Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01383-4
Christian Münch, Janine Kirstein
Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer's, Parkinson's, and a range of motor neuron diseases. The EMBO workshop "Protein quality control: from molecular mechanisms to therapeutic intervention" covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.
{"title":"Protein quality control: from molecular mechanisms to therapeutic intervention-EMBO workshop, May 21-26 2023, Srebreno, Croatia.","authors":"Christian Münch, Janine Kirstein","doi":"10.1007/s12192-023-01383-4","DOIUrl":"https://doi.org/10.1007/s12192-023-01383-4","url":null,"abstract":"<p><p>Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer's, Parkinson's, and a range of motor neuron diseases. The EMBO workshop \"Protein quality control: from molecular mechanisms to therapeutic intervention\" covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"631-640"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01363-8
Omayma Ar Abo-Zaid, Fatma Sm Moawed, Eman Fs Taha, Esraa S A Ahmed, Ragaa Sm Kawara
The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.
本研究旨在证明香蜂花叶提取物(MEE)对丙基硫脲嘧啶(PTU)和/或γ-射线(IR)诱导的甲状腺机能减退引起的大鼠脑损伤具有神经保护作用。甲状腺机能减退和/或暴露于 IR 会导致血清中的 T3 和 T4 水平显著下降,同时脑组织匀浆中的脂质过氧化终产物丙二醛(MDA)和亚硝酸盐(NO)水平升高。此外,甲状腺机能减退和/或暴露于红外线通过上调蛋白激酶 RNA 样内质网激酶(PERK)、活化转录因子 6(ATF6)的基因表达,明显增强了内质网应激、脑组织匀浆中的内质网相关降解(ERAD)、CCAAT/增强子结合蛋白同源蛋白(CHOP)等基因表达上调,导致细胞凋亡,表现为 Bax、BCl2 和 caspase-12 的过度表达,最终导致脑损伤。同时,用 MEE 处理 PTU 和/或 IR 暴露的大鼠可通过 ATF6 减少氧化应激和 ERAD。此外,MEE还能阻止Bax和caspase-12基因表达的增加。对甲状腺功能减退动物的这种治疗与神经元保护有关,脑组织中微管相关蛋白 tau(MAPT)和淀粉样前体蛋白(APP)基因表达的下调表明了这一点。此外,服用 MEE 还能改善脑组织的组织学结构。总之,MEE可以预防甲状腺机能减退引起的与氧化应激和内质网应激有关的脑损伤。
{"title":"Melissa officinalis extract suppresses endoplasmic reticulum stress-induced apoptosis in the brain of hypothyroidism-induced rats exposed to γ-radiation.","authors":"Omayma Ar Abo-Zaid, Fatma Sm Moawed, Eman Fs Taha, Esraa S A Ahmed, Ragaa Sm Kawara","doi":"10.1007/s12192-023-01363-8","DOIUrl":"https://doi.org/10.1007/s12192-023-01363-8","url":null,"abstract":"<p><p>The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"709-720"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-10-05DOI: 10.1007/s12192-023-01379-0
Rabab S Hamad, Hayder M Al-Kuraishy, Athanasios Alexiou, Marios Papadakis, Eman A Ahmed, Hebatallah M Saad, Gaber El-Saber Batiha
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
{"title":"SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway.","authors":"Rabab S Hamad, Hayder M Al-Kuraishy, Athanasios Alexiou, Marios Papadakis, Eman A Ahmed, Hebatallah M Saad, Gaber El-Saber Batiha","doi":"10.1007/s12192-023-01379-0","DOIUrl":"10.1007/s12192-023-01379-0","url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"657-673"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-15DOI: 10.1007/s12192-023-01381-6
Michael H Chiu, Benjamin Gershkovich, Ian-Ling Yu, Edward R O'Brien, Jingti Deng, Braedon McDonald
Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.
{"title":"Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome.","authors":"Michael H Chiu, Benjamin Gershkovich, Ian-Ling Yu, Edward R O'Brien, Jingti Deng, Braedon McDonald","doi":"10.1007/s12192-023-01381-6","DOIUrl":"10.1007/s12192-023-01381-6","url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"877-887"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01360-x
Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Resa Te Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra
The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.
{"title":"The beauty and complexity of the small heat shock proteins: a report on the proceedings of the fourth workshop on small heat shock proteins.","authors":"Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Resa Te Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra","doi":"10.1007/s12192-023-01360-x","DOIUrl":"https://doi.org/10.1007/s12192-023-01360-x","url":null,"abstract":"<p><p>The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"621-629"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01382-5
Francisco Lucas Pacheco Cavalcante, Sávio Justino da Silva, Lineker de Sousa Lopes, Stelamaris de Oliveira Paula-Marinho, Maria Izabel Florindo Guedes, Enéas Gomes-Filho, Humberto Henrique de Carvalho
Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL-1): control (0), lower (0.5), mild (1.5), and higher (2.5) on the initial establishment of sorghum seedlings CSF18 and CSF20. ER stress promoted growth and metabolism reductions, mainly in CSF18, from mild to higher TM. The lowest TM increased SbBiP and SbPDI chaperones, as well as SbbZIP60, and SbbIRE1 gene expressions, but mild and higher TM decreased it. However, CSF20 exhibited higher levels of SbBiP and SbbIRE1 transcripts. It corroborated different metabolic profiles among all TM treatments in CSF18 shoots and similarities between profiles of mild and higher TM in CSF18 roots. Conversely, TM profiles of both shoots and roots of CSF20 overlapped, although it was not complete under low TM treatment. Furthermore, ER stress induced an increase of carbohydrates (dihydroxyacetone in shoots, and cellobiose, maltose, ribose, and sucrose in roots), and organic acids (pyruvic acid in shoots, and butyric and succinic acids in roots) in CSF20, which exhibited a higher degree of ER stress tolerance compared to CSF18 with the root being the most affected plant tissue. Thus, our study provides new insights that may help to understand sorghum tolerance and the ER disturbance as significant contributor for stress adaptation and tolerance engineering.
{"title":"Unveiling a differential metabolite modulation of sorghum varieties under increasing tunicamycin-induced endoplasmic reticulum stress.","authors":"Francisco Lucas Pacheco Cavalcante, Sávio Justino da Silva, Lineker de Sousa Lopes, Stelamaris de Oliveira Paula-Marinho, Maria Izabel Florindo Guedes, Enéas Gomes-Filho, Humberto Henrique de Carvalho","doi":"10.1007/s12192-023-01382-5","DOIUrl":"https://doi.org/10.1007/s12192-023-01382-5","url":null,"abstract":"<p><p>Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL<sup>-1</sup>): control (0), lower (0.5), mild (1.5), and higher (2.5) on the initial establishment of sorghum seedlings CSF18 and CSF20. ER stress promoted growth and metabolism reductions, mainly in CSF18, from mild to higher TM. The lowest TM increased SbBiP and SbPDI chaperones, as well as SbbZIP60, and SbbIRE1 gene expressions, but mild and higher TM decreased it. However, CSF20 exhibited higher levels of SbBiP and SbbIRE1 transcripts. It corroborated different metabolic profiles among all TM treatments in CSF18 shoots and similarities between profiles of mild and higher TM in CSF18 roots. Conversely, TM profiles of both shoots and roots of CSF20 overlapped, although it was not complete under low TM treatment. Furthermore, ER stress induced an increase of carbohydrates (dihydroxyacetone in shoots, and cellobiose, maltose, ribose, and sucrose in roots), and organic acids (pyruvic acid in shoots, and butyric and succinic acids in roots) in CSF20, which exhibited a higher degree of ER stress tolerance compared to CSF18 with the root being the most affected plant tissue. Thus, our study provides new insights that may help to understand sorghum tolerance and the ER disturbance as significant contributor for stress adaptation and tolerance engineering.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"889-907"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-06-23DOI: 10.1007/s12192-023-01362-9
Abir Chakraborty, Ronald Tonui, Adrienne Lesley Edkins
HSP90 is a ubiquitously expressed chaperone protein that regulates the maturation of numerous substrate proteins called 'clients'. The glycoprotein fibronectin (FN) is an important protein of the extracellular matrix (ECM) and a client protein of HSP90. FN and HSP90 interact directly, and the FN ECM is regulated by exogenous HSP90 or HSP90 inhibitors. Here, we extend the analysis of the HSP90 - FN interaction. The importance of the N-terminal 70-kDa fragment of fibronectin (FN70) and FN type I repeat was demonstrated by competition for FN binding between HSP90 and the functional upstream domain (FUD) of the Streptococcus pyogenes F1 adhesin protein. Furthermore, His-HSP90α mutations F352A and Y528A (alone and in combination) reduced the association with full-length FN (FN-FL) and FN70 in vitro. Unlike wild type His-HSP90α, these HSP90 mutants did not enhance FN matrix assembly in the Hs578T cell line model when added exogenously. Interestingly, the HSP90 E353A mutation, which did not significantly reduce the HSP90 - FN interaction in vitro, dramatically blocked FN matrix assembly in Hs578T cell-derived matrices. Taken together, these data extend our understanding of the role of HSP90 in FN fibrillogenesis and suggest that promotion of FN ECM assembly by HSP90 is not solely regulated by the affinity of the direct interaction between HSP90 and FN.
{"title":"Mutations F352A and Y528A in human HSP90α reduce fibronectin association and fibrillogenesis in cell-derived matrices.","authors":"Abir Chakraborty, Ronald Tonui, Adrienne Lesley Edkins","doi":"10.1007/s12192-023-01362-9","DOIUrl":"10.1007/s12192-023-01362-9","url":null,"abstract":"<p><p>HSP90 is a ubiquitously expressed chaperone protein that regulates the maturation of numerous substrate proteins called 'clients'. The glycoprotein fibronectin (FN) is an important protein of the extracellular matrix (ECM) and a client protein of HSP90. FN and HSP90 interact directly, and the FN ECM is regulated by exogenous HSP90 or HSP90 inhibitors. Here, we extend the analysis of the HSP90 - FN interaction. The importance of the N-terminal 70-kDa fragment of fibronectin (FN70) and FN type I repeat was demonstrated by competition for FN binding between HSP90 and the functional upstream domain (FUD) of the Streptococcus pyogenes F1 adhesin protein. Furthermore, His-HSP90α mutations F352A and Y528A (alone and in combination) reduced the association with full-length FN (FN-FL) and FN70 in vitro. Unlike wild type His-HSP90α, these HSP90 mutants did not enhance FN matrix assembly in the Hs578T cell line model when added exogenously. Interestingly, the HSP90 E353A mutation, which did not significantly reduce the HSP90 - FN interaction in vitro, dramatically blocked FN matrix assembly in Hs578T cell-derived matrices. Taken together, these data extend our understanding of the role of HSP90 in FN fibrillogenesis and suggest that promotion of FN ECM assembly by HSP90 is not solely regulated by the affinity of the direct interaction between HSP90 and FN.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"697-707"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-10-24DOI: 10.1007/s12192-023-01386-1
Haotian Chen, Chen Chen, Yuhui Qin, Lei Wang, Jie Zheng, Fabao Gao
Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.
{"title":"Protective effects of epigallocatechin-3-gallate counteracting the chronic hypobaric hypoxia-induced myocardial injury in plain-grown rats at high altitude.","authors":"Haotian Chen, Chen Chen, Yuhui Qin, Lei Wang, Jie Zheng, Fabao Gao","doi":"10.1007/s12192-023-01386-1","DOIUrl":"10.1007/s12192-023-01386-1","url":null,"abstract":"<p><p>Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":"921-933"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50157136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s12192-023-01385-2
Ling Ai, Dan Luo, Huailing Wang, Xiaoyu Liu, Min Yang, Fangfang Tian, Suofu Qin, Jie Liu, Yuying Li
Oxidative stress is implicated in numerous diseases, with benzo(α)pyrene (BaP) known for causing substantial oxidative damage. Bifidobacterium longum (B. longum) is recognized as an antioxidant bacterium for certain hosts, yet its influence on oxidative damages instigated by BaP remains undetermined. In our study, we introduced various strains of Caenorhabditis elegans (C. elegans) to BaP to trigger oxidative stress, subsequently treating them with different forms of B. longum to evaluate its protective effects. Additionally, we explored the role of daf-16 in this context. Our findings indicated that in wild-type N2 C. elegans, B. longum-even in the form of inactivated bacteria or bacterial ultrasonic lysates (BULs)-significantly extended lifespan. BaP exposure notably decreased lifespan, superoxide dismutase (SOD) activity, and motility, while simultaneously down-regulating the expression of reactive oxygen species (ROS)-associated genes (sod-3, sek-1, cat-1) and daf-16 downstream genes (sod-3, ctl-2). However, it significantly increased the ROS level, malondialdehyde (MDA) content, and lipofuscin accumulation and up-regulated another daf-16 downstream gene (clk-1) (P <0.05). Interestingly, when further treated with B. longum peptide-1 (BLP-1), opposite effects were observed, and all the aforementioned indices changed significantly. In the case of RNAi (daf-16) C. elegans, BaP exposure significantly shortened the lifespan (P <0.05), which was only slightly prolonged upon further treatment with BLP-1. Furthermore, the expression of daf-16 downstream genes showed minor alterations in RNAi C. elegans upon treatment with either BaP or BLP-1. In conclusion, our findings suggest that B. longum acts as a probiotic for C. elegans. BLP-1 was shown to safeguard C. elegans from numerous oxidative damages induced by BaP, but these protective effects were contingent upon the daf-16 gene.
{"title":"Ameliorative effects of Bifidobacterium longum peptide-1 on benzo(α)pyrene induced oxidative damages via daf-16 in Caenorhabditis elegans.","authors":"Ling Ai, Dan Luo, Huailing Wang, Xiaoyu Liu, Min Yang, Fangfang Tian, Suofu Qin, Jie Liu, Yuying Li","doi":"10.1007/s12192-023-01385-2","DOIUrl":"https://doi.org/10.1007/s12192-023-01385-2","url":null,"abstract":"<p><p>Oxidative stress is implicated in numerous diseases, with benzo(α)pyrene (BaP) known for causing substantial oxidative damage. Bifidobacterium longum (B. longum) is recognized as an antioxidant bacterium for certain hosts, yet its influence on oxidative damages instigated by BaP remains undetermined. In our study, we introduced various strains of Caenorhabditis elegans (C. elegans) to BaP to trigger oxidative stress, subsequently treating them with different forms of B. longum to evaluate its protective effects. Additionally, we explored the role of daf-16 in this context. Our findings indicated that in wild-type N2 C. elegans, B. longum-even in the form of inactivated bacteria or bacterial ultrasonic lysates (BULs)-significantly extended lifespan. BaP exposure notably decreased lifespan, superoxide dismutase (SOD) activity, and motility, while simultaneously down-regulating the expression of reactive oxygen species (ROS)-associated genes (sod-3, sek-1, cat-1) and daf-16 downstream genes (sod-3, ctl-2). However, it significantly increased the ROS level, malondialdehyde (MDA) content, and lipofuscin accumulation and up-regulated another daf-16 downstream gene (clk-1) (P <0.05). Interestingly, when further treated with B. longum peptide-1 (BLP-1), opposite effects were observed, and all the aforementioned indices changed significantly. In the case of RNAi (daf-16) C. elegans, BaP exposure significantly shortened the lifespan (P <0.05), which was only slightly prolonged upon further treatment with BLP-1. Furthermore, the expression of daf-16 downstream genes showed minor alterations in RNAi C. elegans upon treatment with either BaP or BLP-1. In conclusion, our findings suggest that B. longum acts as a probiotic for C. elegans. BLP-1 was shown to safeguard C. elegans from numerous oxidative damages induced by BaP, but these protective effects were contingent upon the daf-16 gene.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"28 6","pages":"909-920"},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}