induced production of ROS (0.5% to maximum) and treatments with 10 μM ebeiedinone and 20 μM peimisine attenuated the production of ROS. The western blot assay results indicate that ebeiedinone and peimisine reduce CSE-induced oxidative stress, DNA damage, apoptosis, and autophagy dysregulation by inhibiting ROS, upregulating SOD and GSH/GSSG, and downregulating MDA, 4-HNE, and 8-OHdG through the NRF2/KEAP1 and JNK/MAPK-dependent pathways, thereby delaying the pathological progression of COPD caused by CS.Our data suggest that CSE causes oxidative stress, DNA damage, and apoptosis in BEAS-2B cells, as well as the progression of COPD. Ebeiedinone and peimisine fight CS-induced COPD by suppressing autophagy deregulation and apoptosis.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 697-708"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Members/Copyright 编委会成员/版权
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/S1355-8145(24)00122-6
{"title":"Editorial Board Members/Copyright","authors":"","doi":"10.1016/S1355-8145(24)00122-6","DOIUrl":"10.1016/S1355-8145(24)00122-6","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 5","pages":"Page i"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover and caption 封面和标题
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/S1355-8145(24)00121-4
{"title":"Cover and caption","authors":"","doi":"10.1016/S1355-8145(24)00121-4","DOIUrl":"10.1016/S1355-8145(24)00121-4","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 5","pages":"Page OFC"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Stress & Chaperones
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1