Pub Date : 2024-02-01DOI: 10.1016/j.cstres.2023.12.003
Yajuan An , Xinshuang Wang , Xiuju Guan , Peng Yuan , Yue Liu , Liping Wei , Fei Wang , Xin Qi
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
内质网(ER)在维持细胞稳态方面发挥着重要功能。内质网应激(ERS)可通过激活未折叠蛋白反应(UPR)信号通路引发各种模式的细胞死亡。细胞死亡在癌症、肝病、神经系统疾病和心血管疾病等疾病的发生和发展中起着至关重要的作用。包括高血压、动脉粥样硬化和心力衰竭(HF)在内的多种心血管疾病都与 ER 应激有关。ER应激介导的细胞死亡在心血管疾病中很有意义。此外,越来越多的证据表明,调节 ERS 有可能治疗心血管疾病。本文全面回顾了 UPR 信号通路、诱导细胞死亡的机制以及心血管疾病中的细胞死亡模式。此外,我们还讨论了常见心血管疾病中的 ERS 和 UPR 机制以及潜在的治疗策略。
{"title":"Endoplasmic reticulum stress-mediated cell death in cardiovascular disease","authors":"Yajuan An , Xinshuang Wang , Xiuju Guan , Peng Yuan , Yue Liu , Liping Wei , Fei Wang , Xin Qi","doi":"10.1016/j.cstres.2023.12.003","DOIUrl":"10.1016/j.cstres.2023.12.003","url":null,"abstract":"<div><p>The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 158-174"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814523022459/pdfft?md5=24ce80cb99147fa43e01584481cb0066&pid=1-s2.0-S1355814523022459-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.cstres.2023.11.001
Megan M. Mitchem , Courtney Shrader , Elizabeth Abedi, Andrew W. Truman
The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.
{"title":"Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones","authors":"Megan M. Mitchem , Courtney Shrader , Elizabeth Abedi, Andrew W. Truman","doi":"10.1016/j.cstres.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.cstres.2023.11.001","url":null,"abstract":"<div><p>The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 1-9"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814523022411/pdfft?md5=019c512af7e06d895a68e3542273f7b7&pid=1-s2.0-S1355814523022411-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α−/−; ATF6β−/− mice were similar to those previously reported, but ATF6α+/−; ATF6β−/− and ATF6α−/−; ATF6β+/− mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words)
{"title":"Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β","authors":"Ryoko Akai , Hisayo Hamashima , Michiko Saito , Kenji Kohno , Takao Iwawaki","doi":"10.1016/j.cstres.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.cstres.2023.11.002","url":null,"abstract":"<div><p>Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α<sup>−/−</sup>; ATF6β<sup>−/−</sup> mice were similar to those previously reported, but ATF6α<sup>+/−</sup>; ATF6β<sup>−/−</sup> and ATF6α<sup>−/−</sup>; ATF6β<sup>+/−</sup> mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words)</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 34-48"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814523022423/pdfft?md5=0a26f91ad555e96cdde3e0902dd50c3e&pid=1-s2.0-S1355814523022423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.cstres.2024.02.001
Yanjie Lu , Die Cheng , Jiayu Pang , Yuqiao Peng , Shunkang Jin , Xinyu Zhang , Yuhong Li , Yanzhen Zuo
Chronic stress is a common emotional disorder in cancer patients. Chronic stress promotes progression of gastric cancer (GC) and leads to poor outcomes. However, the underlying mechanisms remain not clear. Herein, we explored the possible mechanisms of chronic stress in GC progression. The Cancer Genome Atlas (TCGA) datasets were analyzed for differentially expressed genes. Clinical data of GC were evaluated for their association with PlexinA1 using TCGA and Kaplan–Meier-plotter databases. Chronic stress of GC patients was evaluated using the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Chronic unpredictable mild stress (CUMS) was used to induce chronic stress in mice. Gastric xenograft tumor was constructed using the sewing method. Chronic stress-like behaviors were assessed using light/dark box and tail suspension tests. Protein expression was detected using immunohistochemistry and Western blot analysis. Analyses of TCGA and the Kaplan–Meier-plotter databases showed that patients with high levels of PlexinA1 in GC had worse overall survival than those with low levels of PlexinA1. A total of 36 GC patients were enrolled in the study, and about 33% of the patients had chronic stress. Compared with patients without chronic stress, higher expression levels of adrenoceptor beta 2 and PlexinA1 were observed in patients with chronic stress. The tumor size in mice under CUMS was significantly increased compared with the control mice. Adrenoceptor beta 2, PlexinA1, N-cadherin, and alpha-smooth muscle actin, as well as Ki67 were highly expressed in the tumors of CUMS group. However, E-cadherin was lowly expressed in the tumors of CUMS group. Importantly, chemical sympathectomy with 6-hydroxydopamine or treatment with a selective β2 adrenergic receptor antagonist (ICI118,551) could reverse these effects. Our findings suggest that chronic stress plays an important role in GC progression and there is a potential for blocking the epinephrine-β2AR/PlexinA1 pathway in the treatment of GC.
{"title":"Chronic stress promotes gastric cancer progression via the adrenoceptor beta 2/PlexinA1 pathway","authors":"Yanjie Lu , Die Cheng , Jiayu Pang , Yuqiao Peng , Shunkang Jin , Xinyu Zhang , Yuhong Li , Yanzhen Zuo","doi":"10.1016/j.cstres.2024.02.001","DOIUrl":"10.1016/j.cstres.2024.02.001","url":null,"abstract":"<div><p>Chronic stress is a common emotional disorder in cancer patients. Chronic stress promotes progression of gastric cancer (GC) and leads to poor outcomes. However, the underlying mechanisms remain not clear. Herein, we explored the possible mechanisms of chronic stress in GC progression. The Cancer Genome Atlas (TCGA) datasets were analyzed for differentially expressed genes. Clinical data of GC were evaluated for their association with PlexinA1 using TCGA and Kaplan–Meier-plotter databases. Chronic stress of GC patients was evaluated using the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Chronic unpredictable mild stress (CUMS) was used to induce chronic stress in mice. Gastric xenograft tumor was constructed using the sewing method. Chronic stress-like behaviors were assessed using light/dark box and tail suspension tests. Protein expression was detected using immunohistochemistry and Western blot analysis. Analyses of TCGA and the Kaplan–Meier-plotter databases showed that patients with high levels of PlexinA1 in GC had worse overall survival than those with low levels of PlexinA1. A total of 36 GC patients were enrolled in the study, and about 33% of the patients had chronic stress. Compared with patients without chronic stress, higher expression levels of adrenoceptor beta 2 and PlexinA1 were observed in patients with chronic stress. The tumor size in mice under CUMS was significantly increased compared with the control mice. Adrenoceptor beta 2, PlexinA1, N-cadherin, and alpha-smooth muscle actin, as well as Ki67 were highly expressed in the tumors of CUMS group. However, E-cadherin was lowly expressed in the tumors of CUMS group. Importantly, chemical sympathectomy with 6-hydroxydopamine or treatment with a selective β2 adrenergic receptor antagonist (ICI118,551) could reverse these effects. Our findings suggest that chronic stress plays an important role in GC progression and there is a potential for blocking the epinephrine-β2AR/PlexinA1 pathway in the treatment of GC.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 201-215"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135581452400049X/pdfft?md5=a635e13ec33c557e67cd22186bd9fc94&pid=1-s2.0-S135581452400049X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-08-17DOI: 10.1007/s12192-023-01370-9
Alisha Merchant, Bradly I Ramirez, Melinda N Reyes, Dysocheata Van, Marilin Martinez-Colin, Damilola O Ojo, Esmeralda L Mazuca, Heidi J De La O, Abigayle M Glenn, Claudia G Lira, Hashimul Ehsan, Ermeng Yu, Gen Kaneko
Metazoan 70 kDa heat shock protein (HSP70) genes have been classified into four lineages: cytosolic A (HSP70cA), cytosolic B (HSP70cB), endoplasmic reticulum (HSP70er), and mitochondria (HSP70m). Because previous studies have identified no HSP70cA genes in vertebrates, we hypothesized that this gene was lost on the evolutionary path to vertebrates. To test this hypothesis, the present study conducted a comprehensive database search followed by phylogenetic and synteny analyses. HSP70cA genes were found in invertebrates and in two of the three subphyla of Chordata, Cephalochordata (lancelets) and Tunicata (tunicates). However, no HSP70cA gene was found in the genomes of Craniata (another subphylum of Chordata; lamprey, hagfish, elephant shark, and coelacanth), suggesting the loss of the HSP70cA gene in the early period of vertebrate evolution. Synteny analysis using available genomic resources indicated that the synteny around the HSP70 genes was generally conserved between tunicates but was largely different between tunicates and lamprey. These results suggest the presence of dynamic chromosomal rearrangement in early vertebrates that possibly caused the loss of the HSP70cA gene in the vertebrate lineage.
{"title":"Genomic loss of the HSP70cA gene in the vertebrate lineage.","authors":"Alisha Merchant, Bradly I Ramirez, Melinda N Reyes, Dysocheata Van, Marilin Martinez-Colin, Damilola O Ojo, Esmeralda L Mazuca, Heidi J De La O, Abigayle M Glenn, Claudia G Lira, Hashimul Ehsan, Ermeng Yu, Gen Kaneko","doi":"10.1007/s12192-023-01370-9","DOIUrl":"10.1007/s12192-023-01370-9","url":null,"abstract":"<p><p>Metazoan 70 kDa heat shock protein (HSP70) genes have been classified into four lineages: cytosolic A (HSP70cA), cytosolic B (HSP70cB), endoplasmic reticulum (HSP70er), and mitochondria (HSP70m). Because previous studies have identified no HSP70cA genes in vertebrates, we hypothesized that this gene was lost on the evolutionary path to vertebrates. To test this hypothesis, the present study conducted a comprehensive database search followed by phylogenetic and synteny analyses. HSP70cA genes were found in invertebrates and in two of the three subphyla of Chordata, Cephalochordata (lancelets) and Tunicata (tunicates). However, no HSP70cA gene was found in the genomes of Craniata (another subphylum of Chordata; lamprey, hagfish, elephant shark, and coelacanth), suggesting the loss of the HSP70cA gene in the early period of vertebrate evolution. Synteny analysis using available genomic resources indicated that the synteny around the HSP70 genes was generally conserved between tunicates but was largely different between tunicates and lamprey. These results suggest the presence of dynamic chromosomal rearrangement in early vertebrates that possibly caused the loss of the HSP70cA gene in the vertebrate lineage.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"1053-1067"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10367834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inclusion body-associated proteins IbpA and IbpB of MW 16 KDa are the two small heat-shock proteins (sHSPs) of Escherichia coli, and they have only holding, but not folding, chaperone activity. In vitro holdase activity of IbpB is more than that of IbpA, and in combination, they synergise. Both IbpA and IbpB monomers first form homodimers, which as building blocks subsequently oligomerize to make heavy oligomers with MW of MDa range; for IbpB, the MW range of heavy oligomers is 2.0-3.0 MDa, whereas for IbpA oligomers, the values in MDa are not so specified/reported. By temperature upshift, such large oligomers of IbpB, but not of IbpA, dissociate to make relatively small oligomeric assemblies of MW around 600-700KDa. The larger oligomers of IbpB are assumed to be inactive storage form, which on facing heat or oxidative stress dissociate into smaller oligomers of ATP-independent holding chaperone activity. These smaller oligomers bind with stress-induced partially denatured/unfolded and thereby going to be aggregated proteins, to give them protection against permanent damage and aggregation. On withdrawal of stress, IbpB transfers the bound substrate protein to the ATP-dependent bi-chaperone system DnaKJE-ClpB, having both holdase and foldase properties, to finally refold the protein. Of the two sHSPs IbpA and IbpB of E. coli, this review covers the recent advances in research on IbpB only.
{"title":"A review on oligomeric polydispersity and oligomers-dependent holding chaperone activity of the small heat-shock protein IbpB of Escherichia coli.","authors":"Md Azaharuddin, Anabadya Pal, Sangeeta Mitra, Rakhi Dasgupta, Tarakdas Basu","doi":"10.1007/s12192-023-01392-3","DOIUrl":"10.1007/s12192-023-01392-3","url":null,"abstract":"<p><p>Inclusion body-associated proteins IbpA and IbpB of MW 16 KDa are the two small heat-shock proteins (sHSPs) of Escherichia coli, and they have only holding, but not folding, chaperone activity. In vitro holdase activity of IbpB is more than that of IbpA, and in combination, they synergise. Both IbpA and IbpB monomers first form homodimers, which as building blocks subsequently oligomerize to make heavy oligomers with MW of MDa range; for IbpB, the MW range of heavy oligomers is 2.0-3.0 MDa, whereas for IbpA oligomers, the values in MDa are not so specified/reported. By temperature upshift, such large oligomers of IbpB, but not of IbpA, dissociate to make relatively small oligomeric assemblies of MW around 600-700KDa. The larger oligomers of IbpB are assumed to be inactive storage form, which on facing heat or oxidative stress dissociate into smaller oligomers of ATP-independent holding chaperone activity. These smaller oligomers bind with stress-induced partially denatured/unfolded and thereby going to be aggregated proteins, to give them protection against permanent damage and aggregation. On withdrawal of stress, IbpB transfers the bound substrate protein to the ATP-dependent bi-chaperone system DnaKJE-ClpB, having both holdase and foldase properties, to finally refold the protein. Of the two sHSPs IbpA and IbpB of E. coli, this review covers the recent advances in research on IbpB only.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"689-696"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71421044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01394-1
Milene N.O. Moritz , Paulo R. Dores-Silva , Amanda L.S. Coto , Heloísa S. Selistre-de-Araújo , Andrei Leitão , David M. Cauvi , Antonio De Maio , Serena Carra , Júlio Cesar Borges
Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.
{"title":"Human HSP70-escort protein 1 (hHep1) interacts with negatively charged lipid bilayers and cell membranes","authors":"Milene N.O. Moritz , Paulo R. Dores-Silva , Amanda L.S. Coto , Heloísa S. Selistre-de-Araújo , Andrei Leitão , David M. Cauvi , Antonio De Maio , Serena Carra , Júlio Cesar Borges","doi":"10.1007/s12192-023-01394-1","DOIUrl":"10.1007/s12192-023-01394-1","url":null,"abstract":"<div><div>Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"Pages 1001-1012"},"PeriodicalIF":3.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01383-4
Christian Münch , Janine Kirstein
Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer’s, Parkinson’s, and a range of motor neuron diseases. The EMBO workshop “Protein quality control: from molecular mechanisms to therapeutic intervention” covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.
{"title":"Protein quality control: from molecular mechanisms to therapeutic intervention—EMBO workshop, May 21–26 2023, Srebreno, Croatia","authors":"Christian Münch , Janine Kirstein","doi":"10.1007/s12192-023-01383-4","DOIUrl":"10.1007/s12192-023-01383-4","url":null,"abstract":"<div><div>Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer’s, Parkinson’s, and a range of motor neuron diseases. The EMBO workshop “Protein quality control: from molecular mechanisms to therapeutic intervention” covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"Pages 631-640"},"PeriodicalIF":3.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01363-8
Omayma AR Abo-Zaid , Fatma SM Moawed , Eman FS Taha , Esraa S.A. Ahmed , Ragaa SM Kawara
The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.
本研究旨在证明香蜂花叶提取物(MEE)对丙基硫脲嘧啶(PTU)和/或γ-射线(IR)诱导的甲状腺机能减退引起的大鼠脑损伤具有神经保护作用。甲状腺机能减退和/或暴露于 IR 会导致血清中的 T3 和 T4 水平显著下降,同时脑组织匀浆中的脂质过氧化终产物丙二醛(MDA)和亚硝酸盐(NO)水平升高。此外,甲状腺机能减退和/或暴露于红外线通过上调蛋白激酶 RNA 样内质网激酶(PERK)、活化转录因子 6(ATF6)的基因表达,明显增强了内质网应激、脑组织匀浆中的内质网相关降解(ERAD)、CCAAT/增强子结合蛋白同源蛋白(CHOP)等基因表达上调,导致细胞凋亡,表现为 Bax、BCl2 和 caspase-12 的过度表达,最终导致脑损伤。同时,用 MEE 处理 PTU 和/或 IR 暴露的大鼠可通过 ATF6 减少氧化应激和 ERAD。此外,MEE还能阻止Bax和caspase-12基因表达的增加。对甲状腺功能减退动物的这种治疗与神经元保护有关,脑组织中微管相关蛋白 tau(MAPT)和淀粉样前体蛋白(APP)基因表达的下调表明了这一点。此外,服用 MEE 还能改善脑组织的组织学结构。总之,MEE可以预防甲状腺机能减退引起的与氧化应激和内质网应激有关的脑损伤。
{"title":"Melissa officinalis extract suppresses endoplasmic reticulum stress-induced apoptosis in the brain of hypothyroidism-induced rats exposed to γ-radiation","authors":"Omayma AR Abo-Zaid , Fatma SM Moawed , Eman FS Taha , Esraa S.A. Ahmed , Ragaa SM Kawara","doi":"10.1007/s12192-023-01363-8","DOIUrl":"10.1007/s12192-023-01363-8","url":null,"abstract":"<div><div>The purpose of this study was to demonstrate the neuroprotective effect of <em>Melissa officinalis</em> extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"Pages 709-720"},"PeriodicalIF":3.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}